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Abstract

Adversarial examples pose a unique challenge for deep learning systems. Despite
recent advances in both attacks and defenses, a consensus on their true nature eludes
the community. A deep understanding of these can provide new insights towards the
development of more effective attacks and defenses. Driven by the common misconcep-
tion that adversarial examples are high-frequency noise, we present a frequency-based
understanding of adversarial examples, supported by theoretical and empirical findings.
Our analysis shows that adversarial examples are neither in high-frequency nor in low-
frequency components, but are simply dataset dependent. Particularly, we highlight the
glaring disparities between models trained on CIFAR-10 and ImageNet-derived datasets.
Utilizing this framework, we analyze many intriguing properties of training robust mod-
els with frequency constraints, and propose a frequency-based explanation for the com-
monly observed accuracy vs robustness trade-off.

1 Introduction
Since the introduction of adversarial examples by [1], there has been a curiosity in the com-
munity around the nature and mechanisms of adversarial vulnerability. There exists an ever-
growing body of work focused on attacking neural networks starting with the simple FGSM
[2], followed by the advanced PGD [3], a stronger C&W attack [4], the sparser Deep Fool
[5] and recently even a parameter free Auto-Attack [6]. These methods and algorithms are
consistently countered by the adversarial defense community, starting with distillation-based
methods [7], logit-based approaches [8], then moving on to the simple, yet powerful PGD
training [3], ensemble-based methods [9] and various other schemes [10, 11]. Despite the
immense progress made by the field, there exist many unanswered questions and ambiguities
regarding these methods and adversarial examples themselves. Several works [6, 12, 13, 14]
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have raised doubts about the efficacy of many methods and have made appeals to the re-
search community to be more vigilant and skeptical with new defenses. Meanwhile, there
exists a thriving research corpus dedicated to deeply studying and understanding adversar-
ial examples themselves. [15] presented a feature-based analysis of adversarial examples,
while [16] presented preliminary work on PCA-based analysis of adversarial examples,
which was followed up with [17] offering a nuanced view of the same through the lens of
SVD. [18] proposed to derive insights from the margins of classifiers. Given the intriguing
nature of adversarial examples, another way of examining them is through the signal pro-
cessing perspective of frequencies. [19] first proposed a frequency framework by studying
the sensitivity of CNN’s for different Fourier bases. [20] then pursued a related direction
where they explored the frequency properties of neural networks with respect to additive
noise. [21] explore how the frequency properties of the image itself affect the model’s out-
puts and robustness. [22] studied whether convolution operations themselves have an intrin-
sic frequency bias. [23] came up with the first variant of adversarial attacks which target the
low frequencies and [24] strengthened this line of thought by showing that such attacks had
a high success rate against adversarially defended models. [25] proposed a method of gener-
ating adversarial attacks in the frequency domain itself. Complementary to these, there have
been efforts by [26] and [27] in detecting or mitigating adversarial examples by training in
the frequency domain. These works also analyzed the nature of adversarial examples under
the purview of frequencies and tried to arrive at an explanation for their nature. [28] hypoth-
esized how CNNs exploit high frequency components, leading to less robust models, which
is also the primary argument for a class of pre-processing based defenses, e.g., those based
on JPEG. [29] also had arguments in support of this conjecture, based on their analysis on
CIFAR-10 [30]. It is confounding that these results are at odds with the successful low fre-
quency adversarial attacks by [24] and raises the pertinent question: What is the true nature
of adversarial examples in the frequency domain? Our work challenges some pre-existing
notions about the nature of adversarial examples in the frequency domain and arrives at a
more nuanced understanding that is well rooted in theory and backed by extensive empiri-
cal observations spanning multiple datasets. We observe that there exists a relation between
adversarial robustness and the frequency properties of the particular dataset. This particular
observation was also made in concurrent work [31] and we offer additional evidence in this
ongoing debate. The authors in [31] use frequency filtering on input images for analysis.
Though this is helpful, it does not give us a clear picture of how perturbations in different
individual frequencies affect the model. Hence, in our work we instead re-formulate the
PGD itself to incorporate frequency masking, enabling us to make interesting observations
about frequency based adversarial training as well. Based on these observations, we arrive
at a new framework that explains many properties of adversarial examples, through the lens
of frequency analysis. Our key contributions can be summarized as follows:

• We show that adversarial examples are neither high frequency nor low frequency phe-
nomena. It is more nuanced than this dichotomous explanation.

