
T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION 1

G2N2: Lightweight Event Stream
Classification with GRU Graph Neural
Networks

Thomas Mesquida1

thomas.mesquida@cea.fr

Manon Dampfhoffer2

manon.dampfhoffer@cea.fr

Thomas Dalgaty1

thomas.dalgaty@cea.fr

Pascal Vivet1

pascal.vivet@cea.fr

Amos Sironi3

asironI@prophesee.ai

Christoph Posch3

cposch@prophesee.ai

1 Univ. Grenoble Alpes
CEA-List
Grenoble, France

2 Univ. Grenoble Alpes
CEA, CNRS, Grenoble INP,
INAC-Spintec
Grenoble, France

3 Prophesee
Paris, France

Abstract

Event camera pixels efficiently encode visual information through triggered events,
offering advantages in temporal detail, dynamic range, and data reduction. However, the
optimal machine learning method for leveraging these characteristics remains unclear.
Existing approaches often convert events into 2D frames, losing crucial time-domain in-
formation. A promising alternative is event-graph neural networks, but they suffer from
computational intensity and limited temporal dependencies. As a solution, we propose
to combine the recently proposed lightweight event-graph neural network HUGNet with
gated recurrent units to model temporal dependencies between the features extracted by
HUGNet. We benchmark our model against other event-graph and convolutional neural
network based approaches on the challenging DVS-Lip dataset (spoken word classifi-
cation). We find that not only does our method outperform state of the art approaches
for similar model sizes, but that, relative to the convolutional models, the number of
calculation operations per second was reduced by 81%.

Furthermore, we introduce a new event-data augmentation technique that boosts by
up to 7.4% the performance of both event-graph and convolutional neural networks on
this task.

1 Introduction
Industrial event-cameras [10, 23] offer a new approach to artificial vision by capturing spa-
tiotemporal activity at microseconds time scale. Unlike conventional frame-based cameras,
which periodically record absolute light intensity, event-camera pixels generate binary flags

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Finateu, Niwa, Matolin, Tsuchimoto, Mascheroni, Reynaud, Mostafalu, Brady, Chotard, LeGoff, Takahashi, Wakabayashi, Oike, and Posch} 2020

Citation
Citation
{Niwa, Mochizuki, Berner, Maruyarma, Terano, Takamiya, Kimura, Mizoguchi, Miyazaki, Kaizu, etprotect unhbox voidb@x protect penalty @M {}al.} 2023

2 T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION

(referred to as events) upon the detection of relative light intensity changes in a purely event-
driven and asynchronous fashion.

The state of the art solution for treating such data has typically been to convert a stream
of event-data back into 2D frames (called dense or event-frames) which serve as the input
to convolutional neural networks[11, 17, 19]. While this works well in practice, there are
some potential pitfalls. For instance, not only are the precise temporal relationships between
event-generating bodies distorted, but the opportunity for sparse and event-driven real-time
computation is largely lost.

An emerging alternative solution are Event-Graph Neural Networks (EGNNs) [3, 6, 21,
26]. Rather than compacting events into frames, EGNNs build a graph in which each event
is a vertex and edges are formed between vertices based on a search within a Euclidean
ellipsoidal volume around each vertex. Edges can also be used to preserve the original spa-
tiotemporal structure of the input event-data, which can thereafter be leveraged in graph
convolution [8]. Early results have shown that EGNNs can outperform CNNs based on
event-frames over a range of tasks, despite a greatly reduced model footprint [3, 21, 26].
However, due largely to the computationally expensive graph building procedure, efficient
and real-time operation remains problematic. Furthermore, while Event-Graphs (EGs) natu-
rally capture short range temporal dependencies via edges formed to events generated in the
past, these dependencies will be limited to times on the order of the temporal search radius -
potentially only some tens or hundreds of milliseconds.

In this article, to solve these two problems, we combine the recently proposed hemi-
spherical update graph neural network method (i.e., HUGNet) [6] with gated recurrent units
(GRUs) [5] in GRU Graph Neural Network (G2N2). The GRU layers analyse temporal pat-
terns in the features extracted by the Graph layers. Relative to other computationally costly
EG methods, HUGNet prevents future nodes to influence past results, enabling lightweight
feature extractor. This limitation in information sharing increased Optical Flow accuracy [6]
and we extend this result to classification. We apply our model to event stream classification
using the DVS-Lip dataset [28] and compare ourselves to other fully-spherical EGNNs as
well as CNNs based on event-frames. The specific contributions of this work are as follows:

• We combine EG neural network feature extractors with gated recurrent units in G2N2,
enabling lightweight modelling of temporal dependencies in event-data.

• We show that EG neural networks are better feature extractors than convolutional neu-
ral networks for event-data.

• We observe that hemi-spherical EG updates outperform fully-spherical updates.

• We propose a mask-based data augmentation method called Maskout that significantly
boosts performance for both EG and convolutional models.

