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Abstract

In color constancy, we seek to estimate and remove the color of the illuminating light
from the captured raw RGB images. While the learning-based methods perform better
than the traditional statistics-based methods, they are typically tuned to perform well
on a particular camera, i.e., their performance on images captured by other cameras is
subject to their cross-camera generalizability. This problem was partially addressed, in
various prior works, using deep learning architectures. In this paper, we examine how
these cross-camera models perform compared to where we “pre-calibrate” the camera
biases in the training and/or testing images using a simple homographic color correction
procedure which can be easily done on the camera manufacturer’s part. And further,
with pre-calibrated data we examine by how much we could simplify the original cross-
camera models. We show that cross-camera color constancy with a simple pre-calibration
process yields up to 36% performance boost, which in turn indicates that the original
cross-camera methods have only limited ability to compensate for the cross-camera pre-
diction bias. Surprisingly, with this newly proposed evaluation protocol, we also found
that some single-camera color constancy algorithms already possess cross-camera ability
similar to adopting a camera bias pre-calibration.

1 Introduction
Object colors in the scene can vary drastically under different illumination, and thus it
is an important task to remove the effect of lighting from the captured RGB images for

†The work was done during Yi-Tun’s internship with Meta.
‡The work was performed when Jun Hu worked at Meta Platforms, Inc.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 LIN ET AL.: COLOR CONSTANCY: HOW TO DEAL WITH CAMERA BIAS?

Figure 1: Visualization of the efficacy of homographic pre-correction for cross-camera color
constancy. (a)(d) The cross-camera predictions by SIIE [1] and C5 [2]. (b)(e) SIIE and
C5 with homographic pre-correction. (c)(f) Simplified SIIE and C5 with homographic pre-
correction. (g) The ground-truth white balance. (h) The models’ performance (across 3
cross-camera scenarios) versus complexity.

illumination-invariant computer vision results. In practice, this color constancy process in-
cludes the first step of estimating the dominant illumination color in a captured raw RGB
image—a.k.a. the “white point”—and secondly dividing the image channel-by-channel by
the white point color [18]. This second step, called white balancing, is usually a fixed pro-
cess in the camera’s image processing pipeline, and therefore in most computer vision stud-
ies, the problem of color constancy focuses on estimating the illumination white point from
the captured raw RGB image.

Historically, most methods seek to find some statistics of the image’s pixel and/or edge
colors that could indicate the illumination white point [5, 8, 10, 12, 17, 31, 35, 37]. Advan-
tageously, these statistics-based assumptions usually do not specify the use of any particular
camera and thus the performance—i.e., whether the assumptions may succeed or fail—does
not depend on the camera. Recently, most of the proposed methods are based on machine
learning algorithms, e.g., [6, 7, 14, 21, 27, 32], where raw RGB images with labeled ground-
truth white points are used for training. These methods are shown to generally deliver better
color constancy compared to the statistics-based methods. However, they are tuned to per-
form well separately on individual cameras. Several works suggest that under a cross-camera
evaluation framework (i.e., the images used for training and testing are captured by differ-
ent cameras), some learning algorithms do not work as well as in the single-camera case
[1, 2, 20, 25, 26].

In this paper, we aim to re-evaluate cross-camera color constancy and seek simplifica-
tions to the problem in the manufacturer’s point of view. Insofar most works on cross-camera
color constancy assume that we do not have any prior knowledge about the testing cameras
(and therefore a more complicated deep-learning structure is “needed” to compensate for
the camera bias). We believe this assumption does not represent most of the real-life use
cases where camera devices usually store some characterization data in their hardware mem-
ories. We propose that—instead of increasing the model complexities to partially solve
cross-camera color constancy—manufacturers can consider storing some extra characteriza-
tion data on cameras that helps resolve this problem. Of course, this data should be light
weighted, supporting fast processing, and easily acquired.

