
CHEMBURKAR ET AL.: TEXT-TO-MOTION SYNTHESIS USING DISCRETE DIFFUSION 1

MoDDM: Text-to-Motion Synthesis using
Discrete Diffusion Model
Ankur Chemburkar
achemburkar@ict.usc.edu

Shuhong Lu
slu@ict.usc.edu

Andrew Feng
feng@ict.usc.edu

Institute for Creative Technologies
University of Southern California
Los Angeles, USA

Abstract

We present the motion discrete diffusion model (MoDDM) for synthesizing human
motion from text descriptions that addresses challenges in cross-modal mapping and mo-
tion diversity. The previous methods that utilized variational autoencoder (VAE) to learn
the latent distributions for text-to-motion synthesis tend to produce motions with less
diversity and fidelity. While the diffusion models show promising results by generating
high quality motions, they require higher computational costs and may produce motions
less aligned with the input text. The proposed method combines the discrete latent space
and diffusion models to learn an expressive conditional probabilistic mapping for motion
synthesis. Our method utilizes vector quantization variational autoencoder (VQ-VAE)
to learn discrete motion tokens and then applies discrete denoising diffusion probabilis-
tic models (D3PM) to learn the conditional probability distributions for the motion to-
kens. The discrete classifier-free guidance is further utilized in the training process with
proper guidance scale for aligning the motions and the corresponding text descriptions.
By learning the denoising model in the discrete latent space, the method produces high
quality motion results while greatly reducing computational costs compared to training
the diffusion models on raw motion sequences. The evaluation results show that the pro-
posed approach outperforms previous methods in both motion quality and text-to-motion
matching accuracy.

1 Introduction
Synthesizing believable human motions based on input conditions is an essential task for
computer vision and animation that will find many applications in gaming, simulation, and
virtual reality. Various conditional inputs can be utilized to drive the motion synthesis pro-
cess such as speech, music, action categories, and natural language text descriptions. Gen-
erating motions from text descriptions requires modeling of both languages and motions,
which is especially challenging as the model needs to learn a cross-modal mapping from
input free-form text to output motion sequences.

One of the challenges for motion synthesis from texts is that the generation process is
not a one-to-one mapping problem. For example, the description "A person stands up" only
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indicates the action but does not provide information about the current state of the person.
Thus the person could be either sitting or lying down on the ground – both will be valid states
for connecting into the "stands up" action. Similarly, if the motion styles are not explicitly
defined in the description (i.e. walking fast or slowly), then motions with varying moving
speed will correspond correctly to the same input text description as far as the walking ac-
tions are presented. Previous works [22, 23] have utilized variaional autoencoder (VAE)
to learn a normal latent distribution for modeling such variations from the same text input.
While these methods produce reasonable results, the synthesized motions have less diver-
sity since the motions have to be sampled from a learned target distributions. To address
the diversity issues, the denoising diffusion probabilistic models (DDPM) are good candi-
dates for text-to-motion synthesis tasks. The main advantage is that the de-noising process
is not tied to a particular latent space distributions (i.e. Gaussian) when learning the under-
lying data distributions. As shown in the previous works [32], adapting the diffusion models
for motion synthesis tasks produces an expressive probabilistic mapping that are capable
of generating diverse motion results. However, applying diffusion models on raw motion
data requires higher computational costs due to large numbers of diffusion steps for each
individual joint parameters. Moreover, from the experiments we also found that diffusion
models may produce motions that are less aligned with the input text conditions. Therefore
while the diffusion method generates high quality motions, the results may not be suitable
for text-to-motion synthesis task.

In this paper, we propose to address the aforementioned issues for the diffusion mod-
els in human motion synthesis by utilizing discrete latent space learning. Specifically, we
proposed to utilize vector quantization variational autoencoder (VQ-VAE) to learn discrete
latent codes from the input motions. These discrete codes are then used by the discrete de-
noising diffusion probabilistic models (D3PM) to learn the denoise process. By learning the
denoising model in the discrete latent space, the method not only produces high quality mo-
tion results from the diffusion process, but also greatly reduces the computational costs by
requiring much fewer diffusion steps to converge. Our objective and subjective evaluations
show that the proposed method performs well in both motion fidelity and correlations to the
input texts.