2 Related Work
Event-camera data have often been treated by using convolutional neural network architec-
tures - developed initially for application to traditional static dense frames [11, 12, 15, 19, 24,
34]. In order to convert event-data into frames, there are a number of techniques. Most often
this is achieved by counting the number of generated events at each pixel within a temporal
window of some tens or hundreds of milliseconds [11, 17]. In fact, empirical results have
found that CNNs using event-frames could outperform CNNs using standard frames [19] on

Citation
Citation
{Gehrig, Loquercio, Derpanis, and Scaramuzza} 2019

Citation
Citation
{Liu and Delbruck} 2018

Citation
Citation
{Maqueda, Loquercio, Gallego, Garc{í}a, and Scaramuzza} 2018

Citation
Citation
{Bi, Chadha, Abbas, Bourtsoulatze, and Andreopoulos} 2019

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

Citation
Citation
{Mitrokhin, Hua, Fermuller, and Aloimonos} 2020

Citation
Citation
{Schaefer, Gehrig, and Scaramuzza} 2022

Citation
Citation
{Fey and Lenssen} 2019

Citation
Citation
{Bi, Chadha, Abbas, Bourtsoulatze, and Andreopoulos} 2019

Citation
Citation
{Mitrokhin, Hua, Fermuller, and Aloimonos} 2020

Citation
Citation
{Schaefer, Gehrig, and Scaramuzza} 2022

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

Citation
Citation
{Cho, Vanprotect unhbox voidb@x protect penalty @M {}Merri{ë}nboer, Gulcehre, Bahdanau, Bougares, Schwenk, and Bengio} 2014

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

Citation
Citation
{Tan, Wang, Han, Cao, Wu, and Zha} 2022

Citation
Citation
{Gehrig, Loquercio, Derpanis, and Scaramuzza} 2019

Citation
Citation
{Gehrig, Millhäusler, Gehrig, and Scaramuzza} 2021

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2017

Citation
Citation
{Maqueda, Loquercio, Gallego, Garc{í}a, and Scaramuzza} 2018

Citation
Citation
{Perot, Deprotect unhbox voidb@x protect penalty @M {}Tournemire, Nitti, Masci, and Sironi} 2020

Citation
Citation
{Zhu, Yuan, Chaney, and Daniilidis} 2018

Citation
Citation
{Gehrig, Loquercio, Derpanis, and Scaramuzza} 2019

Citation
Citation
{Liu and Delbruck} 2018

Citation
Citation
{Maqueda, Loquercio, Gallego, Garc{í}a, and Scaramuzza} 2018

T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION 3

Event
Frame

Event
Graph

CNN Feature
Extraction

EGNN Feature
Extraction

GRU
Task head

GRU
Task head

Same headSame #param
Compare
Accuracy
#OP/s

Events

Figure 1: EGNN and CNN feature extractor are compared in term of accuracy and number
of operations per second to process DVS Lip dataset. The comparison is done using the same
training hyperparameters, task heads and number of parameters in feature extractors.
the same task. To avoid completely discarding temporal correlations, some works have pro-
posed the use of time surfaces [16, 27] where pixel intensities correspond to, for example,
the time since the last event was generated at each pixel. Other works also combine time
surfaces with event counting [34] or use recurrent neural networks to convert event streams
to frames [4]. Event networks [7] processed asynchronously could keep temporal details but
at the expense of important memory overhead. Spiking neural networks have been applied
to event-data [1, 32]. Although they are naturally compatible with asynchronous and event-
based data, spiking models generally fail to attain the performance of CNNs on the same
task [2, 22] due to spiking activation and requiring backpropagation through time.

In recent years, graph neural networks [8, 13, 14, 29] have been utilized to process
event-camera data by constructing graphs to which graph convolutions are applied. Events
are typically represented by two spatial coordinates (i.e., pixel address) and a timestamp.
The timestamp is scaled through multiplication with a constant and a KD-tree data structure
is then constructed [33]. By performing a K-nearest neighbour search on the resulting tree,
each event is then connected to those in its vicinity by an edge [3, 21, 26] - thereby creating
an EG. The use of EGs enables the retention of the fine spatiotemporal structure of the event-
data in the graph edges - for example, as normalised vectors describing local spatiotemporal
differences [8]. Despite promising early results, the existing EG building paradigms incur
a latency which is too large to be compatible with real-time operation. Current methods
construct graphs using a fully-spherical search where edges are formed from past to future
events and also from future to past events. This approach has two significant drawbacks.
Firstly, event-level predictions cannot be made instantaneously. Newly arrived events may
be updated by an event arriving within a time equal to the temporal search radius multiplied
by the number of graph layers, which may prove critical in time-sensitive applications. Sec-
ondly, the node embeddings of previously arrived events within the same temporal window
are subject to change, and graph convolutions may need to be applied several times, which
can be particularly problematic for high-resolution event cameras that generate millions of
events per second [10]. To address these issues, new hemi-spherical methods have been
proposed [6] which may allow for the processing of event streams in real-time. Events are
limited to form edges from past events to events that will be generated in the future only. This
eliminates the need to reapply graph convolutions after each new event arrival and permits
instant event-level predictions and faster processing of event streams.

