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Machine learning models have shown increased accuracy in classification tasks when
the training process incorporates human perceptual information. However, a challenge in
training human-guided models is the cost associated with collecting image annotations for
human salience. Collecting annotation data for all images in a large training set can be pro-
hibitively expensive. In this work, we utilize “teacher” models (trained on a small amount
of human-annotated data) to annotate additional data by means of teacher models’ saliency
maps. Then, “student” models are trained using the larger amount of annotated training data.
This approach makes it possible to supplement a limited number of human-supplied annota-
tions with an arbitrarily large number of model-generated image annotations. We compare
the accuracy achieved by our teacher-student training paradigm with (1) training using all
available human salience annotations, and (2) using all available training data without hu-
man salience annotations. We use synthetic face detection and fake iris detection as example
challenging problems, and report results across four model architectures (DenseNet, ResNet,
Xception, and Inception), and two saliency estimation methods (CAM and RISE). Results
show that our teacher-student training paradigm results in models that significantly exceed
the performance of both baselines, demonstrating that our approach can usefully leverage
a small amount of human annotations to generate salience maps for an arbitrary amount of
additional training data.

1 Introduction
Computer vision architectures often take inspiration from brain physiology, mental models,
and attention mechanisms, which can be incorporated into the training of models in many
different ways. A common way to train human-guided models is through saliency-based
training, which has shown to (a) generalize better to new data, which is vital in open-set
recognition where not all classes are known, (b) speed up training time by using less sam-
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ples that contain more meaningful information (data + associated saliency), (c) increase the
model’s focus on class features, limiting sensitivity to features accidentally correlated with
class labels, and (d) produce more human explainable outputs. One limitation of human-
guided models can be the high cost to acquire human perception-related information, such
as image annotations. One potential solution to address this limitation is to build models
that are capable of generating human-like saliency maps to annotate new data used to train
subsequent models.
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Figure 1: This work explores training AI Teachers – models first trained in a human-guided
way – to train future AI Student models. AI Teachers are selected from models that have
the highest Area Under the ROC Curve (AUC) on the validation set and provide saliency for
larger, unannotated training data, eventually used to train AI Students. With this approach,
always-limited human annotations are efficiently leveraged to provide salience data to an
unlimited number of training samples.

We explore a training framework which first uses the available human-salience data to
train an AI Teacher model, which is then used to generate saliency maps, similar to hu-
man saliency, for large amounts of additional training data (see Fig. 1). The AI Student
model is then trained using the training data annotated by the AI Teacher. The AI Teacher’s
saliency maps can be generated using white-box approaches (e.g., CAM [33]), or black-box
approaches that rely on perturbing the input image and observing the effect on the output
(e.g., RISE [26]).

We experiment with our teacher-student framework for synthetic face detection using the
CYBORG human-guided training paradigm [5]. However, our approach is applicable to any
task for which humans can provide salience, and we present its viability also for fake iris
detection.

We show that the performance of AI Student models, trained by the human-taught AI
Teacher, surpasses the performance of both (a) models trained with limited human salience
(Baseline 1), and (b) models trained without human salience but on large training data (Base-
line 2). Thus, the proposed approach provides a means to efficiently convert a small amount
of human-provided salience data into a large amount of effective human-like saliency. Our
framework allows for increased data diversity and new information for each training sample,
which exceeds performance rather than simply adding more data. Results in this paper are
organized around the following research questions:

• RQ1: Which type of training produces better AI Teacher models: human-guided or
purely data-driven? We consider four CNN architectures with the same architecture
for teacher and student models. (Sec. 4 and Tab. 1)
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• RQ2: Can the top-performing AI Teacher model improve the performance of AI Stu-
dent models across different CNN architectures? (Sec. 4 and Fig. 3)

• RQ3: What are the potential performance benefits of the teacher-student training
paradigm over the baselines? (Sec. 4 and Tab. 2)

• RQ4: Can this training approach be applied to domains beyond synthetic face detec-
tion? (Sec. 4, Tab. 3.)