Our contributions are summarized as the following: 1) We model the text-to-motion
generation task as a discrete denoising diffusion probablistic model, which allows reduced
diffusion steps for faster inferences while producing high quality results. 2) We evaluated
our method in a comparison with state-of-the-art methods using both objective metrics and
subjective user study. The results demonstrated that our method outperforms the previous
methods in both motion quality and text-to-motion matching accuracy. The user evaluation
results also showed that the proposed approach produces motions that are preferred over
previous methods.

2 Related Works

2.1 Text-to-Motion Synthesis

Deterministic approaches learn a direct mapping between input text and human motions
with either a sequence-to-sequence model [25] or an encoder-decoder architecture based on
a gated recurrent unit [6]. However, the text-to-motion synthesis is not a one-to-one mapping
and the same text description can correspond to multiple different human motions that are all
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plausible. To address such stochastic mapping, other approaches have adapted probabilistic
models including GANs [18], normalizing flows [11, 36], and variational autoencoder (VAE)
[1, 9, 10, 22, 23] for motion synthesis, where VAE is theoretically proved to have more
stability in training [4]. VAE [16] encodes the training data distribution into continuous
latent variables, which can then be used to synthesize new data via latent space sampling.
It has been applied successfully for both action-conditioned motion synthesis and text-to-
motion synthesis tasks [22, 23] to model the text prompts and motions as parameterized
normal distributions in the latent space. The recent work [9] improved the VAE sampling by
adding local semantic motion contexts with time variant attention with sentence features in
the motion generation stage.

The vector quantized variational autoencoder (VQ-VAE) [33] was introduced for learn-
ing the discrete representations as codebooks to address the issue of posterior collapse in
autoregressive sampling stages. The synthesize tasks are modelled as a two-stage training
process that uses VQ-VAE and transformer models [26]. In the first stage, the VQ-VAE is
trained to learn the discrete latent space representation by learning the codebooks for re-
constructing the training data. In the second stage, a transformer model is used to learn
conditional priors over the discrete latent codes through autoregressive sequential predic-
tion. Such two-staged architecture has demonstrated excellent performance in time series
data, as exemplified by Videogpt [35]. It has also been adapted for text2motion and mo-
tion2text tasks by Guo et al. in TM2T [10] to allow both forward and inverse alignment
between texts and motions. They leverage 1D CNN based latent quantization to encode mo-
tion features followed by autoregressive translation networks to model the mapping between
text and motion. Our approach follows a similar vector quantization step but significantly
differs in the second stage where we make use of discrete diffusion explained in the subse-
quent sections. Another very recent work T2M-GPT [38], also implemented the VQ-VAE
to utilize the discrete motion features which are employed by an autoregressive Generative
Pretrained Transformer (GPT) model showing promising results. Our model uses the dis-
crete diffusion process that has the global context of the latent motion representation, while
the autoregressive models will only attend to the past context.

2.2 Diffusion Models
Diffusion models [13, 27, 28, 29, 30] have recently gained attention in the field of image
and human motion synthesis due to their ability to generate complex and realistic results
[5, 20]. They, like VAEs are generative models based on the principle of approximate density
estimation. Unlike autoregressive generative models, diffusion models are not limited by
step-by-step sampling, allowing for more flexibility and reduced error accumulation during
inference.

In the continuous diffusion process, a data sample of any modality (motion in our set-
ting) is first iteratively injected with gaussian noise through a forward Markov process until
pure noise is obtained. In the subsequent reverse process, the model learns to gradually de-
noise the sample. Diffusion transformer frameworks have been applied in motion synthesis
domains such as audio conditioned gesture generation task [37] to better handle long-term
dependencies in gesture sequences. For human motion synthesis, there have been several
notable adaptations of diffusion models [3, 15, 32, 39]. Tevet et al. [32] applied diffusion
models in continuous space for generating raw motion frames, which showed improvements
in motion quality. The later work adapted time-varying weight schedule for noise estimation
and addressing the jittering problem in motion generation [3] .
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D3PM [2] extended the application of diffusion models to discrete data, such as categori-
cal labels or text, using a transition matrix in the noising step. VQ-Diffusion model [7] based
on a VQ-VAE whose latent space is modeled by a conditional DDPM variant has been im-
plemented for the task of text-to-image synthesis. To our knowledge, no variant of discrete
diffusion has been applied to the text-motion domain.