Event-based lip reading was recently proposed as a challenging neuromorphic bench-
mark task [28] whereby an event-camera records the activity of speakers mouths as they
utter words - the objective being to classify the word spoken. Existing solutions range from

Citation
Citation
{Lagorce, Orchard, Galluppi, Shi, and Benosman} 2016

Citation
Citation
{Sironi, Brambilla, Bourdis, Lagorce, and Benosman} 2018

Citation
Citation
{Zhu, Yuan, Chaney, and Daniilidis} 2018

Citation
Citation
{Cannici, Ciccone, Romanoni, and Matteucci} 2020

Citation
Citation
{Dutson and Gupta} 2021

Citation
Citation
{Amir, Taba, Berg, Melano, McKinstry, Diprotect unhbox voidb@x protect penalty @M {}Nolfo, Nayak, Andreopoulos, Garreau, Mendoza, Kusnitz, Debole, Esser, Delbruck, Flickner, and Modha} 2017

Citation
Citation
{Zenke and Ganguli} 2018

Citation
Citation
{Baldwin, Liu, Almatrafi, Asari, and Hirakawa} 2022

Citation
Citation
{Neftci, Mostafa, and Zenke} 2019

Citation
Citation
{Fey and Lenssen} 2019

Citation
Citation
{Hamilton, Ying, and Leskovec} 2017

Citation
Citation
{Kipf and Welling} 2016

Citation
Citation
{Veli{£}kovi{¢}, Cucurull, Casanova, Romero, Lio, and Bengio} 2017

Citation
Citation
{Zhou, Hou, Wang, and Guo} 2008

Citation
Citation
{Bi, Chadha, Abbas, Bourtsoulatze, and Andreopoulos} 2019

Citation
Citation
{Mitrokhin, Hua, Fermuller, and Aloimonos} 2020

Citation
Citation
{Schaefer, Gehrig, and Scaramuzza} 2022

Citation
Citation
{Fey and Lenssen} 2019

Citation
Citation
{Finateu, Niwa, Matolin, Tsuchimoto, Mascheroni, Reynaud, Mostafalu, Brady, Chotard, LeGoff, Takahashi, Wakabayashi, Oike, and Posch} 2020

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

Citation
Citation
{Tan, Wang, Han, Cao, Wu, and Zha} 2022

4 T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION

the application of several branches of 2D and 3D convolutions applied to event-data in re-
spective voxel grids of differing temporal granularity [28] to using reservoir computing as
feature extractors [31].

3 Method

3.1 Building Event Graphs
The first step when using EGNNs is to build, or update, an existing EG from an event stream.
Event streams S can be described as a series of events ei, each of which arrives at a time ti
with pixel coordinates (xi, yi) and a polarity pi such that S = (ei) = (xi,yi, ti, pi). A widely
used method in the state of the art is to define a limited number of nearest neighbours N
by performing a Euclidean search around each event within a temporal radius rt and a pixel
radius rxy. Edges are defined between these N nearest neighbours in order to create an Event-
Graph G = (V,E) composed of Vertices V and Edges E .

Algorithm 1 Sparse hemi-spherical update
Input: New event ev= (x,y, t, p), Event Graph G = (V,E), radii rxy and rt , L layers EGNN,
Task Head
Output: Updated Event Graph, Features, Outputs

Add ev to the vertices V
Update E for event ev with KNN ▷ New vertex cannot modify past graph by design
G has been updated

Compute Features for ev with EGNN ▷ No edge update means no feature update needed
Features have been updated

Compute Output for ev with Task Head ▷ No feature update means no output update
Outputs have been updated

The resulting graph G is processed using graph convolutions in EGNNs in order to per-
form a desired task. It should be noted that, during GPU-based training, EG creation is gen-
erally not performed as described above, in an on the fly fashion, as performing the above
steps event-by-event is highly time consuming. While methods have been proposed to permit
EGs to be updated sparsely in an asynchronous fashion [26], the state of a particular vertex
can only be guaranteed after a time equal to the number of graph convolution layers multi-
plied by the temporal search radius has elapsed (see Supplementary materials). Furthermore,
the vertex features (also referred to as node embeddings) may be modified several times as
new events arrive with repeated graph convolutions. This not only imposes a lower-bound
on the prediction latency, but also implies a large amount of computation. EG creation may
be greatly simplified through the hemi-spherical graph updating algorithm of HUGNet [6]
(see Algorithm 1). Here, vertices can only receive data via directed edges from the events
generated in the past.