2 Related Work
Estimating Model Salience Access to models’ internal data (feature maps, gradients,
weights) simplifies building saliency estimation methods. Class Activation Mapping (CAM)
is the most popular approach to estimate salience of white-box models [33]. CAM works by
making a forward pass through the model to get the activations of the last convolutional layer,
which are weighted into a heat map. A potential downside of CAM is low resolution of the
resulting visualization; e.g., 7×7 for DenseNet. Recent advances such as Grad-CAM [30],
Grad-CAM++ [8], HiResCAM [13], Score-CAM [32], Ablation-CAM [28], or Eigen-CAM
[25] aim to provide more detailed saliency estimations, but require more computational re-
sources.

In case of black-box models, dominant methods rely on a simple idea of randomly per-
turbing input regions and observing the impact on the output. Random Input Sampling Ex-
planation (RISE) [26] is one such method, in which a weighted average (where the weights
serves as the “confidence” scores) is used to generate a full-sized salience map. Black-box
approaches, such as RISE, have two main benefits; (1) they require no information from
inside the model, and (2) the resolution of generated salience may be as high as that of the
input image, whereas CAMs are limited to the spatial dimensions of the last convolutional
layer. Recent work on black-box explainers include methods of evaluating their usefulness
for humans [6] and increasing their robustness against adversarial attacks [7].

The above mentioned techniques are part of the broader and dynamic “eXplainable AI”
(XAI) area [29]. In this work, we use CAM and RISE to compare their usefulness in gen-
erating salience of teacher models, since saliency methods can be architecture-specific and
may impact the performance of the Teacher-Student training paradigm.

Human Salience-Guided Model Training Incorporating human perceptual capabilities
into the model training is non-trivial, and may involve human-sourced information in var-
ious forms: image/video annotations [5], eye-tracking [4, 11], reaction times [17], or even
games [24]. Successful ways of incorporating human-collected information into training in-
clude adding specialized components to the loss functions [5, 17], augmenting training data
[3], and introduction of human perception-based regularization [14, 17]. Specifically, Con-
veYing Brain Oversight to Raise Generalization (CYBORG) training strategy [5] combines
both human and model’s salience into the loss function by penalizing the divergence of the
model’s CAM from the human salience provided as image annotations. Application of the
CYBORG loss function increased the performance in synthetic face detection across four,
out-of-the-box CNN architectures using only 1,821 training samples with associated human
annotations, compared to models trained with cross-entropy loss.

Although human salience-based training has been successfully implemented (e.g. CY-
BORG), to our knowledge the approaches that would enable more effective use of human
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annotations, and thus scale the human-guided training, have not yet been explored. We
find this an important and essential research direction in the future of training human-guided
models for a number of applications. This paper shows how to create “proxy” models, which
by producing human-like salience for any input, allow human-inspired annotations to train
models on without additional cost.

3 Methodology

In this section, we first describe the two baselines that we compare our training paradigm
against. Secondly, we describe our dataset splits to train AI Teachers (TAIT), train AI Stu-
dents (TAIS) and evaluate AI Students (EAIS). We then describe our method for creating
representative human-guided AI Teachers, including experimental design parameters and
teacher model selection. Finally, we describe the performance metrics used to evaluate re-
search questions RQ1-RQ4.

3.1 Baseline Models

We benchmark our Teacher-Student training paradigm against two baselines. Baseline 1
is to simply train human-guided models using the available human annotations, which was
previously proposed in [5]. Within the naming conventions of this paper, Baseline 1 can be
thought of as simply using the teacher models on the test set, without training and using any
student models. Baseline 2 is to train traditional (no saliency) models on all available train-
ing data. These two baselines represent contrasting viewpoints in achieving optimal model
performance: (a) giving the model human-guided information on “where to look” in order to
solve the task (Baseline 1), or (b) giving the model a large amount of data to train on (Base-
line 2). For some tasks and domains, Baseline 1 or 2 may achieve the desired performance.
However, for Baseline 1, the vast majority of training data remains un-annotated and is not
used. And for Baseline 2, the hope is that “enough” training data has been used to train
an optimal model. Our approach is a strategic blend of using human-generated salience for
whatever fraction of training data it is available, and using model-generated salience for all
remaining training data.