• We propose variations of adversarial training by coupling it with frequency-space anal-
ysis, leading us to some intriguing properties of adversarial examples.

• We propose a new framework of frequency-based robustness analysis that also helps
explain and control the accuracy vs robustness trade-off during adversarial training.

The rest of the paper is organized as follows: we first start off with basic notations and
preliminaries. Then we introduce our main findings about adversarial examples in frequency
domain and subsequently present a detailed analysis about their properties, complemented
by extensive experiments.
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Figure 1: The DCT of Perturbation Gradients from ResNet-18 model, averaged across the
validation sets, visualized with histogram equalization.

2 Preliminaries
We denote a neural network with parameter θ by y = h(x;θ), which takes in an input image
x ∈ RH×W (omitting the channel dimension for brevity) and outputs y ∈ RC where C is the
number of classes. Let D and D−1 represent the forward Type-II DCT (Discrete Cosine
Transform) [32] and its corresponding inverse. The DCT breaks down the input signal and
expresses it as a linear combination of cosine basis functions. Its inverse recovers the input
signal from this representation. For a 1-D signal, the kth-freq of x∈RN and its corresponding
inverse is given by

D(x)[k] = g[k] =
N−1

∑
n=0

xnλk cos
(2n+1)kπ

2N
, (1)

D−1(x) = x[n] =
N−1

∑
k=0

g[k]λk cos
(2n+1)kπ

2N
, (2)

where k = {0,1, . . . ,N −1} and λk =


√

1
N for k = 0√
2
N else.

(3)

We denote an adversarial attack that is bound by budget ε by

max
||δ ||p≤ε

L(h(x+δ ;θ),y) (4)

where L is the loss associated with the network and δ is the adversarial noise bounded
under a defined Lp norm to be less than perturbation budget ε . We perform a standard PGD-
style update [3] to solve this maximization problem via gradient ascent and for an attack
bounded by an Lp norm and step size α , the adversarial noise is given by

δ = argmax
||V ||p≤α

V T
∇xL(h(x;θ),y) (5)
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Figure 2: Vulnerability scores (Accuracy under attack) visualized per frequency across
datasets. Notice that the trends are reversed from normal training to adversarial training
in the case of CIFAR-10.

where V is the direction of steepest normalized descent. Now, to generate an adversarial
example that consists of certain frequencies, we restrict its adversarial noise δ to a subspace
S defined by S = Span{ f1, f2, . . . , fk}, where fi are orthogonal DCT modes and k ≤ N,

δ f = argmax
||V ||p≤α

V T D−1(D(∇xL(h(x;θ),y))⊙M)

where Mz(X) ∈ [0,1] is the mask
(6)

In our work, we consider the L∞ and L2 norms, solving for which gives us the update steps:

δ f = α ·Sgn(D−1(D(∇xL)⊙M)) for L∞ and (7)

δ f = α ·D−1
(

D
(

∇xL
||∇xL||2

)
⊙M

)
for L2 (8)

x̂ = x+δ f (9)
x̂ = clip(x̂;−ε,+ε) (10)

We refer to this method as DCT-PGD in the rest of the paper. Since the manual step size
selection of standard PGD is not always accurate, leading to discrepancies in robustness
measures as illustrated in [26], we provide our results and observations with a DCT version
of Auto-Attack as well. Unless mentioned otherwise, we utilize the ResNet-18 architecture
for all models. We use the term adversarial training to refer to the method by [3] for all
models, except for ImageNet models where we use Adversarial training for free method [33].
We utilize L∞ norm with ε of 4/255 for TinyImageNet and ImageNet datasets and ε of 8/255
for CIFAR-10 in all our experiments. Exact training details are included in the Appendix.

3 Nature of Adversarial Samples in Frequency Space
We describe the methods used to analyze frequency response of adversarial examples.

