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Abstract

AI-generated images have become increasingly realistic and have garnered signifi-
cant public attention. While synthetic images are intriguing due to their realism, they
also pose an important misinformation threat. To address this new threat, researchers
have developed multiple algorithms to detect synthetic images and identify their source
generators. However, most existing source attribution techniques are designed to operate
in a closed-set scenario, i.e. they can only be used to discriminate between known im-
age generators. By contrast, new image generation techniques are rapidly emerging. To
contend with this, there is a great need for open set source attribution techniques that can
identify when synthetic images have originated from new, unseen generators. To address
this problem, we propose a new metric learning-based approach. Our technique works
by learning transferrable embeddings capable of discriminating between generators, even
when they are not seen during training. An image is first assigned to a candidate genera-
tor, then is accepted or rejected based on its distance in the embedding space from known
generators’ learned reference points. Importantly, we identify that initializing our source
attribution embedding network by pretraining it on image camera identification can im-
prove our embeddings’ transferability. Through a series of experiments, we demonstrate
our approach’s ability to attribute the source of synthetic images in open-set scenarios.

1 Introduction

As deep learning techniques have evolved rapidly in recent years, AI-based image synthe-
sis algorithms have become increasingly successful and ubiquitous. Researchers have used
techniques such as variational autoencoders [27, 38], GAN based generators [15], diffusion
models [18, 19, 38], and other techniques [13, 30, 35, 50] to generate images that look like
they were captured by a real camera. While some argue that these techniques enable artists
be more creative, synthetic images can also be employed for malicious purposes, including
online misinformation and disinformation campaigns.

In order to address the potential threats posed by novel AI-generated multimedia content,
researchers have developed a wide variety of highly-performing algorithms aimed at detect-
ing synthetic images. Wang et al. [46] analyzed the periodic signal present in the frequency
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Figure 1: Proposed method’s pipeline. We proposed a metric-learning based approach for
open set synthetic image source attribution. Where images from the seen generators by the
algorithm will be accurately classified to be their original generator, and images from unseen
generators will be reject by the normalized threshold.

domain of synthetic images, which is caused by up-sampling in the neural network gener-
ator. Other methods have also been proposed for detecting synthetic images using learned
forensic traces [39].

However, with the widespread use of synthetic images, it has become increasingly im-
portant to trace their sources. That is because the images’ origins can be used to trace and
reveal the nature of a particular misinformation or disinformation campaign. For example,
it is important to know if a synthetic image circulated online came from a known source or
from a new, unknown origin To achieve this, researchers have developed several approaches
to attribute the source of synthetic images. Frank et al. [11] proposed using DCT-CNN to
discriminate generators from DCT-transformed images. Bui et al. [5] proposed a feature
mix-up method to train a synthetic image source attribution model. Albright et al. [1] pro-
posed an inverse method to identify if an image belongs to the target generator by training
proxy models for each of them.

While these approaches have great reported performance, they are only designed to op-
erate in a closed-set classification scenario and cannot be easily adapted to work on new
sources. This is problematic because new generators and generation techniques are rapidly
emerging. Therefore, closed-set synthetic source attribution algorithms are not suitable to
be used in the real world. And, to the best of our knowledge, comparatively less work had
been proposed to solve this urgent and novel problem. Girish et al. [14] proposed an iter-
ative clustering algorithm to cluster a large amount of images from unseen generators into
groups. However, this work focuses on grouping a large set of synthetic images into many
self-similar clusters (typically many more clusters than there are potential sources). It does
not provide an identification criteria to predict whether an image came from a known gener-
ator or an unknown one.

In this paper, we propose a new algorithm based on metric learning to perform open set
synthetic image source attribution. Our method involves learning transferable embeddings
capable of differentiating between synthetic image generators, including those never encoun-
tered during training. We achieve this by identifying reference points in the embedding space
associated with each known generator. To attribute a synthetic image to its source, we first
determine the nearest candidate class reference to the query image’s embedding. We then
use the distance between the query image’s embedding and the identified class reference to
either accept or reject the candidate source. If the distance is below a threshold, we accept the
candidate source, otherwise, we identify the image to be from an unknown source generator.
We summarize our contributions as follows:

• We develop a new algorithm that can perform open-set synthetic image attribution and
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outperforms existing approaches.

• We develop a new metric-learning based embedding to measure the similarity between
synthetic images’ source generators.