3.2 Datasets

This section presents three dataset splits that play essential roles in the proposed pipeline
(cf. Fig. 2). First, the AI Teachers are trained on a (potentially small) training dataset with
saliency maps sourced from human annotations. Next, the best AI Teacher is used to generate
synthetic (yet human-like) saliency maps for samples in target (potentially large) training
dataset. This creates AI Students, which generalize better to unknown samples in the test set,
compared to (a) student models trained without any saliency, and (b) student models trained
with synthetic saliency, but generated by teacher models trained without human perceptual
inputs.

To evaluate our training framework, we use the task of synthetic face detection. Selected
results are repeated also for iris presentation attack detection (PAD) to address the general-
ization capability of the proposed approach across domains.
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Figure 2: Detailed diagram of data and saliency usage.

Dataset for Training AI Teachers (TAIT) These are the subsets of the overall train-
ing sets that have human-provided annotations of salience, and are used to Train the AI
Teachers. For the human-guided training of AI Teachers in the synthetic face detection
task, we use the same dataset and human annotations as introduced in [5]1. The training set
consists of 919 authentic and 902 synthetic face images with annotations of regions selected
by 363 humans (recruited via Amazon Mechanical Turk) as important to them judging the
authenticity of a given face image. Only annotations for correctly classified image pairs are
used for the training set. The validation set is composed of 10,000 authentic faces (sam-
pled from FRGC-Subset [27]) and 10,000 synthetic faces (sampled from SREFI [2] and
from StyleGAN2-generated images at thispersondoesnotexist.com). All images were pre-
processed using img2pose [1], resized to 224×224, and cropped to ensure the face is in full
view. Subjects were presented with a pair of face images, one authentic and one synthetic,
and asked an alternating prompt of which face is real (fake). After answering the question,
subjects used their cursor to highlight regions of the selected face that support their decision.
The human salience maps were cropped and resized to 224× 224 in the same way as the
image data to match the corresponding input images.

For training iris PAD AI Teachers, we used 765 samples annotated by humans, offered
with [3], including bona fide irises, and seven spoof attack types (artificial, textured contact
lens, post mortem, paper print outs, synthetic, diseased, textured contact lens & printed).
Only correctly classified samples were used in model training.

The TAIT image sets, without the human-salience heatmaps, are also used to train models
with cross-entropy loss in order to answer Research Question 1.

Datasets for Training AI Students (TAIS) Larger training sets, for which no human an-
notations of salience are available, were used to Train the AI Students. For synthetic face
detection task, the dataset was collected from the same sources as the TAIT (FRGC, SREFI
and StyleGAN2; see example images added to the supplementary materials). This resulted
in a TAIS dataset six times larger than, and image-disjoint from, the smaller TAIT dataset
for synthetic face detection task. The TAIS dataset for iris PAD task was collected from
the same sources as TAIT for iris PAD, and is certainly image-disjoint. However, due to a
more challenging scenario of collecting physical iris spoofs, we kept the size of TAIS similar

1The authors of this paper would like to thank the authors of [5] for sharing their data with us.
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as the size of TAIT except so that classes (live / spoof) could be completely balanced (764
samples).

Both TAIS datasets have no associated human saliency for the images. Instead, salient
regions for each image are given by a salience map (either either CAM- or RISE-based)
generated from the AI Teacher model that was trained using TAIT.