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 



: 5

0.2 0.4 0.6 0.8
Drop Rates

93.5

94.0

94.5

95.0

95.5
 A

cc
ur

ac
y 

CIFAR-10 

0.2 0.4 0.6 0.8
Drop Rates

48

50

52

54

56

 A
cc

ur
ac

y 

TinyImageNet 

0.2 0.4 0.6 0.8
Drop Rates

20

30

40

50

 A
cc

ur
ac

y 

ImageNet 

Frequency Range Trained: 0-15 Frequency Range Trained: 16-32 Frequency Range Trained: 32-48 Frequency Range Trained: 48-63

Figure 3: Accuracy of models trained with varying drop rates, for different frequency ranges.

3.1 Perturbation gradients
Measuring the change of output with respect to the input is a fundamental aspect of system
design. Whether it is a controls circuit or a mathematical model, the measure dy

dx gives us
valuable information about the working of the model. When the model in question is a black
box, like a neural network, the measure is invaluable as often it is our only insight into the
inner mechanisms of the model. In the case of a classifier, the measure dy

dx is a tensor that
is the same size as the input, which tells us about the impact of each pixel in input x on the
resulting output y. [34] first applied this concept on neural networks and called them input
gradients. Over the recent years, this measure and its variants have found a new home in
the model interpretability community [35, 36], where it forms the bedrock for various im-
provements. Taking a cue from this, we propose to measure dy

dδ
or Perturbation Gradients,

which inform us about the regions of noise which have maximal impact on the output y. In
our work, we are more interested in the frequency properties of adversarial examples, and
hence take this one step further and propose to measure the DCT of Perturbation Gradi-
ents, i.e., D

(
dy
dδ

)
or D(∇δY ). In a sense, we are measuring the model’s reaction to different

frequency components in the adversarial input. This tensor D(∇δY ) (which has same shape
as input) will point us towards the specific frequencies that affect the output y of the model.
To analyze the adversarial frequency properties of a given dataset, we calculate the Average
Perturbation gradients (over validation set) with respect to the model, under both normal
training and adversarial training paradigms. Once computed, it will paint a picture about the
interplay of adversarial noise and frequencies.

3.1.1 Analysis of Perturbation Gradients

We define the quantity D(∇δY ) f as the Perturbation gradient at frequency f . Note that
this quantity is useful because it differs from D(δ ) by at most a constant multiple, i.e.,
D(δ ) ∝ D(∇δY ). Please refer to Appendix sections A1 for the full proofs. We see that
the term D(∇δY ) corresponds to the frequencies that are affected by adversarial noise. We
compute the average DCT of Perturbation gradients over validation sets of TinyImageNet,
CIFAR-10, and ImageNet datasets for models with normal and adversarial training under at-
tack from a PGD-based L∞ adversary. The resulting tensors are visualized in Fig 1. It shows
the path taken by the PGD attack in the frequency domain under different scenarios for
different datasets. We see that for normally trained CIFAR-10 models, the DCT of Perturba-
tion gradient activations are towards the higher frequencies and they gradually shift towards
lower frequencies once the model is adversarially trained. Whereas for TinyImageNet and
ImageNet models, we observe that the activations are already in lower-mid frequencies and
adversarial training further concentrates them. These results clearly establish the following:
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Figure 4: Frequency-based adversarial training across datasets. In the first column we show
the results of adversarially training and testing for different frequency ranges. Next, we show
results of the same experiments across individual frequencies. The last column shows clean
accuracy for each frequency.

• The DCT content of PGD attacks is highly dataset-dependent and it is not possible to
make statements about their frequency nature based on training.

• The notion that adversarial training shifts the model focus from higher to lower fre-
quencies is not entirely true. In many datasets, the model is already biased towards the
lower end of the spectrum even before adversarial training.

• To verify that this phenomenon is attributed to the dataset alone, we also observe sim-
ilar behaviour across other architectures, across different image sizes and for different
attacks like L2 and Auto-Attack. (Shown in Appendix).

4 Measuring Importance of Frequency Components
To examine the properties and behaviour of adversarial examples in the frequency domain,
we also craft various empirical metrics that measure the importance of frequency compo-
nents under various paradigms.