However, hemi-spherical EGs have only been demonstrated to be effective for event-
based optical flow prediction which is largely based on temporally and geometrically local
events. It is not yet clear whether the method will also perform favourably relative to fully-
spherical EGs for other problems too - such as classifying graphs. For this study, we use

Citation
Citation
{Tan, Wang, Han, Cao, Wu, and Zha} 2022

Citation
Citation
{Yoo, Lee, Wang, Wang, and Lu} 2023

Citation
Citation
{Schaefer, Gehrig, and Scaramuzza} 2022

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION 5

B
-S

p
lin

e(
6

4
)

G
C

N
(6

4
)

G
C

N
(6

4
)

G
C

N
(6

4
)

G
C

N
(6

4
)

3
2

0
 E

m
b

ed
d

in
g

FC
(1

2
8

)

In
st

an
ce

N
o

rm
(1

2
8

)

FC
(6

4
)

FC
(6

4
)

FC
(1

0
0

)

FC
(

1
2

8
)

In
st

an
ce

N
o

rm
(1

2
8

)

G
R

U
(6

4
)

Ti
m

e
A

ve
ra

ge
(3

0
H

z)

FC
(1

0
0

)

FC
(2

5
6

)

In
st

an
ce

N
o

rm
(2

5
6

)

G
R

U
(1

2
8

)

Ti
m

e
A

ve
ra

ge
(3

0
H

z)

FC
(1

0
0

)

G
R

U
(1

2
8

)

3
D

C
o

n
v(

3
2

)

2
D

C
o

n
v(

3
2

)

2
D

C
o

n
v(

6
4

)

2
D

C
o

n
v(

6
4

)

2
D

C
o

n
v(

6
4

)

A
ve

ra
ge

p
o

o
l

2
5

6
 E

m
b

ed
d

in
g

3
D

C
o

n
v(

6
4

)

D
W

+P
W

C
o

n
v(

6
4

,1
2

8
)

2
5

6
 E

m
b

ed
d

in
g

A
ve

ra
ge

p
o

o
l

D
W

+P
W

C
o

n
v(

1
2

8
,1

2
8

)

D
W

+P
W

C
o

n
v(

1
2

8
,1

2
8

)

D
W

+P
W

C
o

n
v(

1
2

8
,2

5
6

)

(a) (b) (c)

(d) (e) (f)

Figure 2: Topologies used in this paper. Top: feature extractors. Bottom: Task heads. ReLU
activations not shown for the sake of clarity. Conv-based features extractor also make use of
BatchNorm during training. Conv layers use 3x3(x3) kernel size, stride of 1 for the first 2
layers and 2 afterwards. (a) EGNN feature extractor. (b) CNN-Concat feature extractor. (c)
CNN-DWPW feature extractor. (d) Feed Forward Task Head (FFTH). (e) Small GRU Task
Head (SGTH). (f) Medium GRU Task Head (MGTH).
a time radius rt of 100 ms, pixel rxy of 10 pixels and form edges only from the 30 closest
neighbors. These values were chosen in order to maintain the same aspect ratio of DVS Lip
samples (1.2 s in average, 128 pixels) and ensure that most of the vertices are connected to
thirty neighbouring vertices.

3.2 Network topologies
3.2.1 EGNN feature extractor

The proposed EGNN feature extractor is inspired from [6] and is depicted in Fig. 2(a). It
uses two types of EGNN layers: B-Spline [9] and GCNconv [14]. B-Spline convolution in-
corporates complex vertex feature sharing mechanism, which leverages spatiotemporal dif-
ferences between vertices in the edges to modulate message passing. On the other hand,
GCNconv convolution is more straightforward whereby features from neighbouring vertices
are averaged before being multiplied by a shared weight kernel. Therefore, the exact rela-
tive positions of neighbouring vertices do not influence the convolution. Our EGNN feature
extractor is composed of an input B-Spline convolutional layer followed by four GCNconv
layers. We found this was a good compromise between the powerful, but computationally
expensive, B-spline convolution and the more lightweight GCN convolution. We use 7 input
features - event coordinates, approximate normal to local event plan and polarity - as in [6].
In each layer, the graph convolutions result in vertices of sixty-four features. The vertex
features from each layer are then concatenated together resulting in a 320-size embedding
that is fed to the task head.

3.2.2 CNN feature extractor

We design two CNN-based feature extractors in order to compare with the EGNN-based
one. For this comparison to be fair, we aim at designing a CNN-based feature extractor

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

Citation
Citation
{Fey, Lenssen, Weichert, and M{ü}ller} 2018

Citation
Citation
{Kipf and Welling} 2016

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

6 T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION

that has the same number of parameters as the EGNN feature extractor. Inspired by [28],
both convolutional feature extractors perform a 3D convolution on a volume of events in
the first layer which is then followed by series of 2D convolutional layers. Note that this
resembles our proposed EGNN feature extractor, whereby a more complex layer (3D conv
and B-Spline) is applied to the input data, before light layers (2D conv and GCN) build upon
these features. The difference between the two CNN implementations is the way in which
feature maps from different layers are handled in order to create the embedding vector fed to
the task head as shown in Fig. 2. The first implementation (CNN-Concat) takes inspiration
from our EGNN feature extractor, whereby global mean pooling is applied to each of the
feature maps in each layer resulting in 256 values which are concatenated together. The
second takes a more conventional approach based on depthwise and pointwise convolutions
(CNN-DWPW). More details are provided in the supplementary material.