• We propose a new reject criteria to determine if a query image is from a new generator.

• We demonstrate that pretraining the embedding network to perform camera model
classification can improve model transferability on images from unseen generators.

2 Related Work

Image Synthesis Algorithms Researchers proposed multiple image generation techniques,
including Variational Auto Encoder [27], GAN [15] and the recent diffusion-based mod-
els [18, 38]. These image synthesis techiques have been widely used to generate different im-
age contents, including prompt-guided image synthesis [29, 38], and super-resolution [19].

Forensic Algorithms To combat falsified content in images, researchers in the forensic
community developed signal processing based methods for forgery detection. These algo-
rithms are often based on human-designed features to detect the inconsistencies in forensic
traces in the frequency domain [12, 26, 28, 28, 36, 37, 41, 42]. Additionally, researchers also
developed multiple deep-learning based forensic algorithms to detect both traditional image
editing [2, 3], and AI-generated contents [39]. In particular, [3, 47] developed CNNs with
high-pass filters to extract generic forensic features from images. This had been proven to
be effective at detecting image forgery.

Synthetic Image Detection Researchers have created multiple algorithms to detect traces
left by a generator or generator’s architecture in synthetic images [45]. Previous research [46]
showed that images from different generators architectures, including deepfake ones, often
contain distinctive high-frequency information. Additionally, other techniques like inversion
[1] is also developed for synthetic image detection. This technique works by inverting the
generator to obtain the set of features that were used to generate the synthesized image. The
authors showed that these features can be used to attribute specific generators.

Synthetic Image Source Attribution Researchers have developed many algorithms for
synthetic image attribution [1, 5, 49]. DCT-CNN [11] utilized the high-frequency informa-
tion by first converting the input image using discrete cosine transform, then used a shallow
CNN to perform closed-set source attribution. [5] proposed a new feature mix-up method,
and trained the model using a well-balanced training data to perform source attribution in
a closed-set scenario. However, currently research on open-set image source attribution re-
mains limited. Sharath el. [14] proposed a method to cluster large amount of images from
unseen generators into groups. This is different from source attribution on a single query im-
age, because it does not have an identification mechanism to predict if an image came from
a known or unknown generator. To the best of our knowledge, there is no existing algorithm
can perform open-set synthetic image source attribution.

Other Open-set Image Source Attribution Forensic researchers developed many open-
set image camera model attribution algorithms [4, 9, 20, 21, 32]. These algorithms often
leveraged the Siamese network architecture, in which a pair of images from the same camera
model is labeled similar, while a pair of images from different camera models is labeled
different. These algorithms have been proven to be efficient and transferable to multiple
different types of image forgery and manipulation.
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3 Proposed Method
In this section, we introduce our proposed approach for open-set synthetic image source
attribution. The problem we target at is: Given several known synthetic image generators,
for a synthetic image, the algorithm must accomplish two tasks: 1. Determine whether or not
such image comes from a known generator; and 2. Attribute the source if it is from a known
generator, or, predict the image to be from some unseen source if it is from an unknown
generator.

For a more accurate definition, assume the investigator has a set of known image gener-
ators G and a set of synthetic images T created by G. T is partitioned into disjoint subsets
Ti, each belongs to a generator architecture gi ∈ G. For a good open-set source attribution
approach, the algorithm should correctly identify the source of an synthetic image as gi if it
is from a known generator gi ∈ G, or attribute the source to be unknown if the origin is an
unknown generator gu /∈ G. Overall, an open-set algorithm requires a source identification
rule S : X→G, which assigns a candidate generator within the known set G , and a rejection
rule R : X×G → {0,1} where 0 indicates that the class identified by S should be rejected
and the image comes from an unknown generator, and 1 indicates that the candidate class
should be accepted.

While existing closed-set approaches are good at producing S, they are not designed to
produce R. To address this problem, we propose a source identification rule S defined by
an embedding function h(·), a distance metric d(·, ·), and a set of class references rk on
the embedding space. For a synthetic image x, the source identification rule S is made by
measuring the distance between its embedding h(x) and the reference points rk for each class
in the embedding space using d(·, ·). The generator associated to the closest reference point
to h(x) is identified as the candidate source g ∈G.

