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Abstract

Recent successes suggest that knowledge distillation techniques can usefully trans-
fer knowledge between deep neural networks as compression and acceleration tech-
niques, e.g., effectively and reliably compress a large teacher model into a smaller stu-
dent model with limited resources. However, knowledge distillation performance is de-
graded when the model compression rate becomes excessively high due to the size of
the teacher model. To address this, we advocate for improving the teacher-to-student
knowledge transfer by identifying and reinforcing input-level signals of substantial con-
tributions for a final verdict, e.g., signals for a long trunk of elephants are strengthened
and transferred to the student model. To this end, we adopt gradient-based explainable
Al techniques for extracting output-relevant input-level features. Then, we strengthen
and transfer these signals to improve the knowledge distillation performance. Our ex-
periments on public datasets (i.e., CIFAR-10, CIFAR-100, Tiny-ImageNet, and Ima-
geNet) show that our method clearly outperforms existing knowledge distillation ap-
proaches, especially in the case of using a small teacher model. Our code is available at
https://github.com/myunghaklee/Distillation-for-High-Quality-Knowledge-Extraction.

1 Introduction

The objective of knowledge distillation (KD) is to facilitate the transfer of knowledge from
one model (a teacher) to another model (a student) that is typically simpler without loss
of validity. As shown in the Figure 1. (a), most previous KD methods use two types of
knowledge (i.e., feature-based and response-based knowledge) extracted by a pre-trained
and frozen teacher model to transfer knowledge into the student model [18, 42]. In general,
the student model which leverages knowledge leads to enhanced performance relative to
training solely on actual labels [35]. Moreover, KD serves as a regularizer, progressively
employing fewer basis functions for the iterative learning of a model [35].

In a deep model, each layer learns different levels of feature representation with increas-
ing abstraction [3, 37]. Therefore, most KD methods use a teacher model that is equal to or
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Figure 1: (a) An overview of conventional knowledge distillation techniques that use two
main approaches: feature distillation and response distillation. (b) Classification accuracy
of the student model degrades (with existing knowledge distillation techniques, such as
DKD [60], ATT [59], FitNet [42], KD [18], and SAD [21]) as the teacher-student model
capacity gap increases.

larger than the student model, in order to utilize knowledge of a higher level of abstraction.
However, when a disproportionately large teacher model is utilized, the student model may
fail to appropriately receive the knowledge from the teacher model due to the significant ca-
pacity gap between the models [13, 27, 32]. Additionally, there are other distillation issues
with establishing links of the knowledge between the teacher and the student models [20, 21].
For these reasons, existing KD methods cannot guarantee performance enhancement of the
student model in response to an increase in depth of the teacher model(refer to Figure 1. (b)).

Recent work tackles effective knowledge transfer despite the huge capacity gap between
the teacher and student models [21, 23, 27]. However, it is still challenging to achieve a suc-
cessful KD that can help mitigate the impact of the capacity gap. To address these challenges,
we propose a novel KD method that extracts high-quality knowledge by reinforcing data via
explainable AI (XAI) technique.

In particular, we generate relevance-reinforced data using XAl and adversarial example
techniques. This enables the extraction of high-quality knowledge even from the limited
teacher model. Our Oracle approach, which uses XAI techniques to reinforce input pixels
that help reduce task loss and diminish input pixels that hinder it, can be easily extended to
other distillation schemes. We summarize our main contributions as follows:

* We propose a novel knowledge distillation method that can extract high-quality knowl-
edge via explainable Al and adversarial example.

* We effectively show the benefit of our method on public datasets: CIFAR-10, CIFAR-
100 [24], Tiny-ImageNet, and ImageNet [8].

* Our method quantitatively and qualitatively outperforms alternative knowledge distil-
lation methods.

2 Related Work

2.1 Knowledge Distillation (KD)

Knowledge distillation (KD) is a widely used technique that trains a student model under the
supervision of a pre-trained teacher model [18, 42]. KD has been successfully applied to sev-
eral learning tasks such as image classification [18, 42], object detection [5, 26], and image
segmentation [29, 56]. Recent work can be broadly divided into two approaches concerning
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extraction and distillation of the knowledge from teacher to student without a significant per-
formance drop. Several approaches address how to maximize the benefit of the teacher model
by reducing the capacity gap experienced by the student model [6, 23, 31, 36]. In addition,
Sau et al. [44] propose a noise-based regularizer from multi-teacher models, and Wang et
al. [57] discover the interplay between KD and data augmentation. Zhao et al. [60] refor-
mulate KD loss into target class and non-target classes KD and Jang et al. [20] introduce a
meta-learning approach capable of automatically determining the knowledge to transfer from
the one model to where in another. A few recent works [21, 40] use attention mechanism to
match feature-level in KD. ResKD [27] uses the capacity gap between teacher and student
models as guidance to train a significantly more lightweight student model. In KCD [25],
the knowledge value on each sample is dynamically estimated by EM algorithm to distill a
compact knowledge set from the teacher model, thereby guiding student training.