Datasets for Evaluating AI Students (EAIS) In conventional machine learning terms,
these are the test sets. However, we are careful to make this distinction as the teacher mod-
els are completely withheld from the test set, and only the student models are evaluated on
this set. Instead, teacher models are assessed by their performance on the validation set
(Sec. 3.4 discusses the teacher model selection process in depth). For synthetic face de-
tection task, the EAIS set contains (a) 600,000 synthetic face images, evenly sampled from
six GAN architectures (ProGAN [19], StarGANv2 [9], StyleGAN [20], StyleGAN2 [22],
StyleGAN2-ADA [21], and StyleGAN3[23]; samples are presented in supplementary mate-
rials), and (b) 100,000 authentic face images: 70,000 from FFHQ and 30,000 from CelebA-
HQ [18]. ProGAN and StarGANv2 were trained using CelebA-HQ, whereas the rest of the
GAN generators (StyleGAN, StyleGAN2, StyleGAN2-ADA, and StyleGAN3) were trained
using FFHQ. For the iris PAD task, the test set is comprised of 12,432 samples across six
categories (live, artificial, texted contact lenses, display, post mortem, and paper print outs),
which is identical to the test set used in the LivDet-Iris-2020 competition benchmark [12].

3.3 Performance Metrics
In an effort to benchmark our results against the most recent human saliency-based training,
we first conducted experiments using the exact same dataset sources, model backbones, and
experimental environment as in [5]. To assess the uncertainty related to random training
seeds, we trained 10 models for each discussed dataset-model configuration. Area Under the
ROC Curve (AUC) is used to compare the performance of the models.

3.4 Generation of Human-Guided AI Teachers
Saliency-based Model Training Our framework for teaching AI Teachers begins by first
training 10 models on the TAIT dataset using human annotations and the CYBORG loss,
which simultaneously maximizes the classification performance, and closeness of the model
and human saliency maps [5]:

L=
1
K

K

∑
k=1

C

∑
c=1

111yk∈Cc

[
(1−α)∥s(teacher)

k − s(model)
k ∥2︸ ︷︷ ︸

teacher saliency loss component

− α log pmodel
(
yk ∈ Cc

)︸ ︷︷ ︸
classification loss component

]
(1)

where ∥ · ∥ is the ℓ2 norm, yk is a class label for the k-th sample, 111 equals to 1 when yk ∈ Cc
(and equals to 0 otherwise), C is the number of classes, K is a batch size, α = 0.5 is a
trade-off parameter weighting teacher- and model-based saliency maps. The s(teacher)

k is the
salience generated by the teacher (i.e. by a human in case of teaching the AI Teacher models,
or by the AI Teacher in case of teaching the AI Students) for the k-th sample. The s(model)

k is
the model saliency estimated by weighting all features maps in the last convolutional layer
using weights in the last classification layer belonging to the predicted class Cc. We follow
[5] and normalize both s(model)

k and s(teacher)
k to the range of ⟨0,1⟩.
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Table 1: Mean Area Under the Curve (AUC) for synthetic face detection task solved by all
variants of AI Students. Ten models were trained for each variant and standard deviations
are given. Only one architecture (Inception) did not benefit from the salience generated by
AI Teachers taught initially by humans. Best results for each model architecture are bolded,
and better type of saliency is color coded: RISE, and CAM.

How the AI Teachers Mean AUC on the EAIS data
were trained on TAIT data DenseNet ResNet Xception Inception

Without human salience 0.591 ±0.036 0.601±0.019 0.694±0.011 0.645±0.020
With human salience 0.696±0.016 0.634±0.021 0.722±0.011 0.617±0.040

Next, the model with the highest AUC on the validation part of the TAIT dataset is se-
lected as the AI Teacher. The selected teacher model then generates saliency (using either
RISE or CAM approach) on the larger unannotated TAIS training set. Finally, 10 subse-
quent AI Students are trained on the TAIS dataset with the associated AI Teacher-generated
salience maps using CYBORG loss.

Model Architectures We used four out-of-the-box architectures across all experiments:
DenseNet121 [16], ResNet50 [15], Xception [10], and Inception v3 [31]. All model weights
were instantiated from the pre-trained ImageNet weights. All models were trained using
Stochastic Gradient Descent (SGD) for maximum 50 epochs, with learning rate of 0.005,
modified by a factor of 0.1 every 12 epochs. The initial teacher saliency and model saliency
components in the human-guided (CYBORG) loss were given equal weighting, i.e. α = 0.5
in Eq. (1), as in [5] and [3]. Optimal student model configurations were achieved by lowering
α = 0.01 (the exploration of the weighting parameter α is detailed in Section 4).