It is critical that h is generic and can capture forensic traces that can both accurately
discriminate images among known sources and identify images from unknown sources. To
achieve this, we propose a novel training procedure in which we initialize h by pretraining
the network to perform camera model classification using the Camera Model Database [32,
33, 34]. Previous studies have shown that this process enables the neural network to learn
generic embeddings that can be transferred to other forensic tasks [34]. Our experiments
demonstrate that this procedure significantly improves the model’s open-set performance.

After making the closed-set source identification decision with the rule S, we determine
whether to accept or reject the source generator candidate using rule R. This is achieved
by first normalizing the distance between the query image’s embedding h(x) and the refer-
ence point ri based on the chosen generator gi. Then, if the normalized distance exceeds a
threshold τ , we reject the source decision and consider it to be from an unknown generator.
Otherwise, we accept and identify it as being from source gi.

3.1 Transferable Embedding Initialization
It is crucial that the embedding function h both accurately discriminate between images
from known sources and identify those from unknown sources. A common way to learn an
embedding is to train a CNN to discriminate between generators in the known set. However,
this does not necessarily learn an embedding that transfer well to unknown generators. To
address this issue, we propose novel training procedure, in which we first initialize h by
pretraining on the task of camera model identification with large number of classes. By
doing so, we enable h to be more sensitive to small differences in forensic traces, and make
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Figure 2: Distribution of training set T’s embeddings’ normalized distance from reference
point. We choose Xception to be the h. This figure shows the normalized distance is a good
metric for rule R in proposed approach.

h’s embedding more transferable to images of unknown sources. Our experiments showed
that this procedure significantly improves the open-set performance.

Linit =−∑
k

yklog(ŷk) (1)

After pretraining, we removed the last classification layer and used the feature maps be-
fore the final layer as the initialization for h. Following this procedure, we fine-tuned h to
learn a more precise embedding that could effectively discriminate between different image
generators in the following section.

3.2 Embedding Learning
Metric learning algorithms enable a model to adapt to unseen types of data during the train-
ing process. These techniques learn an embedding and associated metric such that data
points of the same class are closed together and data points of different classes are far apart.
By utilizing this characteristics, we can identify images from unknown generators by testing
if their embeddings lie far away from known generators’ embedding clusters. To accom-
plish this, we utilize ProxyNCA++ [43] to further train our initialized embedding function
h. ProxyNCA++ has been widely used to learn embeddings for open set tasks, and has been
shown to have higher accuracy and faster convergence compared to other non-proxy based
methods. During training, it uses randomly initialized proxies for each class, pull the embed-
dings closer to their assigned proxy and push them away from other classes’ proxies. The
ProxyNCA++ loss can be written as:

Pi =
exp(−d(h(xi), p(yi)))

∑p(a)∈p(A) exp(−d(h(xi), p(a)))
(2)

LproxyNCA++ =−log(Pi) (3)

where yi is the generator architecture label of xi, p(yi) is the corresponding proxy embedding
of label yi. The x is the image, h is the feature extractor. Set A contains all generator classes
in the training set. For the distance metric d(·, ·), we choose L2 distance to be the metric.

3.3 Finding Class References
After completing the metric learning process and obtaining h, we compute the centroid em-
bedding ri for each class i in the learned embedding space, using all images from generator
gi in the training data Ti ∈ T. We compute the centroid of each class’ embeddings over the
training set as its reference point:
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ri =
∑xi∈Ti h(xi)

|Ti|
(4)

To perform inference, we build S by choosing x’s nearest reference point ri to assign a po-
tential generator class i:

S(x) = argmin
k

d(h(x),rk) (5)

where d(h(x),rk) is the L2-distance between x’s embedding with the reference point rk of
class k. After we assign an class i, we use a reject criteria to test if x belongs to the class i or
is from unseen generator.

3.4 Reject Criteria
For open set source attribution, we establish a rejection criterion R for all seen classes. We
use the normalized distance between h(x) and ri to determine whether to accept or reject the
class decision i. This is because each class’ embedding group may have different variance,
and normalization of the distance enables a better measurement of the relative similarity for
each class. The normalized distance s(x,ri) between h(x) and ri is defined as:

s(x,ri) =
d(h(x),ri)

σi
(6)

where σ is computed inspired by sample standard deviation of Gaussian distribution:

σi =
√

E(d(h(xi),ri)2) =
√

E(||h(xi)− ri||22) =

√
∑xi∈Ti ||h(xi)− ri||22

|Ti|−1
(7)

This normalization enable R to adapt to variance in the embedding space for each class.
Fig 2 show san example of the distribution of normalized distances over each Ti in an em-
bedding space, using Xception [8] as the embedding network h. This figure illustrates that
normalization can map the distance between x ∈ gi and different ri into a similar distribution.

