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Abstract

In this paper, we present a novel multi-target domain adaptation (MTDA) method
that adapts a single model to multiple domains with class-wise attribute transfer. To
achieve this, we propose a high-precision pseudo labeling method for target domain im-
ages by utilizing cross-domain correspondence matching, which matches a target region
to the most similar source region. Then, we propose class-wise image translation using
the pseudo labels to avoid the problem of transferring characteristics between different
classes and to allow translation between the same classes. Lastly, we introduce cross-
domain feature consistency to learn the different characteristics of each target domain.
Extensive experiments on the various complex driving scene show that ours achieves
better performance than other state-of-the-art methods. The dense ablation study demon-
strates the effectiveness of the proposed method.

1 Introduction

Figure 1: Comparison between global align-
ment and class-wise alignment.

Unsupervised domain adaptation (UDA)
addresses the domain shift problem caused
by the distribution gap between training
data and test data. It results in significant
performance degradation in test domain in-
ference. Existing works [1, 2, 3, 10, 26,
27] alleviate this problem using pixel and
feature level distribution alignment method
and self-training method in visual percep-
tion tasks. However, the previous works
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have assumed a single target domain scenario which is incompatible with real-world data
having multiple domains, such as the various object appearance, background, and illumi-
nation conditions. These single-target domain adaptations (STDA) methods have limitation
in that it requires multiple domain-specific models to address multiple target domains ef-
fectively. To overcome the limitation, the multi-target domain adaptation (MTDA) methods
[7, 13, 30, 32, 35, 41] have recently been proposed for visual perception tasks that adapt a
single model from a source domain to multiple target domains.

Some MTDA works [13, 19] adopt image translation with domain alignment methods to
deal with multiple target domains and show impressive performance in MTDA tasks. They
show that global domain alignment via image translation takes an important role in adapting
a model to multiple target distributions. However, [13, 19] transfer global styles of the target
domain without considering the unique characteristics of each class in the image translation
process. As a result, attributes of all target classes are mixed and transferred to each source
class losing the distinctiveness. To this end, we propose class-wise multi-target domain
adaptation that clearly distinguishes the attribute features of the class and purely translates
the image styles of each class as shown in Fig. 1.

The class-wise image translation transfers the target domain attribute of each class to a
source image to align the pixel-level distribution. The key point of class-wise translation is
to obtain the label of an unlabeled target image to prevent attribute mixing between differ-
ent classes. To this end, we propose a high-precision pseudo labeling (HPP) method which
generates a pseudo label of the target image using the knowledge of the source domain and
the similarity between a source image and the target image. The overall pipeline of image
translation and pseudo labeling methods are illustrated in Fig. 2. Additionally, we propose a
cross-domain feature consistency, which is a simple yet effective method for target domain
distribution alignment without complex adversarial learning with domain discriminators[35].
It enables the model to extract domain-invariant features by creating the features of trans-
lated images that have been translated from the same source image to different domains.
The proposed method has advantages over previous works on the granularity of distribution
matching and the simplicity of training. Extensive experiments demonstrate the effectiveness
of the proposed method and our approach achieves state-of-the-art performance.

2 Related Work

2.1 Image Translation

Image translation has received growing attention and remarkably has advanced with the
emergence of conditional GANs [14]. Their method is improved by the following studies
on adversarial learning [10, 15, 22, 36, 44] and style transfer methods [5, 6, 11, 28, 38].
Some works [12, 15, 17, 18, 23, 31] show that an image can be translated into various styles
with disentangled features such as content and style. Based on these studies, [15, 16, 45]
propose the method that transfer the style of each class respectively using ground truth infor-
mation of the target image. However, class annotation is unavailable in unsupervised settings
and the annotation cost is expensive, especially for segmentation labels. On the contrary, we
propose the class-wise image translation without the ground truth of target data by estimating
the pseudo label map of target images.
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2.2 Unsupervised Domain Adaptation

Unsupervised domain adaptation aims to train a model on an unlabeled target domain using
the information from a labeled source domain. The distribution alignment between source
and target domains is the representative approach of unsupervised domain adaptation. [1,
18, 21, 27] align the pixel intensity distribution adopting style transfer and image translation
methods. Some works [9, 24, 25] reduce the domain gap by adversarial training in the
intermediate feature space of task networks, while others [37, 40] impose an adversarial
loss on output space which has less domain gap compared to an image or feature space.
Recent studies [20, 26, 42, 43] improve the generalization ability of the task model and use
the pseudo labeling technique to adapt the target domain. To enhance the confidence of the
pseudo label, target prediction confidence [20, 43], and distance from the centroid features
of each class [26, 42] are used as criteria to filter uncertain regions.