3.2.3 Task heads

The task head is a neural network that takes as input the 320-size vector of the feature ex-
tractor and outputs a task dependent prediction. In this case the output is a probability dis-
tribution over the 100 possible spoken words. In order to study the ability of EGNNs to
capture temporal dependencies we design three task heads. The first one is a Feed Forward
Task Head (FFTH), similar to that used in [3]. The embedding of each vertex is processed
by a series of fully connected layers and the output probability distribution is computed for
all vertices in the graph. These outputs are then averaged over the full input sequence and a
prediction is made based on the most probable class. The two other task heads are based on
gated recurrent units (GRUs). Here a single embedding is calculated for all events within a
given time intervals by performing global average pooling on all vertex features. The size of
this time interval is determined by the rate of the GRU and in this paper is typically chosen
to be either 30Hz or 75Hz. We study the impact of a Small GRU Task Head (SGTH) and a
Medium GRU Task Head (MGTH). The dimensions and number of layers of each head are
detailed in Fig.2.

3.3 Supervised classification learning

An EG was built for each of the spoken words in the dataset - each containing all of the events
generated as each word is spoken. Each model is trained over 100 epochs using batches of
sixteen single word EGs, the AdamW optimisation algorithm [18] and a cross entropy loss.
We use a plateau loss scheduling whereby after ten epochs, if the average loss over the epoch
has not diminished by 5%, the learning rate is halved. The reported accuracy corresponds to
that achieved on the test set after the last epoch of training.

We additionally leverage a variety of data augmentation techniques. The baseline data
augmentations applied to the EGs are random temporal distortion, edge dropout [25] and
horizontal flip as in [6]. Temporal distortion randomly stretches the EG such that the word is
spoken at rate between 50% slower to 50% faster than the original recording. Edge dropout
of probability 25% will randomly remove edges in the graph at training time and horizontal
flip has a 50% to mirror the input EG along its vertical axis. Dropout is also used before
and in the GRU layers with 20% probability. On top of this, we also propose a new data
augmentation technique we refer to as Maskout, which we originally devised as a means of
mitigating potential overfitting of the GRU layers.

Simply, we divide the input EG into regular temporal intervals of duration T , in sync with
GRU frames. We then randomly mask out intervals (i.e., delete the events they contain from

Citation
Citation
{Tan, Wang, Han, Cao, Wu, and Zha} 2022

Citation
Citation
{Bi, Chadha, Abbas, Bourtsoulatze, and Andreopoulos} 2019

Citation
Citation
{Loshchilov and Hutter} 2017

Citation
Citation
{Rong, Huang, Xu, and Huang} 2019

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION 7

Task Head Acc test Parameters GOPs/s
EGNN + FFTH 53.6 % 132 k 1.35
EGNN + SGTH 55.9 % 156 k 1.10
EGNN + MGTH (G2N2) 58.7 % 413 k 1.67

Table 1: Comparison of Task Heads (TH). FF = Feed Forward, SG = Small GRU, MG =
Medium GRU. G2N2 represents EGNN + MGTH.
the graph) - although preserving edges between vertices that traverse the resulting empty re-
gions. For each EG we randomly choose Nmask regions to maskout where an integer number
of sequential regions of duration T is randomly chosen by sampling a number between one
and Lmask. This permits the masked regions to be of a variable time duration. We also apply
all of these data augmentations to the event-frames with the exception of edge dropout.

4 Experiments

4.1 DVS Lip
The DVS-Lip dataset is a machine learning dataset designed for automatic lip-reading using
event cameras. The dataset includes 19,871 valid word samples spoken by 40 volunteers
(20 male, 20 female). The vocabulary contains a total of 100 words, divided into two parts:
visually similar word pairs and common words. In order to evaluate the generalization of
trained methods, 30 volunteers are used for training and 10 for evaluation. The dataset
includes both the event stream and intensity images (25FPS) output from the event camera,
and mouth-centered crops of size 128x128 pixels are extracted using face detection. An
example can be seen in Fig. 1.

4.2 Results
We first look at the impact of the task head on the HUGNet EGNN feature extractor - in
particular to understand whether the GRU can bring about an improvement in performance
due to its ability to better capture temporal dependencies. We then demonstrate the signifi-
cant performance boost due to our new data augmentation technique Maskout and study the
impact of the hemi-spherical update feature extractor relative to the more computationally
intensive fully-spherical one.

Finally, using the optimal configuration of our model, we perform a benchmarking against
the two CNN based approaches as well as larger CNNs from the state of the art on event-
based lip reading.