After that, we define the rejection criterion by comparing the normalized distance s(x,ri)
between h(x) and ri with a threshold τ . The threshold τ is applied to all seen classes of the
generator. If s(x,ri) < τi, we accept xi and classify it as coming from a seen generator gi.
Otherwise, we reject x and identify it as coming from a new unknown image generator gu:

R(x) =

{
gi ∈G, if s(x,ri)< τ

gu /∈G, if s(x,ri)⩾ τ
(8)

4 Experimental Results
This section demonstrates our approach for open-set synthetic image attribution through
multiple experiments. We first describe the dataset we create to train and benchmark our
proposed algorithm, then we introduce the hyper-parameters we use to train the embedding
function h. We also propose and discuss the metrics we use for evaluating algorithms’ per-
formance. Then, we display our proposed approach’s performance on open-set synthetic
image attribution. Lastly, we compare our best model with state-of-the-art publicly available
synthetic image attribution approaches.
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Generator Dataset for Generator Training

ProGAN celebA, lsun-churchoutdoor, lsun-bicycle, lsun-bird, lsun-bedroom, lsun-car
ProjectedGAN ffhq, lsun-bedroom, lsun-churchoutdoor, cityscape
Tam-Transformer ffhq, imagenet-fish, imagenet-shark, imagenet-dog
StyleGAN2 ffhq, metfaces, afhqv2, afhqdog
StyleGAN3 ffhq, metfaces, afhqv2
StyleGAN ffhq, celebahq, lsun-bedroom, lsun-car
Stable Diffusion N/A

Table 1: Generator architectures, and corresponding datasets that are used to train the gener-
ator for image synthesizing

The results show that our approach can successfully attribute the source generator’s ar-
chitecture of an image in an open-set scenario. Additionaly, we find that other existing
closed-set method cannot be used to analyze images from unseen models, and other existing
open-set forensic algorithms do not perform well on synthetic image attribution. Further-
more, we show that pre-training our models on image camera model classification improves
there generalizability in attributing synthetic images

4.1 Dataset
We created our own dataset to train the proposed method. We used seven publicly available
image generators and synthesize multiple images from each. The seven generators are Pro-
GAN [22], Projected-GAN [40], StyleGAN [23], StyleGAN2 [24], StyleGAN3 [25], Taming
Transformer [10], and Stable Diffusion [38]. The dataset we used for training the generator
are listed in Table.1. For stable diffusion, we directly used the publicly available model.

To create our dataset, we generated 10,000 synthetic images for each combination of gen-
erator and dataset. Then, for each combination, we picked 8,000 images for training, 1,000
images for validation, and 1,000 images for testing. We randomly picked StyleGAN and
Stable Diffusion and hold out the images from them during training, and used them as the
“unseen" group of generator architecture for evaluating model’s performance on the open-set
attribution task. We observe that the performance of different combination of held-out set
have comparable performance with statistical deviation. Since synthetic images are often
undergo JPEG compression in the real world, we randomly JPEG-compressed images using
different quality factors of 75, 80, 85, 90, 95, along with no compression with equal probabil-
ity. During training and evaluation, when the image size mismatches with the model’s input
size, we apply random cropping to 256 by 256 pixels. We intentionally avoid resampling to
preserve the forensic features and information of the synthetic images.

4.2 Training Parameters
We trained our model using two training protocols to demonstrate the benefits of pre-training
on the camera identification task. The first involved training the model from initial weights
that were obtained through pre-training, and the second involved training the model from
scratch. During all training stages, we apply under-sampling over all seen generators to
balance the number of images for each class.

Train From Pre-training Initialization We chose 70 camera models from the Camera
Model Identification Database used in [32, 33, 34] for classification. We used AdamW [31]
optimizer, with an initial learning rate of 0.001, decayed with a scale of 0.65 every 3 epochs.
After training, we discarded the classification layer and trained the rest of the model with
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Embedding Arch. Xception ResNet50 CamID-CNN Stega-CNN MISLNet

Train From Scratch 0.827 0.671 0.519 0.787 0.761
With Pre-Training 0.868 0.714 0.574 0.808 0.868

Table 2: AUC of aF1 −CRR response curve for different models. Pre-training on camera
model classification significantly improved the models’ generalizability and performance on
open-set identification scenario.