2.3 Multi-Target Domain Adaptation

Multi-target domain adaptation is recently proposed that adapts multiple target domains from
a source domain. To do so, common model parameter dictionary [41], knowledge distillation
[30], and domain-invariant feature extraction methods [32] are proposed. Recent studies
propose methods to tackle more complex tasks such as semantic segmentation in a driving
situation. [13, 35] adopt knowledge distillation from a domain-specific teacher model to a
domain-agnostic student model. Moreover, [35] use many discriminators to align source and
target domains, and [13] enforce parameter consistency between teacher models and student
model to create a domain-agnostic student model. [19] adapt a model to multiple target
domains without domain-specific teachers using an image translation network that generates
images with the properties of each target domain. In this work, we adopt the framework
of [19] as a baseline and propose an improved image translation method and simple target
domain alignment method.

3 Methods

The goal of the MTDA task is to learn a model that works well on K target domains Tk={1,...,K}
simultaneously, by utilizing data from the source domain. We adopt ADAS [19] as our base-
line. We newly propose the class-wise image translation method which transfers the attribute
feature of each class. Our class-wise image translation considers the differences in attributes
between classes to improve the target appearance. In addition, we propose a simple yet
effective domain alignment method by introducing feature consistency between images con-
verted to each target domain. We describe details of the class-wise image translation and
cross-domain feature consistency in the following sections.

3.1 Overall networks

The overall networks for class-aware MTDT are illustrated in Fig. 2-(a). The image trans-
lation networks θ = { f enc, f dec,genc,gdec} are composed of a semantic encoder, semantic
decoder, attribute encoder, f enc, f dec,genc and image decoder gdec. The semantic encoder ex-
tracts the semantic features FS

S , FS
Tk

from the source and target images IS , IT k, respectively.
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Figure 2: Overview of our class-wise image translation method. (a) Given a source image
IS , label map YS and target image ITk , our network produces an attribute-transferred image
IS→Tk . Latent features FL

S , FL
Tk

are extracted by adding semantic features and attribute fea-
tures from different encoders. Reconstructed images İS , İT k are only generated during train-
ing time. (b) We obtain a high-precision pseudo label ŶTk using two intermediate pseudo
labels Ŷ Pred

Tk
from the semantic decoder and Ŷ NN

Tk
from correspondence between the source

image and the target image. (c) The representative target attributes CTk , ĊTk are broadcast to
source label map YS to generate target attribute feature F̄A

Tk
to be added to source attribute

feature.
The semantic decoder produces the segmentation maps as follows:

Ŷ Pred
x = f dec(FS

x ), FS
x = f enc(Ix), x ∈ {S,Tk}, (1)

where S, Tk are the source and target domains, repsectively. We froze the parameter of the
semantic encoder and decoder pretrained on the source datasets.

We train the translation network with two processes: class-wise attribute translation and
reconstruction for feature space formation. First, reconstruction is a process of learning that
ensures the image generated through the encoder and decoder is close to the original input
image. This process constructs a feature space capable of generating an image in each do-
main. To continuously extract semantic information, the parameters of the semantic encoder
are fixed. We use these semantic embeddings for pseudo labeling described in Sec. 3.2. The
non-semantic attribute features FA

S ,F
A
Tk

are encoded by passing the images into the attribute
encoder as follows:

FA
x = genc(Ix), x ∈ {S,Tk}. (2)

Then, the latent space features FL
x are constructed by adding semantic features and attribute

features, which is the input of image decoder gdec to reconstruct the image İx as follows:

İx = gdec(FL
x ), FL

x = FS
x +FA

x . (3)

3.2 High-Precision Pseudo Labeling
The proposed HPP generates a pseudo label ŶTk of a target image, given the semantic fea-
tures of source and target images FS

S ,F
S
Tk

as illustrated in Fig. 2-(b). We extract two interme-
diate pseudo labels to increase the precision of pseudo labels We pass the target features FS

Tk
through the segmentation decoder trained on source data as follows:

Ŷ Pred
Tk

= f dec(FS
Tk
). (4)
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We froze the parameters of the semantic decoder to keep the learned semantic information
during HPP training. Then, we extract another pseudo label Ŷ NN

Tk
from semantic correspon-

dence between the source image and the target image. We compute the matching indicator
matrix M using mutual nearest-neighbor matching as follows:

M(i, j) =

{
1, if φ(M′

(i,∗)) = j, φ(M′
(∗, j)) = i

0, else
, (5)

where M′ is a spatial similarity matrix of semantic features computed by a cosine function
and φ is the argmax function which outputs the index of maximum value. We obtain the
second pseudo label Ŷ NN

Tk
by using the Hadamard product of M and YS as follows:

Ŷ NN
Tk

= M⊙YS . (6)

Lastly, we extract the high-precision pseudo labels ŶTk where where Ŷ Pred
Tk

and Ŷ NN
Tk

are con-
sistent as follows:

ŶTk(i, j) = 1(Ŷ Pred
Tk(i, j)

= Ŷ NN
Tk(i, j)

)Ŷ Pred
Tk(i, j)

. (7)

The generated pseudo label is used to obtain the attribute features of the target classes in the
following subsection.