4.1 Importance by Vulnerability
We measure the importance of a frequency component by measuring the attack success rate
when an adversarial attack is constrained to frequency f , by quantifying expected vulner-
ability of each frequency. This amounts to measuring the accuracy of h(x+ δ f ), where δ f
is the adversarial perturbation that is constrained to frequency f , obtained using the afore-
mentioned DCT-PGD method. A lower accuracy of the model for a particular δ f indicates
a more important frequency f . In Figure 2, we visualize the accuracy of models with both
normal training and adversarial training across different datasets under this setting.We see
that only in the case of CIFAR-10, the trends for normal training and adversarial training are
reversed, indicating that attacks constrained to higher frequencies are more successful for
normal models, while lower frequency attacks are more effective on the adversarially trained
models. In TinyImageNet and ImageNet datasets, we see that the overall trend remains same
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Figure 5: Unequal epsilon distribution: Here we see that models where low frequency per-
turbations are favoured ends up with higher robustness, but lower clean accuracy.

across the two training paradigms with adversarial training improving robustness across the
spectrum. To obtain a high level view, we design another set of experiments where instead
of attacking individual frequency components, we restrict the attack to frequency ranges (or
bands, set of 16 equal divisions of the spectrum). In their work, [28] had claimed that low
frequency perturbations cause visible changes in the image, thus defeating the purpose of im-
perceptibility clause of adversarial examples. However, we find that for larger datasets, such
perturbations are imperceptible to a human. Example images have been shown in Appendix.

4.2 Importance during training
To understanding the relative importance of frequency components while training, we for-
mulate an experiment models are trained by masking out frequency components of the input
in a probabilistic manner and then using the trained model for normal inference. Example
images when certain frequency bands are dropped is shown in appendix. We train four types
of models, where the frequency masking is restricted to four equal frequency bands and the
amount of masking/dropping is controlled by a parameter p. This translates to training

argmin
θ

L(h(x f̂ ;θ),y) (11)

where x f̂ = D−1(M⊙D(x)) (12)

Mz =

{
1 z ∼ Up ∧ z ∈ [ f1, f2..., fk]

0 else
(13)

is the Mask generated using p, where x f̂ is the input constrained to a particular frequency
band within the range [ f1, f2, · · · fk]. While training, we select the frequencies to be dropped
using a random uniform distribution U , with the percentage of dropping controlled by pa-
rameter p. A value of p = 1 indicates all frequencies in the specified band are set to zero.
We train a total of 36 models per dataset, encompassing 9 different drop rates (p values)
and 4 frequency bands. The experiment is repeated across datasets and the results are shown
in Figure 3. As expected, we observe that a higher drop rate leads to lower accuracy. We
also see that across datasets, high drop rates in low frequency band of 0-15 affects the model
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more. This behaviour is expected as lower frequencies have a strong relation with the labels
[28] and their extreme dropping leaves the model with little information to learn from. But
if we observe the degree to which it affects the performance, we see disparities between the
datasets. For example, the model trained on CIFAR-10 experiences a mere ∼2% drop even
when 90% of frequencies in the low band (frequencies 0-15) are dropped. Under the same
condition, the model on TinyImageNet experiences ∼10% drop and the model on ImageNet
experiences a whopping ∼35% drop in accuracy, highlighting the relative importance of
these frequency bands. Also, note how very high drop rates in the highest frequency bands
(frequencies 48-63) have little to no effect in non CIFAR-10 models.

5 Adversarial Training with frequency perturbations
Till now, we have analyzed the frequency properties of the model across datasets. In all
experiments so far, we merely observed how the model reacts to adversarial perturbations
under various frequency constraints. To further understand the properties of robustness in
the frequency domain, we propose to train models with adversarial perturbations restricted
to these frequency subspaces, a first of its kind. The training follows

min
θ

max
||δ f ||p≤ε

L(h(x+δ f ;θ),y) (14)