ProxyNCA++ loss for 30 epochs. The initial learning rate for this stage is 0.0001, which
decayed with a scale of 0.6 every 2 epochs.

Train From Scratch We trained our embedding models from scratch for 30 epochs, still
using AdamW [31] optimization with an initial learning rate of 7e-4, decay for 0.6 for every
2 epochs. We chose the model with a highest validation accuracy on “seen” generator.

4.3 Evaluation Metrics
To evaluate different approaches for open-set synthetic image attribution, we used the av-
erage F-1 scores (aF1) on seen generator architectures and the correct reject rate (CRR) on
unseen architectures. The aF1 estimates how well the generators perform on seen generator
architectures under a specific threshold, balancing the recall and precision for detecting each
generator’s images. The aF1 score is defined as the F-1 score averaged over 5 seen gs ∈G:

aF1 =
N

∑
j=1

F1 j/N, where F1 j =
2T Pj

2T Pj +FPj +FN j
(9)

where T Pj is the number of samples from generator architecture j being predicted from
generator j. FPj is the number of samples not from generator architecture j, including
both seen and unseen architectures, to be predicted from generator j. FN j is the number of
samples from generator j but are not classifier from j. N is the number of seen generators.

The correct reject rate (CRR) measures the ability of the model to reject an image to be
from an unseen generator architectures gu /∈G. It is defined as:

CRR =
| {mini s(x,ri)> τ, ∀x ∈ {gu /∈G}} |

| {∀x ∈ {gu /∈ {G}} |
(10)

which is the probability of images from unseen generator architecture gu (StyleGAN, Stable
Diffusion) being rejected. The higher the CRR, the better the discrimination ability of the
embedding function h.

4.4 Choosing Optimal Embedding Function
We conduct a series of experiments to choose the best embedding function h. For the em-
bedding architecture of h, we evaluated five different CNNs and compared their performance
to determine the best candidate. The five CNNs are Xception [8], ResNet50 [17], CamID
CNN [44], Stega-CNN [48] and MISLNet [3]. Among them, Xception and ResNet50 were
originally designed to perform object recognition tasks, both of them have also widely used
by the forensic community on image forensic tasks [5, 6, 7, 16, 20, 46]. Stega-CNN was
designed for steganalysis tasks. CamID CNN and MISLNet were originally designed for
camera model identification. We choose these architectures because previous research has
shown that they performed well in learning low-level forensic features from images.
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Benefit Of Pre-Training On Camera Model Identification We conducted an experi-
ment to verify the importance of pre-training our embedding architecture before applying
metric learning. We did this by evaluating the AUC of the aF1 −CRR curve for all five
embedding architectures with and without camera model identification pre-training.

From the result displayed in Table 2, we see that the pre-training on camera model im-
proved all five model’s AUC of aF1 −CRR curve. Among them, Xception and MISLNet
achieved the best performance with an AUC of 0.868. This result demonstrates that pre-
training on the camera model classification provides useful prior information to learn syn-
thetic image embeddings and improves the model’s transferability in an open-set scenario.

Model Selection We compared the performance of each embedding architecture with
pretraining. From Table 2, we can see that both MISLNet and Xception achieve the highest
performance. In the following experiments, we select MISLNet as the embedding function
h for further evaluation. We choose MISLNet because it is a very light-weight architecture
and can potentially have less over-fitting during training.

4.5 Open Set Attribution Performance

Method ProGAN Proj.-GAN StyleGAN2 StyleGAN3 Taming Trans. aF1 StyleGAN Stable Diffusion CRR

RepMix 0.669 0.827 0.762 0.839 0.860 0.791 0 0 0
DCT-CNN 0.673 0.929 0.687 0.609 0.851 0.750 0 0 0
ResNet-50 0.572 0.995 0.995 0.797 0.976 0.867 0 0 0
Proposed 0.744 0.974 0.875 0.969 0.940 0.900 0.484 0.806 0.645

FSM 0.000 0.032 0.000 0.385 0.585 0.200 0.910 0.363 0.637
EXIF-Net 0.374 0.245 0.124 0.187 0.163 0.219 0.525 0.741 0.633

Table 3: Comparison with other existing approaches on open-set synthetic image attribution.
Competing algorithms include: closed-set synthetic image attribution approaches, and open-
set image source identification approaches. Results shows that our proposed outperformed
both types of algorithms.