3.3 Class-Wise Attribute Transfer
We transfer the target attribute feature to the area corresponding to the source class using the
source label map. To get the attribute features of each target class ĊTk from the input target
image, we apply RoI pooling using a high-precision pseudo label. These attribute features
are updated in corresponding memory attribute features CTk in the class-wise memory bank
through the exponential moving average. The input attribute features ĊTk are broadcast to
the corresponding region in the source label to make a target attribute feature map F̄A

Tk
which

has the same layout as the source image. If there are source classes that are not in the current
target image, memory attribute features CTk are used instead of input attribute features.

The broadcast target attribute feature map and the source attribute feature map are aggre-
gated by interpolation with ratio α . We then add semantic embeddings to the latent image
features, just like in the reconstruction process, by adding the semantic features of the origi-
nal image to the aggregated attribute features as follows:

FL
S→Tk

= FS
S +{αFA

S +(1−α)F̄A
Tk
}. (8)

Finally, we generate attribute-translated images through the image decoder given the gener-
ated latent features of the target attribute as follows:

IS→Tk = gdec(FL
S→Tk

). (9)

3.4 Training Loss for Translation Network
We train the image translation network θ and multi-head discriminator D by minimizing the
total loss Ltrans as follows:

Ltrans = λrecLrec +λadvLadv +λdom(LD
dom +Lθ

dom), (10)
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where Lrec,Ladv,LD
dom and Lθ

dom are the reconstruction, adversarial, and domain discrimina-
tion losses, respectively. The weight terms λ balance the losses. The reconstruction loss
is the L1 distance between the original input images and the reconstructed images İS , İTk
generated by an image decoder gdec. The adversarial learning between the image translation
network and multi-head discriminator [19] to generate target domain images. The vanilla
GAN loss [8] is adopted as the adversarial loss. We train the model to generate images with
different characteristics for each domain by imposing domain classification loss. The domain
classification layers and image translation networks are trained with the domain classifica-
tion losses LD

dom and Lθ
dom. We use the typical cross-entropy loss for the domain classification

losses. The mathematical details of each loss term are described in the supplementary mate-
rial.

3.5 Training Loss for Semantic Network with Cross-Domain Feature
Consistency

The loss for the semantic network consists of the cross-entropy loss on the predicted seg-
mentation maps and the proposed cross-domain feature consistency as follows:

Lseg = λCELCE +λconLcon, (11)

where λ is weight balancing terms for the losses. We impose the typical cross-entropy loss
LCE to learn the translated image and target domain image using the ground truth labels and
pseudo labels filtered by BARS [19].

The cross-domain feature consistency loss Lcon is designed for target domain alignment
by imposing constraints on the features from differently translated images to be consistent.
Because the converted images have the same layout with different characteristics for each
domain, it is possible to learn a model that extracts domain-invariant features by impos-
ing element-wise consistency. We impose the feature consistency loss Lcon with N set of
unordered target domain pairs as follows:

Lcon =
1

WHN ∑
{Tn,Tm}

L2(FTn ,FTm), where {Tn,Tm | n, m = 1,2. . .K, n ̸= m}, (12)

where W , H, and N are the width, the height of the feature map, and the number of pairs in
Z, respectively. Additional training details can be found in our supplementary materials.

4 Experiments
In this section, we describe the experimental results of the proposed method. We evaluate our
method on a semantic segmentation task in both the synthetic-to-real adaptation in Sec. 4.2
and the real-to-real adaptation in Sec. 4.3 with multiple driving scene datasets. We also
conduct ablation studies to demonstrate the effectiveness of the proposed method in Sec. 4.4.

4.1 Datasets
We use GTA5 [34] as the source domain, along with multiple real-world datasets, Cityscapes
[4], Indian Driving (IDD) [39], and Mapillary [29] as the target domains for the MTDA
experiments. We train our model with labeled source data and unlabeled target data from
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Method mIoU mIoU
C I M Avg.