Motivated by the ideas of VQ-VAE and continuous diffusion, we applied the discrete
diffusion model to human motion synthesis. Our approach involves a two-stage process.
In the first stage, we utilize VQ-VAE for learning the discrete latent codes by reconstructing
input data. In the second stage, we gradually corrupt the codes in the latent space by applying
transition matrices, allowing the model to recover the discrete latent codes. To address the
issue of the network ignoring text conditions in the denoising process, we also incorporate
discrete classifier-free guidance [12, 31] during training.

3 Method
Our MoDDM method is summarized in Figure 1. The proposed method trains the motion
synthesis models using a two-stage architecture, where the first stage consists of learning dis-
crete motion tokens via VQ-VAE and the second stage utilizes the discrete diffusion model
to learn the conditional token distributions.

Figure 1: Architecture for VQ-Diffusion. The top half represents the VQ-VAE model framework.
Bottom left figure briefly shows the forward and reverse process for training stage in Diffusion. Bottom
right figure explains inference stage with the reparametrization trick.

3.1 Motion Token Learning
We make use of a latent space vector quantization model pre-trained on the domain of 3D
human motions. Given a human motion represented by a sequence of poses m ∈ RL×Dm ,
where L is the sequence length and Dm is the dimensions of a single motion frame, an encoder
E converts these poses into motion snippets s ∈ Rl×h with the number of snippets l being
much less than L and h being the latent dimension. These snippets are then transformed into
quantized vectors b ∈ Rl×h through the process of discrete quantization DQ with a learned
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codebook C consisting of K embedding entries (c1, ...cK) of dimensions Rh. The process DQ
transforms s by comparing each snippet (si)

t
i=1 to all entries in C and replacing the snippet

with the index of the nearest entry. Hence, the process DQ is defined as

ki = argminc j∈C||si − c j|| (1)

The reverse process of the quantization DQ’ converts the indices k into the corresponding
entries b from codebook C to obtain the latent embedding for each motion snippet. Finally,
a decoder D reconstructs b back to the 3D human motion space. Overall, this autoencoder
process can be formulated as

m̂ = D(DQ′(DQ(E(m)))) (2)

Following [10], this process is trained with two losses - a reconstruction loss between m and
m̂, and a codebook embedding loss to update the codebook entries and stabilize training.
The loss equation is given by:

Lvq = ||m̂−m||1 + ||sg[E(m)]−b||22 +β ||E(m)− sg[b]||22 (3)

Here, sg[.] denotes stop gradient operation and β is a weighting factor. As the quantiza-
tion process DQ is clearly non-differentiable, straight-through gradient estimator [34] was
employed to enable back-propagation.

3.2 Diffusion for Discrete Motion Tokens
Discrete diffusion model is very similar to its continuous counterpart. Given a sequence of
discrete motion tokens k0 ∈ Il , where the subscript denotes the diffusion step, the forward
diffusion process gradually corrupts the sample through a Markov chain q(kt |kt−1). Fol-
lowing the discrete diffusion process [7], we use the forward process of randomly masking
or replacing the tokens in k and obtaining increasingly noisy latent variables k1, ...,kT ∈ Il ,
where T is the total number of diffusion steps. Here kT is pure noise, or all masked to-
kens in our case of discrete diffusion. The reverse diffusion process tries to reconstruct
k0 from kT by sampling from a reverse distribution q(kt−1|kt ,k0). Since k0 is not known
during inference time, a transformer model is trained as the denoising model to approxi-
mate the reverse distribution. The distribution obtained from the transformer is denoted by
pθ (kt−1|kt ,y), where y is the condition (text in our case). Fixed transition matrices for each
timestep Qt ∈ R(K+1)×(K+1) are used to define the transitional probabilities between code-
book indices, where

Qt =


αt +βt βt βt . . . 0

βt αt +βt βt . . . 0
βt βt αt +βt . . . 0
...