We evaluate our proposed approach’s ability to perform open set source attribution using
our final selection (MISLNet) for the embedding architecture. We compared our perfor-
mance to several existing closed set synthetic image source attribution approaches, namely
DCT-CNN [11] and RepMix [5]. Additionally, we trained ResNet-50 to perform synthetic
image source attribution, as this network has been widely used in other publications to per-
form synthetic image detection [5, 20, 46]. We note that to the best of our knowledge, there
are no directly comparable open-set source synthetic image source attribution approaches.
We trained these CNNs as classifiers with training set images from 5 known generators.

Furthermore, we compared our performance to several open-set approaches to measure
the similarity between forensic traces, namely FSM [32] and EXIFNet [20]. While not
directly trained to perform synthetic image source ID, these networks are designed to de-
termine the similarity of forensic traces between two image patches. We used the publicly
available implementations of these algorithms to perform synthetic image source attribution
by applying the same open-set identification mechanism with our approach. To compute
the reference point ri for each class i, we computed the average embedding output by the
Siamese arm’s feature extractor. For d(·, ·) we directly used the similarity metric on top of
the two siamese arms. The evaluation result is shown in Table 3. From the results we see that
our proposed approach can successfully identify images from known generators and reject
images from unknown generators. Our approach also outperforms existing algorithms.
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Comparison With Closed Set Approaches Table 3 shows the resulting comparison of
our approach and other existing closed-set approaches (RepMix, DCT-CNN, and ResNet-
50). We achieved higher aF1 on the set of seen generator architectures than competing
closed-set approaches. Furthermore, our approach obtained an average CRR of 0.645 while
these methods can only get a CRR of 0. This shows that in open set scenarios, we are able to
outperform these techniques in terms of both aF1 and CRR. We note that we can have even
higher aF1 score at the cost of lowered CRR.

Comparison With Open Set Forensic Algorithms From Table 3, we see that our pro-
posed method obtained a higher CRR than existing open-set approaches. Furthermore, we
achieved a substantially higher aF1 on the set of known sources than these networks. This
demonstrates that while existing open-set approaches are able to reject images to be from
an unknown generator architecture, they have very little ability to correctly identify known
sources. Hence, existing open-set forensic algorithms cannot adapt to the synthetic images
attribution task. However, our proposed method can both reliably identify if an image comes
from a generator architecture that was seen during training, and reject an image coming from
an unknown architecture.

4.6 Why Camera Identification Pre-Training Helps
Here we discuss some potential reason why forensic features learned when performing
camera model classification are transferable to attributing synthetic images. Previous re-
search [46, 51] identified distinct high-frequency patterns left by different generator archi-
tectures in the frequency domain. These patterns are largely due to the specific up-sampling
operations utilized in these networks when generating a final resolution image. We note
that these patterns are very similar to the high-frequency pattern of image-resampling, JPEG
compression, and double-JPEG compression. In practice, different camera models contain
different imaging sensors, different noise pattern, and use different JPEG-compression set-
tings. All these processes leave unique high-frequency traces, which enable reliable camera
model classification. Therefore, training a network to discriminate between different camera
models allows the network to learn these high frequency traces. Pre-training an embedding
architecture to perform camera model identification results in more transferability to the syn-
thetic image attribution task because synthetic image generators can be discriminated on the
basis of similar high-frequency traces.

5 Conclusion
In this paper, we proposed a new algorithm to perform open-set synthetic image attribution.
Through extensive experiments, we demonstrate that our system can successfully perform
open-set synthetic image attribution, and outperforms existing methods. In our approach, we
use metric-learning to learn an embedding, and compare synthetic images’ source generators
by distance measuring its embedding’s distance from a class reference in the embedding
space. We also propose a new accept/reject criteria for images from unseen generators in
open-set scenario. Additionally, we demonstrate that pre-training an embedding network to
perform camera model identification helps improve its transferrability to unknown generators
when performing synthetic image attribution. Through a set of experiments, we verify the
importance of embedding pre-training and show that our proposed approach can succesfully
perform open set synthetic image source attribution.
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