4.2.1 Task head

Table 1 presents the results on DVS Lip achieved by the HUGNet EGNN feature extractor
combined with the three different task heads.

The utility of the GRU in modelling temporal dependencies can be clearly seen in com-
paring the first two lines of the table. Whereas the FFTH head has access only to the features
calculated by the EGNN using the information propagated forward in time between vertices
connected by edges, the small GRU task head is able to integrate this information over the
full spoken word and obtain a higher test accuracy. The medium sized GRU brings about an-
other increase in performance at the expense of a slight increase in the number of operations
per second and the total number of parameters. We observed that further increases in GRU
size (i.e., large GRU) only very marginally improved the accuracy beyond that of EGNN +
MGTH - which we will refer to as G2N2 in the remainder of the article.

8 T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION

Nmask 0 4 4 4 4 6 8 10
Lmask - 4 6 8 10 6 6 6
Acc (%) 58.7 64.1 65.0 65.4 65.2 65.9 66.1 63.5

Table 2: Impact of Maskout data augmentation with a hemi-spherical update graph and GRU
task head (G2N2) on the accuracy. The GRU frequency is 30 Hz. Nmask and Lmask are the
number of masks and maximum length for the EG respectively and T =33ms.

Neighbor Search Search radii Search Volume Latency Acc
Fully-spherical (10 pix, 50 ms) V 250 ms 68.3 %
HUG (10 pix, 100 ms) V 0 ms 69.4%

Table 3: Comparison of EG building parameters. Hemi-spherical Update Graph (HUG) [6]
vs Spherical Update. GRU is processed at 75 Hz. Latency represents the time between
creation and output feature computation for an event.
4.2.2 Event-graph data augmentation

In Table 2 we report the effect of applying our data augmentation scheme Maskout on G2N2
and the impact of its two parameters Nmask and Lmask. We observed that by applying Mask-
out, over different combinations of parameters, the test accuracy of G2N2 was dramatically
boosted by between 4.8% and 7.6%. The optimal configuration was the application of eight
randomly positioned masks with a duration of between 33ms up to 200 ms (six slices of
33ms). The spoken word EGs will often be composed to several isolated EG islands be-
tween which message passing is not possible as the maximum length of masks is greater
than the search radius, possibly explaining the gains.

4.2.3 Comparison of hemi- and fully-spherical EGs

In order for our EGNN feature extractor to be lightweight, we opted to use the hemi-spherical
update graph neural network (HUGNet) [6] as opposed to other, more computationally
costly, fully-spherical EG approaches [3, 21, 26]. While HUGNet, despite its reduction
in EG complexity, outperformed fully-spherical approaches on optical flow estimation tasks
it is important to understand whether this advantage might also generalise to other com-
puter vision tasks and whether it is a detriment to the performance of G2N2. We therefore
present in Table 3 a comparison between hemi-spherical (HUG) and fully-spherical (Fully-
spherical). In this experiment, we also used a GRU rate of 75Hz since we found this to be
advantageous compared to 30Hz, for a relatively small increase in the number of operations
per second (see supplementary material for a sweep of the GRU rate).

Intriguingly, as was reported to be the case for optical flow estimation [6], HUGNet out-
performs its fully-spherical counterpart by 1.1% indicating a generality of the hemi-spherical
EG approach. In order to emphasise advantages of the HUGNet based in terms of delay we
also note the latency after an event has been generated before it can be used by the task head.
When HUGNet can process in real time, standard approach adds 250 ms since there are five
layers.

4.2.4 CNN Benchmarking

We finally compare our optimal G2N2 model to the two convolutional benchmarks of a
similar model size as well as other approaches from the state of the art. The results are
summarised in Table 4. Neither CNN-Concat nor CNN-DWPW are capable of attaining a
performance close to that of G2N2 - with respective gaps of 6.2% and 3.4%. This shows that,
for this task, the EGNN is a much more effective feature extractor than CNNs of the same

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

Citation
Citation
{Bi, Chadha, Abbas, Bourtsoulatze, and Andreopoulos} 2019

Citation
Citation
{Mitrokhin, Hua, Fermuller, and Aloimonos} 2020

Citation
Citation
{Schaefer, Gehrig, and Scaramuzza} 2022

Citation
Citation
{Dalgaty, Mesquida, Joubert, Sironi, Vivet, and Posch} 2023

T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION 9

Mode Rate (Hz) Acc Parameters GOPs/s
CNN-Concat (This work) Event Frame 75 63.2 % 418 k 6.57
CNN-DWPW (This work) Event Frame 75 66.0 % 405 k 8.81
G2N2 (This Work) Event Graph 75 (GRU) 69.4 % 413 k 1.68
RN-Net [31] Event Frame 33 67.5 % 7.5 M
[20] Video Frame 25 65.5 % 11.2 M
ACTION-Net[30] Event Frame 25 68.8 % 28.1 M
MSTP[28] Event Frame (25,175) 72.1 % 60.3 M

Table 4: Comparison of DVS Lip accuracy and network complexity in number of parameters.
size based on event-frames. Furthermore, in comparing the number of operations per second,
we see that G2N2 is able to achieve this performance with up to 84% fewer calculations. This
can largely be attributed to the sparse and event-driven manner in which EGNNs compute,
relative to CNNs which do not exploit the inherent sparsity of event-data.