We take the inspiration from the related color correction research [19], which is a pro-
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cess usually conducted after the white balancing step [9]. In color correction, “post-white-
balancing” image(s) of the 24-patch Macbeth Color Checker (MCC) [28] under one or more
reference illumination(s) are captured by the camera of concern, and (usually) a 3×3 linear-
transformation matrix is trained to optimally convert these MCC colors to the standard col-
ors, such as CIE XYZ or linear sRGB [34]. This trained matrix is then stored in the camera’s
memory and used to convert colors almost universally for any real-world scenes captured.
Analogously, for cross-camera color constancy, we could use the “pre-white-balancing”
MCC colors to train another color correction matrix. Here we could, given the raw MCC
colors of both training and testing cameras, train a color correction matrix that relates the
raw colors of the two cameras. Alternatively, a fixed reference camera could be assigned
(just like the standard color spaces) where both training and testing cameras can map to. As
such, the trained color constancy algorithms can continue to work on the images coming
from a new testing camera as if they were captured by the same camera.

Figure 1 exhibits the efficacy of adopting a pre-color-constancy color-correction process
(we use the color homographic correction [15]). Here, two cross-camera color constancy
algorithms, SIIE [1] and C5 [2], are trained on images captured by Canon 5DSR and Sony
IMX135, and tested on images of Nikon D810. We see that the original white-point pre-
dictions by SIIE and C5 still introduce considerable errors. Then, we show that the errors
are mitigated by a homographic correction. Further, with homographic correction, we can
simplify SIIE and C5 while retaining the improved performance. Examining the error versus
complexity chart in Figure 1(h), we see that the homography process improves the SIIE per-
formance by 36% (24% for C5), and the improved performance retains even when we lower
half of its FLOPS [33] complexity (two-third lower for C5).

Converse to our finding that the cross-camera methods are not actually able to fully
compensate for the camera bias, we are also surprised to find that, using the same eval-
uation methodology, some learning-based “single-camera” color constancy algorithms can
already compensate for the cross-camera bias almost as good as adopting a homographic
pre-correction.

2 Related Works
Color Constancy. Statistics-based color constancy algorithms are based on explainable as-
sumptions, either in terms of light-reflective physics (e.g., white patch [8], gray index [31])
and/or the empirical understanding of scene contents (e.g., gray world [10], black-and-white
PCA [12]). These methods do not require learning, however, their assumptions may occa-
sionally fail for particular types of scenes.

Generally speaking, learning-based color constancy algorithms perform better than meth-
ods based on image statistics. Shallow-learned algorithms [6, 7, 11, 13, 16] use traditional
optimization approaches such as least-squares regression or maximum likelihood estima-
tion, with the primary focus being to find effective features that represent individual images,
among which FFCC [7] delivers leading performance in many single-camera benchmarks.

It is generally accepted that end-to-end deep-learning architectures deliver state-of-the-
art performances. FC4 [21] is a fully-connected architecture adopting a pretrained Alex-
net or Squeeze-net. It is the building block of many successor deep-learning methods,
including C4 [38], MDLCC [36], and CLCC [27]. CLCC, which proposed to use multi-
ple FC4’s in training to contrast the same-scene-different-illuminants and different-scenes-
same-illuminant cases in data augmentation, is widely considered the current state-of-the-art
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single-camera color constancy method.

Cross-Camera Color Constancy. Recently, several approaches are proposed that aim to
mitigate the cross-camera performance degradation of learned color constancy. SIIE [1] is
one of the first algorithms that explicitly addressed cross-camera color constancy. In SIIE,
a sensor-mapping network is used to predict a 3×3 color correction matrix from each input
image (there is no guarantee that same-camera images will provide the same matrix). Using
this matrix, the original image is transformed into a reference color space before being fed
into the illumination-estimation network to deliver the final white point predictions.

Then, C5 [2] is considered the current state-of-the-art for cross-camera color constancy.
C5 uses multiple input images (9 images as suggested in the original paper) from the same
camera with shared encoders and a cross-encoder max-pooling strategy to learn an FFCC
algorithm [7] with corrected histogram input and FFCC model parameters.