2.2 Adversarial Example

An adversarial example (attack) is an instance with subtle, deliberate perturbations in fea-
tures, compelling a learning model f(-) to make incorrect predictions [14, 52]. The equation
is defined as follows:

fx)#f(x+e), [el<n, € = vsign(Vxf(6,%,)) (1)

where 1) is a perturbation constraint, 0 represents the parameters of the model, and y adjusts
the intensity of the perturbation. Schmidt et al. [46] introduce the generalization of adversar-
ially robust learning by investigating the sample complexity required to achieve robustness
against adversarial examples. Farnia et al. [11] provide bounds on the generalization error
for deep neural networks trained under several adversarial attack schemes. Miyato et al. [34]
extend adversarial learning and its examples to natural language domains.

2.3 Explainable AI (XAI)

Explainable AI (XAI) aims to Al decision-making. Recent AI models, akin to the black
box, have challenges in discerning the rationale behind their results. This hinders not only
performance enhancement but also advancements in building trustworthiness in Al. From
DARPA [54], the field of XAl is broadly presented into two categories; 1) to produce more
interpretable models, ensuring a high level of performance and 2) to enable humans to com-
prehend and appropriately trust AL In deep learning, it provides explainability through vi-
sualization of saliency [4, 22, 38, 47, 61] and relevance signals [1, 49]. Additionally, there
are works employing XAI techniques to refine data [2, 30], feature [12, 33, 45, 51, 62, 63],
graident [16, 39], and loss [9, 10, 19, 28, 41, 48, 58] with the aim of improving model perfor-
mance. Inspired by the aforementioned works, we propose a novel methodology to enhance
KD performance by reinforcing input with the perturbation generated by XAl technique.

3 Method

To extract high-quality knowledge, previous studies usually increase the size of the teacher
model. However, when employing an excessively large teacher model, the performance of
the student model may decrease because of the capacity gap. Due to this issue, increasing the
size of the teacher model cannot improve the student model’s performance beyond a certain


Citation
Citation
{Cho and Hariharan} 2019

Citation
Citation
{Kang, Mun, and Han} 2020

Citation
Citation
{Meng, Li, Zhao, and Gong} 2019

Citation
Citation
{Monti, Porrello, Calderara, Coscia, Ballan, and Cucchiara} 2022

Citation
Citation
{Sau and Balasubramanian} 2016

Citation
Citation
{Wang, Lohit, Jones, and Fu} 2020

Citation
Citation
{Zhao, Cui, Song, Qiu, and Liang} 2022

Citation
Citation
{Jang, Lee, Hwang, and Shin} 2019

Citation
Citation
{Ji, Heo, and Park} 2021

Citation
Citation
{Passban, Wu, Rezagholizadeh, and Liu} 2021

Citation
Citation
{Li, Li, Omar, Wu, and Li} 2021

Citation
Citation
{Li, Lin, Ding, Lin, Zhuang, Huang, Ding, and Cao} 2022

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2014

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2013

Citation
Citation
{Schmidt, Santurkar, Tsipras, Talwar, and Madry} 2018

Citation
Citation
{Farnia, Zhang, and Tse} 2018

Citation
Citation
{Miyato, Dai, and Goodfellow} 2016

Citation
Citation
{Turek} 2021

Citation
Citation
{Chattopadhay, Sarkar, Howlader, and Balasubramanian} 2018

Citation
Citation
{Jiang, Zhang, Hou, Cheng, and Wei} 2021

Citation
Citation
{Muhammad and Yeasin} 2020

Citation
Citation
{Selvaraju, Cogswell, Das, Vedantam, Parikh, and Batra} 2017

Citation
Citation
{Zhou, Khosla, Lapedriza, Oliva, and Torralba} 2016

Citation
Citation
{Bach, Binder, Montavon, Klauschen, M{ü}ller, and Samek} 2015

Citation
Citation
{Shrikumar, Greenside, Shcherbina, and Kundaje} 2016

Citation
Citation
{Bargal, Zunino, Petsiuk, Zhang, Saenko, Murino, and Sclaroff} 2018