...
...

. . .
...

γt γt γt . . . 1

 (4)

The extra dimension in K+1 denotes the [MASK] token. As defined in Qt, at every diffusion
step, an index in kt has a probability Kβt of being replaced by another index randomly from
the K indices, γt probability of becoming a [MASK] index and αt probability of remaining
the same index.
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The cumulative transition matrix Qt = Qt . . .Q1 that defines the transition probability
from k0 to kt and the corresponding forward probability distribution q(kt |k0) have a closed
form equation [7] that can be computed directly, which allows for an efficient forward diffu-
sion process during training. During the reverse process, the model learns to approximate the
posterior q(kt−1|kt ,k0) with pθ (kt−1|kt ,y) as mentioned above. Recent works [2, 14] per-
form a reparameterization trick that leads to better generation results. Instead of modelling
the posterior directly, it approximates the distribution by generating the denoised motion to-
kens which is given by the denoising model as pθ (k̃0|kt ,y). During inference, we sample
the t −1th motion from pθ (kt−1|kt ,y) using the denoised token distribution pθ (k̃0|kt ,y) and
the posterior distribution q(kt−1|kt, k̃0).

3.2.1 Classifier-Free Guidance

During the training process of a conditional generation task with k as a sample and y as the
corresponding condition, the diffusion model tries to optimize the prior distribution p(k|y)
assuming that the posterior distribution p(y|k) is satisfied. However, it is possible that this
posterior probability is ignored during training. Since the model has access to both the
corrupted sample and the condition, it is possible the the model only utilizes the corrupted
sample to reconstruct and disregard the conditional input. This leads to the poor alignment
between the generated sample and the condition, which is known as the posterior issue [31].

Therefore, our optimization target needs to include both p(k|y) as well as p(y|k). The
simplest way is to optimize log p(k|y) + s log p(y|k), where s denotes the guidance scale
which is a hyper-parameter. By using Bayes’ Theorem, this optimization function can be
reduced to:

argmaxk = [log p(k)+(s+1)(log p(k|y)− log p(k))] (5)

where p(k) is the unconditional distribution of k. To handle the unconditional inputs, the
model is also trained with ‘null’ condition [21] for a select percentage of samples. It has been
shown that implementing a learnable conditional vector instead of ‘null’ condition is more
suitable for training classifier-free guidance [31]. We adopt such technique with learnable
null vector for our implementation. As shown in the ablation experiments, using classifier-
free guidance with proper guidance scale heavily affects the alignment of motions to their
descriptions.

4 Experiments

4.1 Datasets and Training
We train and evaluate our text-to-motion synthesis model on two popular motion datasets in
this domain.

KIT Motion-Language. The dataset contains 3,911 3D Human motions with 6,278
text descriptions with 1-4 text descriptions for each motion [24]. Although the quantity and
diversity of this dataset is relatively small, it has been widely used for previous works in text-
to-motion research. We follow the 251 motion features [9] representation in the experiments.

HumanML3D. The dataset contains 14,616 3D human motions and 44,970 text descrip-
tions [9]. It was created by re-annotating motion capture from AMASS [19] and Human-
Act12 [8] collections. The 263 motion feature data representation additionally contains root
velocity, joint positions, joint velocities, joint rotations and foot contact binary labels.