G
→

C
,I

ADVENT 70.0 64.8 - 67.4
MTKT 70.4 65.9 - 68.2
ADAS 75.4 66.9 - 71.2
Ours 74.4 69.2 - 71.8

G
→

C
,M

ADVENT 69.1 - 68.7 68.9
MTKT 71.1 - 70.8 70.9
ADAS 75.3 - 72.6 73.9
Ours 74.8 - 73.8 74.3

G
→

C
,I

,M

ADVENT 69.8 65.6 68.0 67.8
MTKT 70.4 65.9 71.1 69.1
ADAS 74.9 66.7 72.2 71.3
Ours 74.0 70.3 74.3 72.9

Table 1: Quantitative comparison between
our method and state-of-the-art methods with
7 classes setting. Bold means the best score.

Method mIoU mIoU
C I M Avg.

G
→

C
,I

CCL 45.0 46.0 - 45.5
ADAS 45.8 46.3 - 46.1
Ours 46.5 46.9 - 46.7

G
→

C
,M

CCL 45.1 - 48.8 46.8
ADAS 45.8 - 49.2 47.5
Ours 47.1 - 48.9 48.0

G
→

I,
M

CCL - 44.5 46.4 45.5
ADAS - 46.1 47.6 46.9
Ours - 45.7 48.7 47.2

G
→

C
,I

,M

CCL 46.7 47.0 49.9 47.9
ADAS 46.9 47.7 51.1 48.6
Ours 49.3 48.8 50.2 49.4

Table 2: Quantitative comparison between
our method and state-of-the-art methods
with 19 classes setting.

multiple domains. We use mIoU (%) as an evaluation metric for all domain adaptation
experiments.
GTA5 contains 24,966 synthetic images with a resolution of 1914×1052 pixels, collected
from the video game GTA5.
Cityscapes is a real-world dataset with 5,000 street scenes taken from cities in Europe and
labeled into 19 classes. We used 2,975 images for training and 500 validation images.
IDD is the complex driving scene dataset that captures the Indian roads with diverse objects.
It contains a total of 10,003 images, with 6,993 images for training, 981 for validation, and
2,029 for testing.
Mapillary provides 25,000 images collected from all around the world and diverse cam-
eras. It includes 18,000 images for training, 5,000 images for testing, and 2,000 images for
validation.

4.2 Synthetic-to-Real Adaptation

We conduct experiments on synthetic-to-real adaptation using GTA5 as the source dataset
and Cityscapes, IDD, and Mapillary as the target datasets. First, we show the qualitative
results of image-to-image translation from ours and ADAS [19] in Fig. 3. The results show
that the transferred images from ADAS lose the unique attribute of each class in the target
image (clear sky to the dark sky in the second row) because ADAS is designed for global
style transfer. In contrast, our class-wise transfer method preserves the unique characteristics
of each object or class (see the red box of the target image).

We report the quantitative semantic segmentation results with 7 superclasses in Tab. 1
and 19 classes in Tab. 2, respectively. The results show that the proposed method consis-
tently outperforms all the competitive methods including ADVENT [40], MTKT [35], CCL
[13] and ADAS [19]. ADVENT, an STDA method, records a lower performance than other
MTDA methods Because ADVENT assumes the target domain as a single domain, it is dif-
ficult to adapt diverse multiple domains. Since both MTKT and CCL globally align the
target distributions, it can cause the alignment between different target classes. The results
in Tab. 1 and Tab. 2 show that ours outperform competitive methods for both 7 class and 19
class settings. As shown in Fig. 3, ADAS mixes the attributes of classes in a target image
because of the global style transfer. On the other hand, the proposed method transfers the
attribute of each class clearly and alleviates the listed problems. We believe that this is the
key to the proposed method outperforming the previous works.
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Figure 3: Qualitative comparison of image
translation results from ours and ADAS.

Figure 4: Image translation results of a real-
to-real adaptation setting. Our method can
synthesize high-quality images for various
source domains.

4.3 Real-to-Real Adaptation
Method C→I,M I→C,M M→C,I

7 19 7 19 7 19
CCL - 52.5 - 48.3 - 56.3

MTKT 68.8 - - - - -
ADAS 72.7 50.5 78.7 50.0 78.5 56.4
Ours 73.3 51.6 79.4 51.2 78.7 57.2

Table 3: Quantitative comparison on real-to-
real adaptation.

The real-to-real adaptation experiments
show the scalability of our model. We use
one of the real-world datasets as a source
domain and the other datasets are used as
target domains. Fig. 4 shows the translated
images using our class-wise image transla-
tion method. These images contain distinc-
tive characteristics of objects for each domain. Our method outperforms other MTDA meth-
ods most adaptation scenarios in both label mapping settings as shown in Tab. 3. These
experiments show that our proposed method generates high fidelity images regardless of the
source domain and demonstrates the scalability and reliability of the proposed method.