4 Results

Answering RQ1: Which type of training makes better AI Teacher models: human
guided or purely data driven? To fairly assess the value of using human salience in train-
ing AI Teachers, we first taught 10 of such models using TAIT data with human saliency.
In order to answer research question RQ1, we additionally trained another 10 AI Teachers
with only cross-entropy loss (“CE-trained AI Teacher” in Fig. 2). This is to investigate if
human annotations are at all needed at any step of the entire framework. For both tasks,
three out of four AI Student model architectures benefited from AI Teachers being trained
with human annotations as opposed to being trained without human salience, as seen in Tab.
1 for synthetic face detection task. For the one AI Student model architecture that did not
benefit from AI Teachers being trained with human salience (Inception), we believe the stan-
dard deviations indicate these differences weren’t statistically significant. More specifically,
we believe this result is due to the selection of a poor Teacher model. The Teacher-Student
training paradigm selects the highest-performing model on the validation set as the Teacher.
However, this may not always generate the best salience due to overfitting, or latching onto
spurious features despite presence of human salience. This is illustrated in Fig. S4 in the sup-
plementary materials, which shows that the selected Inception-based Teacher model failed to
focus on important regions of the input image (see specifically col (e) row (ii) in that figure).
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With Inception Teacher’s saliency maps unfocused on the wrong features, the AI Student’s
performance will inevitably suffer.

Thus, the answer to RQ1 is affirmative: effective student models benefit from being
trained with AI Teachers trained with human-salience, compared to AI Students taught
by teachers not exposed to human salience.
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Figure 3: Mean ROC curves, along with bands representing standard deviations across 10
independent train-test runs, illustrating how the performance of the AI Teacher (and resulting
salience generated by that teacher model) impacts the AI Student’s performance. “Same”
indicates that both AI Teacher and AI Student shared the same architecture. For example,
“Same” for DenseNet indicates that the student model was trained using saliency generated
by the DenseNet-based teacher model. “Best” means that the student model was trained
with saliency generated by the best AI Teacher, possibly with a different architecture. For
comparison, the “Worst” means that the student model was trained with saliency generated
by the worst AI Teacher. For ROCs denoted as “Same = Best” or “Same = Worst”, there was
no difference in performance for these options, so we keep one ROC curve.

Answering RQ2: Can the top performing AI Teacher improve the performance of AI
Students across different CNN architectures? One of the most profound insights is that
AI Teacher’s saliency is transferable across different CNN architectures. To explore this,
we applied the AI Teacher which taught the best-performing student model (Xception-based
teacher with CAM-based saliency, AUC=0.722 in Tab. 1), to train another student models,
but based on different architectures (DenseNet, ResNet, and Inception) than the AI teacher.
Every model achieved better performance using Xceptions’s CAM-based saliency instead of
the saliency generated by a teacher sharing the same architecture as a student. As a sanity
check, we then performed the opposite experiment: applying the AI Teacher that resulted
in the worst-performing student models (in this case Inception-based teacher model with
RISE-based saliency, AUC=0.508) to train the student model (again, based on a different
architecture than the AI Teacher: DenseNet, ResNet and Xception). Every model that used
Inception’s saliency decreased its performance significantly. Fig. 3 illustrates the results
via ROC curves. From these experiments, we can conclude that the best teacher models
are learning more salient features from the data, and passing that information along effec-
tively to student models. Thus, the answer to RQ2 is affirmative: the top performing AI
Teacher can improve the performance of AI Students and does not need to have the
same experimental parameters or even architecture to convey saliency-related infor-
mation efficiently to future student models.
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Table 2: Area Under the Curve (AUC, mean ± std) achieved by the baselines and the optimal
student model in synthetic face detection task. Optimal AI Student configurations were
achieved by training the model using the optimal AI Teacher’s configuration (Xception +
CAM) with α = 0.01 (i.e. encouraging the model to focus on salience instead of class label).