There are other approaches that do not use deep learning to solve the cross-camera prob-
lem. Koskinen et al. [25] proposes to first obtain the camera-independent high-dimensional
spectral representation from the color images captured by the training camera and then back-
project the spectra to the RGB space using the target camera sensors’ spectral sensitivities.
Also assuming the camera sensors’ spectral property is known, Gao et al. [20] trains a 3×3
RGB-to-RGB correction mapping using the simulated RGB scenes of both cameras from
hyperspectral images. And yet, it is difficult to characterize the cameras’ spectral sensitivi-
ties. As part of the motivation of our proposed method, we are to show that making use of
the 24-patch MCC chart (instead of hyperspectral images and camera spectral sensitivities)
is already sufficient to obtain a useful cross-camera mapping.

Color Correction. Most color correction algorithms are trained to map the post-white-
balancing colors of the MCC chart captured under the same illumination(s) by two different
devices (or between one device and a standard color space [34]). Since MCC contains only
24 color patches, i.e., only 24 data points in a typical color correction training, the complexity
of the learning algorithm used could not be too high. Traditionally, linear least-squares
(LLS) regression is used. To introduce non-linearity in the mapping, polynomial and root-
polynomial least-squares (PLS, RPLS) are proposed [19, 29].

More recently, the theory of color homography was proposed by Finlayson et al. [15],
where they claimed that object chromaticities—i.e., the R/G and B/G values—under differ-
ent illuminations and/or captured by different cameras are related by a homographic trans-
form. In effect, the main advantage of using a homography formulation is that, unlike LLS,
PLS and RPLS, it removes the effect of shading differences when mapping the color of the
same object viewed under different illumination and/or camera conditions [15].

The comparisons between different color correction algorithms used particularly for our
cross-camera color constancy experiments are shown in the supplementary materials (Ap-
pendix A). In this paper we will use the better-performing color homography method.

3 Method

In this section, we will first establish how the homographic color correction algorithm [15]
can be applied to cross-camera color constancy. Then, we will introduce our new evaluation
protocol based on the INTEL-TAU dataset [26].
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Figure 2: (a) Top: MCC chart under different reference lights captured by two cameras.
Bottom left: the original chromaticity distributions of two cameras’ MCC colors. Bottom
right: transformed MCC colors using a trained homography. (b) Ground-truth white point
distributions of the three cameras in INTEL-TAU [26]. (c) The homographic-corrected white
point distributions.

3.1 Homographic Color Correction
Let us denote C1 and C2 as two different camera models. We wish to find a fixed color
mapping fC1→C2 such that:[

R2/G2
B2/G2

]
≈ fC1→C2

([
R1/G1
B1/G1

])
, (1)

where [R1,G1,B1] and [R2,G2,B2] refer to the camera responses at the same pixel captured
by C1 and C2, respectively. According to the color homography theory [15], this mapping
is formulated as a fixed homographic transform:

α

 R2/G2
B2/G2

1

≈ H

 R1/G1
B1/G1

1

 , (2)

where H is a 3×3 learnable matrix. α is a scalar depending on the input R1/G1 and B1/G1
and is indicated directly by the third element of the derived vector (right-hand-side of the
equation). The predicted C2 chromaticities are then the first two elements of the derived
vector divided by α .

Of course, the best fitting H needs to be learned from some training data. For this, we
propose to use a common 24-patch Macbeth Color Checker (MCC) [28]. As illustrated in
Figure 2(a), we use the two concerned cameras, C1 and C2, to capture images of MCC under
one or more reference light(s). The colors of the patches are then extracted from the images.
We know that these two sets of MCC colors will have some degree of mismatch, as shown
in the bottom-left panel of Figure 2(a).

Then, we are to train a homographic mapping that best matches the MCC colors of the
two cameras. From Equation (2), we formulate a least-squares minimization:

min
H

L

∑
ℓ=1

24

∑
i=1

|| 1
α(i,ℓ)

Hc(i,ℓ)1 − c(i,ℓ)2 ||22 , (3)

where c(i,ℓ)1 and c(i,ℓ)2 are the [R/G,B/G,1]T vectors of the ith MCC patch under the ℓth
reference light captured by C1 and C2, respectively. And, || · ||2 denotes the L2-norm, and
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Figure 3: (a) Top row: images of the same scene captured by two different cameras, C1 and
C2, and the predicted C2 image from C1 colors using a homographic correction (C1→C2).
Bottom row: chromaticity distributions of the two original images (left) and distributions of
the original and predicted C2 images (right). (b) The original and predicted edge images, and
the corresponding distribution comparisons, with the Same-G-Channel assumption applied.