4.4 Ablation Study

4.4.1 Global translation vs Class-wise translation

mIoU mIoU
Method C I M Avg.

Color Transfer 33.8 37.4 42.1 37.8
DRANet 37.3 39.3 43.2 39.9

MTDT-Net 41.4 40.6 44.1 42.0
Ours 42.7 41.3 45.3 43.1

Table 4: Comparison with competitive
image translation methods.

We conduct the analysis on the effect of the
class-wise translation. We compare the pro-
posed class-wise translation method to three dif-
ferent global adaptation methods, Color trans-
fer [33], DRANet [18] and MTDT-Net [19]. The
proposed method shows better performance by
a large margin than the other methods in Tab. 4.
While the other methods transfer the global style
of the target image, our class-wise method aligns the pixel-level distribution finely and gran-
ularly using class-wise attribute transfer. This is the key to outperforming all these methods
because our method transfers the unique attribute of the target class. The translated image
makes it easier for the segmentation network to learn the confident features of each class of
the target domain.

4.4.2 Pseudo Labeling
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Cityscapes IDD Mapillary Avg.
Ŷ NN
Tk

0.59 0.57 0.55 0.57
Ŷ Pred
Tk

+ BARS 0.72 0.66 0.73 0.70
Ours 0.85 0.85 0.88 0.86

Table 5: Correctness of the pseudo label using
pixel precision as the performance metric.

mIoU mIoU
Method C I M Avg.
w/o LCon 48.5 48.2 49.6 48.8
w/ LCon 49.3 48.8 50.2 49.4

Table 6: Ablation study of cross-domain
feature consistency.

Figure 5: Qualitative results of image trans-
lation. (b) The building in the blue box of
translated images contains the attribute of the
building in the red box of target images. (d)
The pseudo label in the red box region shows
the generated pseudo label of the building.

We show the qualitative synthetic-to-real
image translation results and the pseudo la-
bel of the target image used in the trans-
lation process in Fig. 5. The building in
the blue box of Fig. 5-(b) is converted to
include the characteristics of the building
marked with red boxes in the same row. The
pseudo label corresponding to the area of
the red box shows the correct pseudo label
for building and other classes. The exact
pseudo label is effective for the converted
object to contain a distinctive appearance of
the target class.

We also report the quantitative result about the precision of the proposed pseudo labeling
method with baseline methods in Tab. 5. To measure pixel precision, We set the pixel as
the true positive if the pixel prediction is correct. Otherwise, the pixels are false positive.
We compare the pseudo label computed by the nearest neighbor Ŷ NN

Tk
, prediction Ŷ Pred

Tk
with

BARS and our HPP method. The BARS is a filtering method proposed in [19] to remove the
outliers where the prediction of a pixel and the class of the nearest centroid do not match. The
NN-based pseudo label shows lower performance by a large margin than the other methods
because it depends on the image pair that came into the input. The prediction method with
BARS also shows limited performance because it usually filters boundary pixels between
classes. On the other hand, our method generates a high-precision pseudo label exploiting
the knowledge learned by the segmentation model and matching information between input
image pairs. This experiment demonstrates that the proposed class-wise image translation
method improves the precision of the pseudo labels.

4.4.3 Cross-Domain Feature Consistency

In this section, we conduct the ablation study on cross-domain feature consistency loss Lcon
to demonstrate the effectiveness of the proposed method. We train the segmentation network
with translated images in a supervised manner and with target images in an unsupervised
manner. We impose cross-entropy loss in (11) using ground truth source labels for translated
images and filtered pseudo labels for target images. It improves the performance for all target
domains with an average mIoU margin of 0.6%, as shown in Tab. 6.
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5 Conclusion
In this work, we propose a novel class-wise image translation method and a simple yet effec-
tive domain alignment method. In the image translation procedure, we present high-precision
pseudo labeling to prevent the mixing of attributes between classes, building a framework
that allows attribute transfer only between the same classes between each domain. Since
the proposed class-wise image translation method imitates the pixel-level distribution of the
target domain better than the global image translation method. It not only produces visually
pleasing image translation results but also achieves better domain adaptation performance.
Extensive experiments demonstrate that the proposed cross-domain feature consistency im-
posed on the features from differently translated images adequately trains a domain-invariant
model. In particular, the ablation study on cross-domain feature consistency provides reli-
able results. This work contributes to the recent research on domain adaptation toward more
practical use cases. Future works may consider more complex and realistic scenarios which
adapt to a continuous domain that changes over time, such as different seasons.
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