Model Baseline 1 Baseline 2 Optimal AI Student
(small set, entire (larger set, no (this paper: large set, optimal

human salience available) human salience) use of human salience)

DenseNet 0.633 ± 0.04 0.629 ± 0.039 0.767 ± 0.020
ResNet 0.612 ± 0.05 0.555 ± 0.061 0.718 ± 0.012
Xception 0.730 ± 0.02 0.586 ± 0.074 0.743 ± 0.005
Inception 0.679 ± 0.03 0.610 ± 0.035 0.746 ± 0.019

Table 3: Same as in Table 2, except that results for iris PAD are shown. Optimal AI Students
may have different CNN architectures than their teacher models, and may have “aggressive”
(α = 0.01) or modest (α = 0.50) weighting towards using human saliency.

Model Baseline 1 Baseline 2 Optimal AI Student
(small set with the entire (large set, (this paper: large set, optimal
human salience available) no human salience) use of human salience)

DenseNet 0.920 ± 0.017 0.917 ± 0.017 0.950 ± 0.013
ResNet 0.854 ± 0.031 0.905 ± 0.013 0.920 ± 0.022
Xception 0.852 ± 0.018 0.948 ± 0.008 0.952 ± 0.003
Inception 0.888 ± 0.018 0.905 ± 0.029 0.947 ± 0.010

Answering RQ3: What are the potential performance benefits of the teacher-student
training paradigm over the baselines? In answering this research question, we build
upon the insights found from the previous two research questions in order to maximize the
full capabilities of the proposed training paradigm. We explore increasing the performance
of teacher-student training by: (1) using the “best” teacher model’s saliency (conclusion
from answering RQ1: teachers trained using human-salience teach better student models &
conclusion from answering RQ2: Xception’s teacher using CAM saliency is best to teach
students detecting synthetic faces), and (2) training the student models to “look” more ag-
gressively at the teacher’s saliency maps by lowering α in Eq. (1) during training to near
zero (α = 0.01). In addition to using the optimal teacher’s saliency maps, once the AI Stu-
dents have a more accurate map of “where to look,” the classification (cross entropy-based)
component of the loss becomes less important to the student models. The results from these
experiments are reflected in Tab. 2. As illustrated, this approach significantly boosted the
performance across all CNN architectures, and the accuracy of optimal student models
trained with the proposed approach surpassed the accuracy of the baseline models..

Answering RQ4: Can this training approach be applied to domains beyond synthetic
face detection? In order to validate our findings, we repeated our experiments for iris PAD
task. For RQ1, we saw similar findings as for synthetic face detection, as three out of the
four student model architectures benefited from AI Teachers taught using human saliency.
For RQ2, the top-performing AI Teachers improved the performance of AI Students across
different CNN architectures. Finally, we were able to increase the performance of AI Student
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models over human-guided teacher models by selecting optimal teacher saliency and alpha
values (RQ3), as shown in Tab. 3. We included non-essential, yet potentially informative
results and graphs related to the iris PAD results in the supplementary materials.

5 Conclusions
We have proposed, designed and evaluated a learning framework that makes an efficient
use of limited human saliency data, allowing to significantly scale human-guided training
strategies. To accomplish this goal, we first use a small amount of human annotations to
train AI Teachers, that is, models that generate saliency for subsequent AI Students. These
student models are trained using existing saliency-guided training paradigms, but utilizing
synthetically-generated salience rather than human-supplied salience.

We extensively tested our framework in a task of synthetic face detection, and explored
selected variants in a task of iris presentation attach detection (to check the domain gener-
alization hypothesis). We observed a boosted performance of the resulting student models
trained by AI Teachers built using human salience, when compared to student models trained
without any salience information. Even more importantly, we also saw a better performance
when models trained with human salience were used as AI Teachers, compared to teacher
models not exposed to human salience before. That confirms the usefulness of incorporating
human salience into CNN training, and this paper – to our knowledge – for the first time
demonstrates how to leverage small availability of human annotations and scale the human
perception-augmented training. The proposed way of learning can thus serve as one of the
ideas to match the growing size of datasets in any domain in which humans can provide
initial limited salience information sufficient to train teacher models.
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