α(i,ℓ) is the third element of Hc(i,ℓ)1 . The efficacy of the trained mapping operating on the
training MCC colors is shown in the bottom-right panel of Figure 2(a).

In practice, Equation (3) can be solved very quickly. For instance, INTEL-TAU [26]
provides the MCC colors under 10 reference illuminations, i.e., there are 240 data points
for solving this minimization. We use the Powell method [30] implemented in Python’s
scipy.optimize.minimize function for the minimization, and all training instances (obtaining
the optimal homographic mapping between each pair of two cameras) were done in less than
0.2 seconds individually. Note that it is not necessary to use multiple reference illuminations
for training: we include an extensive study that uses each illumination in INTEL-TAU indi-
vidually to train the homographic mapping, which suggests somewhat consistent results for
the simplified C5 model. This study is provided in supplementary materials (Appendix B).

As a primary evidence of the effectiveness of the correction, in Figure 2(b), we examine
the R/G-B/G chromaticity distribution of the ground-truth white points of the INTEL-TAU
database [26]. Here, each camera is indicated by a different color. Clearly, the original
white point distributions of individual cameras follow a similar trend (most likely along the
Planckian locus [24] of each camera), though subject to varying degrees of shifting in their
relative positions. Then, using a 3×3 homographic matrix transform (Equation (2)), we can
align all ground-truth white points to roughly the same locus when projected to one selected
reference camera, as shown in Figure 2(c).

Same-G-Channel Assumption. While many traditional color constancy algorithms can
work with only the R/G-B/G chromaticity information, leading methods such as FFCC, C5,
and other deep learning algorithms often require the edge color information, i.e., the stacked
channel-wise spatial derivative images [2, 7]. A homographic correction process shown in
Equation (2) only predicts the R and B chromaticity ratios with respect to the G-channel
values. For edge images we will need to calculate the gradients in the G-channel as well. For
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Figure 4: The training and testing schemes of the homographic-corrected cross-camera color
constancy. “WP” is short for the image white point. The capital letter “C” followed by
a number or a letter indicates individual camera models. The H matrices represent ho-
mographic color conversions (between the two indicated cameras in their respective super-
scripts; mapping from the left one to the right one). Both the images’ pixel colors and the
white points can be converted using H, following Equation (2).

this, we choose to simply assume the same G-channel image of C1 (the original camera) for
C2 (the target camera), and then the homographic-corrected R/G and B/G ratios for C2 are
applied to this borrowed G-channel to derive R- and B-channel images.

Empirically, it is shown in [22] that the G-sensors’ spectral sensitivities of their tested 28
cameras are indeed more similar than the R- and B-sensors’ sensitivities, with 98.7% of the
variance described by the first PCA basis. We also examine the edge-color chromaticities
of multiple real-world scenes and cameras, showing that our “same-G-channel” assumption
works quite well in predicting the correct edge-color distributions (one example is given in
Figure 3, while more results are given in Appendix C of the supplementary materials1).

Homographic-Corrected Color Constancy. The training and testing schemes for applying
homographic pre-correction for color constancy are shown in Figure 4. Broadly speaking,
cross-camera color constancy is considered when the involved images—either used in train-
ing, tuning (validation), or testing—are captured by different cameras. The idea is to obtain
homographic correction matrices for all possible pairings of involved cameras following the
methodology introduced in the last section.

Then, while deciding on one reference camera (in the case of Figure 4, the camera “C0”),
we are to convert all other images (and their ground-truth white points) to the reference cam-
era’s colors using their respective camera-specific homographic corrections, before feeding
those images to the color constancy algorithm for training, tuning, and testing. Of course, in
the case of testing, we need to convert the predicted white points back to the original testing
camera’s color space for a standard angular error evaluation.