We include in the same table other solutions to event-based spoken word classification
from the state of the art. Remarkably G2N2 outperforms most of these methods despite the
drastic reduction in the model size. G2N2 was only bettered by MSTP, by 2.7%, despite the
fact it requires over two orders of magnitude more parameters. It should also be noted that,
although outperformed by G2N2, CNN-Concat and CNN-DWPW also obtain reasonably
competitive performances relative to other larger CNNs. We observed in our experiments
that this is in large part due to our data augmentation technique Maskout.

5 Discussion and Perspectives
We have addressed the limitations of EGNNs in capturing long-term dependencies for spo-
ken word classification. Our proposed solution, G2N2, combines EGNNs with GRU task
heads, effectively grasping these temporal dependencies and improving performance. Addi-
tionally, our data augmentation technique, Maskout, has shown a remarkable performance
boost of up to 7.4% for G2N2. Further exploration of augmentation methods and adaptation
from other vision domains is warranted for EGs.

Benchmarking EGNNs against CNNs of similar size demonstrated the superior feature
extraction capability of EGNNs. This advantage may stem from the preservation of precise
spatiotemporal information captured by event cameras, as well as the distinct characteristics
of kernel sizes in CNNs and search radii in EGNNs. Furthermore, EGNNs significantly
reduced the number of calculation operations per second compared to CNNs, benefiting
from the sparsity of event-based data and avoiding redundant measurements.

G2N2’s lightweight nature and the use of a hemi-spherical update EGNN contribute
to its computational efficiency compared to fully-spherical EG feature extractors. We ob-
served that G2N2 with a hemi-spherical feature extractor consistently outperformed its fully-
spherical counterpart, highlighting the need for further investigation into this phenomenon.

However, the utilization of GRU layers in G2N2 requires a return to the frame-based
paradigm for the task head, introducing latency overhead and limiting fully asynchronous
inference. Future work will focus on exploring alternatives to GRU task heads to achieve a
lightweight and ultra-low latency implementation without relying on frame buffering.

Acknowledgements This work is partly funded thanks to the French national program
“Programme d’Investissements d’Avenir, IRT Nanoelec” ANR-10-AIRT-05. This publica-
tion was made possible by the use of the FactoryIA supercomputer, financially supported by
the Ile-De-France Regional Council.

Citation
Citation
{Yoo, Lee, Wang, Wang, and Lu} 2023

Citation
Citation
{Mart{í}nez, Ma, Petridis, and Pantic} 2020

Citation
Citation
{Wang, She, and Smolic} 2021

Citation
Citation
{Tan, Wang, Han, Cao, Wu, and Zha} 2022

10 T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION

References
[1] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo

Di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Men-
doza, Jeff Kusnitz, Michael Debole, Steve Esser, Tobi Delbruck, Myron Flickner, and
Dharmendra Modha. A low power, fully event-based gesture recognition system. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[2] Raymond Baldwin, Ruixu Liu, Mohammed Mutlaq Almatrafi, Vijayan K Asari, and
Keigo Hirakawa. Time-ordered recent event (tore) volumes for event cameras. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

[3] Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze, and Yiannis Andreopou-
los. Graph-based object classification for neuromorphic vision sensing. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 491–501, 2019.

[4] Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci. A differ-
entiable recurrent surface for asynchronous event-based data. In European Conference
on Computer Vision, pages 136–152. Springer, 2020.

[5] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[6] Thomas Dalgaty, Thomas Mesquida, Damien Joubert, Amos Sironi, Pascal Vivet, and
Christoph Posch. Hugnet: Hemi-spherical update graph neural network applied to
low-latency event-based optical flow. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, pages 3952–3961, June
2023.

[7] Matthew Dutson and Mohit Gupta. Event neural networks. CoRR, abs/2112.00891,
2021. URL https://arxiv.org/abs/2112.00891.

[8] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch
geometric. Proceedings of the International Conference on Learning Representation,
2019.

[9] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast
geometric deep learning with continuous b-spline kernels. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 869–877, 2018.