Citation
Citation
{Gu, Chen, Bao, Wen, Zhang, Chen, Yuan, and Guo} 2022

Citation
Citation
{Austin, Johnson, Ho, Tarlow, and vanprotect unhbox voidb@x protect penalty @M  {}den Berg} 2021

Citation
Citation
{Hoogeboom, Nielsen, Jaini, Forr'e, and Welling} 2021

Citation
Citation
{Tang, Gu, Bao, Chen, and Wen} 2022

Citation
Citation
{Nichol, Dhariwal, Ramesh, Shyam, Mishkin, McGrew, Sutskever, and Chen} 2022

Citation
Citation
{Tang, Gu, Bao, Chen, and Wen} 2022

Citation
Citation
{Plappert, Mandery, and Asfour} 

Citation
Citation
{Guo, Zou, Zuo, Wang, Ji, Li, and Cheng} 2022{}

Citation
Citation
{Guo, Zou, Zuo, Wang, Ji, Li, and Cheng} 2022{}

Citation
Citation
{Mahmood, Ghorbani, Troje, Pons-Moll, and Black} 2019

Citation
Citation
{Guo, Zuo, Wang, Zou, Sun, Deng, Gong, and Cheng} 2020



CHEMBURKAR ET AL.: TEXT-TO-MOTION SYNTHESIS USING DISCRETE DIFFUSION 7

4.2 Baseline Methods
We compare our model to four state-of-the-art methods: Seq2Seq [17], Language2Pose [1],
TM2T [10] and Motion Diffusion Model (MDM) [32]. Seq2seq and Language2Pose are
deterministic motion generation baselines. TM2T utilizes VQ-VAE and recurrent models
for text-to-motion synthesis task. MDM uses a conditional diffusion model on raw motions
that showed promising motion results.

4.3 Quantitative Evaluations
We present the quantitative evaluation results on HumanML3D and KIT-ML over the set of
metrics used in recent works [9, 10, 32]. R-precision and Multimodal Distance represents
how aligned the motions are to their respective text conditions. FID calculates the distance
between ground truth and predicted motion distributions. Lower FID correlates to higher
quality motions but does not necessarily imply that the synthesized motions will align well
with input text conditions. Finally, Diversity measures the variety in the predicted motion
distributions given the same input condition.

As shown from the results in Table 1 for HumanML3D dataset, our MoDDM method
produces good FID scores and outperforms state-of-the-art results by a large margin. While
the motion diffusion model (MDM) showed a significant leap in the generated quality of
motions compared to the VQ-VAE model with recurrent network (TM2T), the approach
struggles in properly aligning the motions to the text condition, which is demonstrated by
lower R-precision and Multimodal Distance compared to our method and TM2T. Our R-
precision performance is similar to TM2T while our method produces much better FID.

On the KIT-ML dataset, Table 2 also shows MoDDM is able to capture the alignment
between motions and text better than other methods as evidenced by the superior R-precision
and Multimodal Distance results. For motion quality, our method also outperforms TM2T by
a large margin in FID score and is slightly behind MDM. These results validate our proposed
method that utilizes the discrete diffusion model for text-to-motion synthesis task.

We also show that our method does not only produce stronger results in motion-text
alignment than MDM, but also requires only one-tenth of steps during inference. Com-
pared to MDM, which applies diffusion model on raw motions, MoDDM achieves approxi-
mately 5x speedup during inference with the classifier-free guidance and 10x faster without
it. Therefore, our method is capable of generating longer motion sequences that are well-
aligned with the text description while using less computational resources.

Methods R Precision ↑ FID ↓ MultiModal Dist ↓ Diversity →

Top 1 Top 2 Top 3

Real Motions 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065

Seq2Seq [17] 0.180±.002 0.300±.002 0.396±.002 11.75±.035 5.529±.007 6.223±.061

Language2Pose [1] 0.246±.002 0.387±.002 0.486±.002 11.02±.046 5.296±.008 7.676±.058

MDM [32] - - 0.611±.007 0.544±.044 5.566±.027 9.559±.086

TM2T [10] 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076

MoDDM (Ours) 0.425±.004 0.615±.004 0.713±.003 0.294±.006 3.553±.009 9.178±.093

Table 1: Quantitative evaluation on the HumanML3D test set. ± indicates 95% confidence interval,
and → means the closer to Real motions the better. Bold face indicates the best result, while underscore
refers to the second best.
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Methods R Precision ↑ FID ↓ MultiModal Dist ↓ Diversity →