The decision of which camera to be used as the reference camera can occasionally sim-
plify the process presented in Figure 4. For example, if we see that the majority of the
images in training are captured by one particular camera, we can choose this camera to be
the reference camera so as to reduce the number of homographic corrections we need to run
in training. Alternatively, one could try to use all different cameras in turn as the reference
camera, and choose the one that provides the best overall color constancy outcomes.

1The displayed raw images are simulated using a scene in the ICVL hyperspectral image dataset [3] and two
selected cameras’ spectral sensitivity functions in [22].
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3.2 INTEL-TAU Dataset and Proposed Evaluation Protocol

There exist many variants of evaluation protocols for cross-camera color constancy, e.g.,
[1, 2, 25]. In these works, multiple publicly available datasets are gathered, and while leaving
one dataset out in turn for testing, the considered algorithms are trained on other datasets
altogether. This cross-dataset approach is often framed as a cross-camera evaluation.

Indeed, different datasets tend to use different cameras to collect image data. And yet,
considering that there are up to 10 different cameras used in the training set [1], different
datasets might use different white targets to obtain ground-truth white points (e.g., Cube+
[4] versus NUS [12]), and all other possible cross-dataset variations, it is arguable whether
a cross-dataset evaluation protocol indeed evaluates the algorithms’ cross-camera applica-
bility, or they might actually focus more on examining their ability to “learn from hetero-
geneous data”. Furthermore, in several datasets there are same-scene images captured by
different cameras, including the NUS [12] and INTEL-TAU [26] datasets. Non-careful train-
ing/testing splits can cause problematic evaluation results. This said, we still include some
testing results using these protocols in Appendix D of our supplementary materials.

Our proposed evaluation protocol uses only the INTEL-TAU dataset [26]. INTEL-TAU
uses 3 different cameras: Canon 5DSR, Nikon D810, and Sony IMX135. Each camera is
used to collect a unique set of images—different for different cameras—in the “field_1_
cameras” dataset folder (Canon: 1645 images, Nikon: 2329 images, Sony: 1656 images).
Then, for each camera there are three other image sets: “field_3_cameras”, “lab_printouts”
and “lab_realscene”. These last three folders include the same 464 scenes for all 3 cameras.

Therefore, to ensure (i) we do not include any testing scenes in training, (ii) to setup
a cross-camera evaluation scenario, and (iii) to enforce a 3-fold cross-validation process in
training, we propose the following evaluation protocol on INTEL-TAU:

1. Use only the field_1_cameras images of Nikon and Sony as the training set, and con-
duct 3-fold cross-validation to obtain 3 models.

2. Test these 3-fold models on all images (from all 4 image folders) of Canon.

3. Repeat Step 1 and 2 twice more, while changing the training cameras to Canon and
Sony and test on Nikon, and then train on Canon and Nikon and test on Sony.

That is, we conduct 3 (train/test camera splits) × 3 (cross-validation folds) = 9 experiments
per algorithm.

This protocol mimics a practical use case for camera manufacturers where the training
dataset is collected using 2 prior camera models, and while a new camera is manufactured,
we wish not to retrain the color constancy algorithm but to use them directly on the new cam-
era. Further, from scene 11 to 20 in the lab_realscene dataset folders, we can extract MCC
colors under 10 different illumination lights captured by the 3 cameras. This information is
used to train the homographic color correction mapping detailed in Section 3.1.

4 Results and Discussion

The evaluation results are shown in Table 1. Like in the prior art [2, 7, 27], we calculate 5
angular error statistics including Mean, Median (Med.), Trimean (Tri.), Average of the best
25% (B.25) and Average of the worst 25% (W.25). The presented numbers are the 5 statistics
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Method Mean Med Tri B.25 W.25
Statistics-based methods

White Patch [8] 10.33 11.07 10.35 1.53 18.61
Shades-of-Gray [17] 5.73 4.24 4.75 1.00 12.78
Gray-World [10] 4.89 3.88 4.15 0.97 10.52
Black-and-White PCA [12] 4.51 3.16 3.50 0.73 10.60
Bright Pixels [23] 4.41 3.13 3.45 0.73 10.25
2nd-order Gray Edge [35] 4.19 3.40 3.57 1.05 8.70
1st-order Gray Edge [35] 4.16 3.25 3.46 0.94 8.93
Gray Index [31] 4.00 2.38 2.81 0.52 10.10