[10] Thomas Finateu, Atsumi Niwa, Daniel Matolin, Koya Tsuchimoto, Andrea
Mascheroni, Etienne Reynaud, Pooria Mostafalu, Frederick Brady, Ludovic Chotard,
Florian LeGoff, Hirotsugu Takahashi, Hayato Wakabayashi, Yusuke Oike, and
Christoph Posch. A 1280×720 back-illuminated stacked temporal contrast event-based
vision sensor with 4.86µm pixels, 1.066geps readout, programmable event-rate con-
troller and compressive data-formatting pipeline. In 2020 IEEE International Solid-
State Circuits Conference - (ISSCC), pages 112–114, 2020. doi: 10.1109/ISSCC19947.
2020.9063149.

https://arxiv.org/abs/2112.00891

T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION 11

[11] Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpanis, and Davide Scaramuzza.
End-to-end learning of representations for asynchronous event-based data. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages 5633–5643,
2019.

[12] Mathias Gehrig, Mario Millhäusler, Daniel Gehrig, and Davide Scaramuzza. E-raft:
Dense optical flow from event cameras. In International Conference on 3D Vision
(3DV), 2021.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. Advances in neural information processing systems, 30, 2017.

[14] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. Proceedings of the International Conference on Learning Represen-
tation, 2016.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[16] Xavier Lagorce, Garrick Orchard, Francesco Galluppi, Bertram E Shi, and Ryad B
Benosman. Hots: a hierarchy of event-based time-surfaces for pattern recognition.
IEEE transactions on pattern analysis and machine intelligence, 39(7):1346–1359,
2016.

[17] Min Liu and Tobi Delbruck. Adaptive time-slice block-matching optical flow algorithm
for dynamic vision sensors. 2018.

[18] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017. URL http://arxiv.org/abs/1711.05101.

[19] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso García, and Davide
Scaramuzza. Event-based vision meets deep learning on steering prediction for self-
driving cars. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5419–5427, 2018.

[20] Brais Martínez, Pingchuan Ma, Stavros Petridis, and Maja Pantic. Lipreading using
temporal convolutional networks. CoRR, abs/2001.08702, 2020. URL https://
arxiv.org/abs/2001.08702.

[21] Anton Mitrokhin, Zhiyuan Hua, Cornelia Fermuller, and Yiannis Aloimonos. Learning
visual motion segmentation using event surfaces. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14414–14423, 2020.

[22] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learn-
ing in spiking neural networks: Bringing the power of gradient-based optimization to
spiking neural networks. IEEE Signal Processing Magazine, 36(6):51–63, 2019.

[23] Atsumi Niwa, Futa Mochizuki, Raphael Berner, Takuya Maruyarma, Toshio Terano,
Kenichi Takamiya, Yasutaka Kimura, Kyoji Mizoguchi, Takahiro Miyazaki, Shun
Kaizu, et al. A 2.97 µm-pitch event-based vision sensor with shared pixel front-end
circuitry and low-noise intensity readout mode. In 2023 IEEE International Solid-State
Circuits Conference (ISSCC), pages 4–6. IEEE, 2023.

http://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2001.08702
https://arxiv.org/abs/2001.08702

12 T. MESQUIDA ET AL: G2N2 - LIGHTWEIGHT EVENT STREAM CLASSIFICATION

[24] Etienne Perot, Pierre De Tournemire, Davide Nitti, Jonathan Masci, and Amos Sironi.
Learning to detect objects with a 1 megapixel event camera. Advances in Neural Infor-
mation Processing Systems, 33:16639–16652, 2020.

[25] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards
deep graph convolutional networks on node classification. Proceedings of the Interna-
tional Conference on Learning Representation, 2019.

[26] Simon Schaefer, Daniel Gehrig, and Davide Scaramuzza. Aegnn: Asynchronous event-
based graph neural networks. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12371–12381, 2022.

[27] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, and Ryad Benos-
man. Hats: Histograms of averaged time surfaces for robust event-based object clas-
sification. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1731–1740, 2018.

[28] Ganchao Tan, Yang Wang, Han Han, Yang Cao, Feng Wu, and Zheng-Jun Zha. Multi-
grained spatio-temporal features perceived network for event-based lip-reading. In
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 20062–20071, 2022. doi: 10.1109/CVPR52688.2022.01946.

[29] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. Proceedings of the International Con-
ference on Learning Representations, 2017.

[30] Zhengwei Wang, Qi She, and Aljosa Smolic. Action-net: Multipath excitation for
action recognition. CoRR, abs/2103.07372, 2021. URL https://arxiv.org/
abs/2103.07372.

[31] Sangmin Yoo, Eric Yeu-Jer Lee, Ziyu Wang, Xinxin Wang, and Wei D. Lu. Rn-net:
Reservoir nodes-enabled neuromorphic vision sensing network, 2023.

[32] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer
spiking neural networks. Neural computation, 30(6):1514–1541, 2018.

[33] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree construction
on graphics hardware. ACM Transactions on Graphics (TOG), 27(5):1–11, 2008.

[34] Alex Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. Ev-flownet:
Self-supervised optical flow estimation for event-based cameras. In Proceedings of
Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018. doi: 10.15607/
RSS.2018.XIV.062.

https://arxiv.org/abs/2103.07372
https://arxiv.org/abs/2103.07372