where δ f is adversarial noise restricted to a frequency subspace defined by f . To obtain a
high-level view of the process, we first train models adversarially with frequencies restricted
to four equal frequency bands, ranging from low to high. Predictably, the models perform
well when adversarial PGD attack is also restricted to the same frequency bands. The result-
ing robustness heatmap of attacks across the spectrum is shown in first column of Figure 4.
For a more fine-grained view of the same, we adversarially train 64 models for each dataset,
by perturbing each individual frequency. Then we adversarially attack these models in every
frequency to produce a robustness heatmap, shown in the second column of Figure 4. In their
work, [20] had claimed that training with low-frequency perturbations did not help the model
to be robust against those frequencies. Their analysis was not based on adversarial pertur-
bations, but their claim was generalized. This effect was not observed in our experiments.
We see that the model has good robustness when trained and tested against low-frequency
perturbations, across datasets. The diagonals of the robustness heatmaps tell us that mod-
els perform well against an adversary constrained to the same frequency used for training.
Moreover, we also see that models trained with perturbations restricted to mid/higher fre-
quencies can withstand attacks from a fairly broad range of frequencies compared to models
trained with lower frequency perturbations. Now that we have established this new training
paradigm, we explore its various nuances and intriguing properties.

5.1 The unequal epsilon distribution
Do all frequencies have the same impact in adversarial training? To answer this question,
we modify the construction of adversarial perturbation δ by weighing contributions from
different frequency components and manipulating the value of ε they receive. It follows

δ =
K

∑
i=0

ηi · sgn(∇xL)i for L∞ norm where ηi =
ε

K − i
(15)

where K is the number of equal frequency bands (four in our case) and η is a linear scaling
parameter. This setting effectively translates to giving more importance to perturbation in
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Figure 6: Clean Accuracy vs Robustness across datasets, compared with standard adversarial
training for free method. Note that the Y-axis scales are different. Here λ controls the weight
of adversarial perturbation towards lower frequencies.

one frequency space over the other. We train 2 models: One as described by equation 15,
favoring lower frequency bands and then its complement, by reversing η and favoring higher
frequency bands. For these experiments, we employ Free adversarial training by [33]. The
plot of PGD and clean accuracy during training are shown in Figure 5. We observe that the
model where lower frequencies are favoured acts similar to PGD based training, showing
that training across spectrum is not a requirement for robustness. But at the same time, we
also observe that models favoring high frequency perturbations show superior clean accuracy
in all datasets except CIFAR-10. These results show that - Not all frequencies require the
same amount of perturbation while training. We explore this in detail in the next section.

5.2 Accuracy vs Robustness: an alternative perspective
Building on top of previous results, we design an experiment to examine the accuracy vs
robustness trade-off that is commonplace while training robust models. We introduce a pa-
rameter λ that controls the weight given to frequency components in the perturbation during
adversarial training. The update step for PGD under L∞-norm now looks like:

δ = λ ·
[
α · sgn(∇xLLF)

]
+(1−λ ) ·

[
α · sgn(∇xLHF)

]
(16)

where ∇xLLF and ∇xLHF are gradients restricted to low (frequencies 0-31) and high frequen-
cies (frequencies 32-63) respectively. We adversarially train ten different models by varying
the value of λ and show their clean and robust accuracy in Figure 6. We see that in the case
of TinyImageNet and ImageNet, the clean accuracy decreases when we train with low fre-
quency perturbations, while increasing robustness. In case of CIFAR-10, we see that there
is an initial increase in robustness followed by a steep fall. This is because higher frequen-
cies have a significant role in adversarial robustness for this dataset, which is not achieved
when λ values are high. We also observe a steep fall in robustness for ImageNet at λ of 0.9.
This is because the frequency importance is distributed in the low-mid range for ImageNet
(Figure 1) and very high λ values tend to ignore the 32-48 frequency bands. These results
establish that robustness and clean accuracy of an adversarially trained model are dependent
on the frequencies we perturb. The λ parameter gives us control over the trade-off, enabling
us to be more prudent while designing architectures and training regimes that demand a mix
of clean accuracy and robustness. Note that this is different from [10] which introduces a
new training strategy, while we analyze and exploit the existing PGD training for gaining a
frequency based understanding of the trade-off.
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6 Conclusion
In this paper, we analyze adversarial robustness through the perspective of spatial frequen-
cies and show that adversarial examples are not just a high frequency phenomenon, but are in
fact dataset-dependent. Then we propose and study the properties of adversarial training us-
ing specific frequencies, which can be used to understand the accuracy-robustness trade-off.
These results can be utilized to train robust models more quickly by focusing on the frequen-
cies that matter most. We hope that our findings will resolve some misconceptions about the
frequency content of adversarial examples and aid in creating more robust architectures.
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