Single-camera shallow-learned methods
FFCC [7] 3.42 2.75 2.84 0.74 7.37
FFCC-homog 2.52 1.64 1.83 0.48 6.08

Method Mean Med Tri B.25 W.25 FLOPS
Single-camera deep-learning methods

FC4 [21] 2.19 1.41 1.55 0.45 5.31 7.3GFC4-homog 2.07 1.37 1.52 0.44 4.93
CLCC [27] 1.97 1.40 1.51 0.45 4.49 6.5GCLCC-homog 1.94 1.30 1.42 0.41 4.59

Cross-camera methods
SIIE [1] 4.74 4.13 4.25 1.96 8.58 310.0MSIIE-homog 3.02 1.95 2.23 0.55 7.24
SIIE-simp-homog 3.01 1.97 2.24 0.55 7.23 154.7M
C5 [2] 2.89 2.27 2.38 0.76 6.16 145.2MC5-homog 2.21 1.40 1.58 0.42 5.40
C5-simp-homog 2.36 1.50 1.69 0.44 5.76 50.6M

Table 1: The cross-camera 3-fold cross-validation results on the INTEL-TAU dataset. The
performance of the homographic-corrected and the homographic-corrected-simplified algo-
rithms are marked in blue and pink, respectively. For deep-learning-based algorithms, we
provide their FLOPS in the last column. The best results are shown in bold and underlined.

individually averaged over the 9 experiments specified in Section 3.22. Visualized results are
shown in Figure 5.

Canon 5DSR is set as the reference camera (the “C0” in Figure 4) for all homographic-
corrected algorithms3. Also, in our simplification attempt for SIIE, we replace the sensor-
mapping network with the homographic color correction and only keep the illumination-
estimation network for the final predictions. Then, as we use homographic corrections to
correct the cross-camera input instead, we simplify C5 by only using 1 image at a time as
input—hence we need to use only 1, not 9, input encoder.

First, under the cross-camera scenario, we see that learning-based algorithms in general
still work better than the statistics-based methods, except for the original SIIE. We reckon
this is because the sensor-mapping network in SIIE does not restrict that images captured
by the same camera should infer the same or similar color correction matrix, which leads to
severe overfitting to the training cameras.

Next, we see that all considered learning-based algorithms are improved by our homo-
graphic pre-corrections, with FFCC, C5 and SIIE improving more significantly than FC4 and
CLCC. As the latter two methods are much more complex than the former three, it is likely
that FC4 and CLCC are more able to support ambitious data augmentation (that drastically
perturbs the ground-truth white points) which aids their cross-camera performances [14].
Their limitation, however, is that if a new camera has very different spectral sensitivities
[22], the data augmentation may fail to apply (where homographic correction might bring in
even better margins—to be confirmed in the future work).

Finally, it is evident that with the help of homographic corrections, we can greatly sim-
plify C5 and SIIE while retaining similarly good results. Compared to using extra networks
to learn cross-camera color constancy, we believe our proposed approach is much simpler
and better performing, while still being easily accessible (it is entirely feasible to re-use the
same MCC data captured for post-white-balancing color correction here).

2Per-camera error statistics are supplied in the supplementary materials (Appendix E).
3We also tested the simplified C5 using Nikon D810 and Sony IMX135 as reference cameras (Appendix F).
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Figure 5: (a)-(e) Visualization of results of the original color constancy algorithms. Each
visualized image is white-balanced using the corresponding predicted white point, and then
applied with a gamma correction. (f)-(j) Results of the homographic-corrected methods.

5 Conclusion
We propose to apply a simple pre-white-balancing homographic color correction step which
can usefully compensate for the camera device biases before training and/or testing the color
constancy algorithms. We show that this simple added process (very fast to train and to run)
can improve state-of-the-art cross-camera color constancy performance, and can replace a
significant part of deep-network structures of the leading cross-camera models [1, 2]. Our
results also show that some leading single-camera color constancy algorithms [21, 27] are
more capable in a cross-camera scenario than the cross-camera methods in the prior art.
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