Top 1 Top 2 Top 3

Real Motions 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097

Seq2Seq [17] 0.103±.003 0.178±.005 0.241±.006 24.86±.348 7.960±.031 6.744±.106

Language2Pose [1] 0.221±.005 0.373±.004 0.483±.005 6.545±.072 5.147±.030 9.073±.100

MDM [32] - - 0.396±.004 0.497±.021 9.121±.022 10.847±.109

TM2T [10] 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.0.26 9.473±.117

MoDDM (Ours) 0.307±.002 0.490±.002 0.630±.003 1.194±.004 3.860±.009 10.346±.112

Table 2: Quantitative evaluation on the KIT-ML test set. ± indicates 95% confidence interval, and →
means closer to Real motions the better. Bold face, underscore indicates best, second-best respectively.

4.4 Subjective Evaluations

Figure 2: Qualitative Evaluations on 3 HumanML3D test samples between ground truth motion, MDM,
TM2T and our Motion Discrete Diffusion Model (MoDDM) with text description in the leftmost col-
umn. Light to dark shade indicates the motion duration from start to finish.

We show a qualitative comparison between MDM, TM2T and our MoDDM on Hu-
manML3D test dataset in Figure 2. These comparison results show the improvements of our
model in motion quality and alignment to text conditions. In the first example, MDM shows
downward movements before moving up, which indicates weaker condition alignment. In
the second example, our model is able to produce higher quality motions by generating a
circular trajectory with arm movements. In the third example, our result shows better diver-
sity, where the person stands up from a supine position, which is not clearly defined in the
description but plausible for the given condition.

We also conducted a subjective evaluation to assess the quality of the synthesized mo-
tions from our method, MDM, TM2T, and ground truth. We randomly selected 10 test
sequences and generated video clips for each method. The videos from each sequence were
then shown to 40 participants to compare and rank different methods. When considering
the ranking, our method is the most preferred one (34.6%) behind ground truth (39.2%),
followed by MDM (20.8%) and TM2T (5.4%). More details about the user study will be
provided in the supplementary material.
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4.5 Ablation Study
All ablation experiments are performed on HumanML3D test dataset.

Classifier free guidance: We observe that inclusion of classifier-free guidance is vital to
get a good alignment between motion and text. This is indicated by the significant increase
in R-precision and Multimodal Distance with classifier-free guidance in Table 3.

Guidance scale: We investigate the effect of guidance scale s on evaluation. Figure
3 shows the variance in R-precision and FID given different values of s. Increasing the
guidance scale improves motion quality but excessive weight degrade the results. Similar
trend is observed for alignment of motion to text. Our experiments show that a guidance
scale of around 4 gives the best performance overall.

Diffusion steps: We explore the influence of diffusion steps on our evaluation metrics.
Increasing the number of steps beyond 100 hurts the performance which corroborates with
experimental results in previous work [7].

Methods R Precision ↑ FID ↓

Top 1 Top 2 Top 3

w/o classifier-free guidance 0.303 0.454 0.558 0.297

Diffusion step = 200 0.393 0.575 0.682 0.415
Diffusion step = 100 0.425 0.615 0.713 0.294

Table 3: Quantitative ablation evaluation on the HumanML3D test set. Every value is averaged over 5
evaluation runs. Classifier-free guidance is used with guidance scale 4 unless specified otherwise.

Figure 3: Ablation study on Classifier-free guidance scale. All experiments are done with batch size of
128 for 750 epochs. For each value, evaluation has been repeated 5 times and averaged over the runs.

5 Conclusion
We present MoDDM, a method for text-to-motion synthesis based on discrete diffusion mod-
els. The method utilizes vector quantization (VQ) to learn discrete motion tokens from the
input motions and then trains a denoising model over the discrete token distributions. Com-
pared to the previous diffusion methods that are applied on raw motion sequences directly
[32], our method produces high quality motion results while greatly reducing the computa-
tional costs. We evaluated our approach through objective and subjective metrics, and the
results demonstrated that our method produce superior results for text-to-motion synthesis
task in both motion fidelity and text-to-motion matching accuracy.
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