Citation
Citation
{Mahapatra, Poellinger, Shao, and Reyes} 2021

Citation
Citation
{Fukui, Hirakawa, Yamashita, and Fujiyoshi} 2019

Citation
Citation
{Mitsuhara, Fukui, Sakashita, Ogata, Hirakawa, Yamashita, and Fujiyoshi} 2019

Citation
Citation
{Schiller, Huber, Lingenfelser, Dietz, Seiderer, and André} 2019

Citation
Citation
{Sun, Lapuschkin, Samek, Zhao, Cheung, and Binder} 2020

Citation
Citation
{Zunino, Bargal, Morerio, Zhang, Sclaroff, and Murino} 2021{}

Citation
Citation
{Zunino, Bargal, Volpi, Sameki, Zhang, Sclaroff, Murino, and Saenko} 2021{}

Citation
Citation
{haprotect unhbox voidb@x protect penalty @M  {}Lee, hee Shin, guprotect unhbox voidb@x protect penalty @M  {}Jeong, Lee, Zaheer, and Seo} 2019

Citation
Citation
{Nagisetty, Graves, Scott, and Ganesh} 2022

Citation
Citation
{Du, Liu, Yang, and Hu} 2019

Citation
Citation
{Erion, Janizek, Sturmfels, Lundberg, and Lee} 2020

Citation
Citation
{Ismail, Corradaprotect unhbox voidb@x protect penalty @M  {}Bravo, and Feizi} 2021

Citation
Citation
{Liu and Avci} 2019

Citation
Citation
{Rieger, Singh, Murdoch, and Yu} 2020

Citation
Citation
{Selvaraju, Lee, Shen, Jin, Ghosh, Heck, Batra, and Parikh} 2019

Citation
Citation
{Weber} 2020


4 LEE ET AL.: DISTILLATION FOR HIGH-QUALITY KNOWLEDGE EXTRACTION
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Figure 2: An overview of our proposed knowledge distillation method, which consists of
two main steps: (A) Generating Relevance-Reinforced Inputs and (B) Transfer Knowledge
via Oracle Teacher Model. In Step A, we generate reinforced data x* where input pixels that
make the model correctly classify are reinforced. Further, in Step B, the generated reinforced
data is then used to extract the teacher model’s responses for the classification task, transfer-
ring them into the student model.

threshold. In other words, there are limitations in the quality of knowledge extracted from
the teacher model and transferred to the student model. To address these issues, we propose
an Oracle teacher model that extracts high-quality knowledge through the use of reinforced
data, generated by XAl

3.1 Step A: Generating Relevance-Reinforced Inputs

As shown in Figure 2 (left), we first identify pixel-level contributions for the final verdict,
i.e., which parts of an input image largely (or negligibly) contribute to the model to draw
its output. Determining each pixel’s contribution has widely been explored as a tool to build
explainable (or interpretable) models in previous works. Following these works, we want
to quantify input-level contribution by computing gradients of the task loss function. For-
mally, we compute the task loss L,k given the ground truth y and the predicted output fy(x)
with a model fy parameterized by 6. By applying the standard backpropagation method, we
compute gradients g = d f(x)/9dx to determine the amount of relevance scores of an input x.
Given this gradient g, we modify the input by pushing it toward the negative direction of gra-
dients, i.e., we obtain a modified input where parts of high relevance scores are reinforced,
producing much more confident decisions when it is used as the input itself. The equation is

following:
9f(x)
Jx

x =x—yx|o LX) @)

where © represents the element-wise multiplication and ¥ is a hyperparameter to control the
strength of this modification.

As reported in Table 1, such a relevance-reinforced input x* provides a dramatic perfor-
mance boost in all backbone types (compare the last two columns). These results may be
intuitive as we use the ground truth to drive the model to draw the correct output by modify-
ing inputs (i.e., the Oracle model can achieve dramatic performance improvements due to its
prior knowledge of the ground truth); thus, this may not be useful for inference in common
real-world scenarios. However, this may be useful for the knowledge distillation task where
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Table 1: Comparison of accuracy between scratch models trained by original data (x) and
Oracle models trained by reinforced data (x*) on two datasets: CIFAR-100 and ImageNet.

Dataset Model Scratch Oracle Dataset Model Scratch Oracle
ResNet20 68.68 90.60 ResNet18 69.76 96.61

CIFAR-100 ResNet32 70.90 90.59 ImageNet ResNet34 73.29 96.08
ResNet56 72.46 90.99 ResNet50 76.14 96.03

ResNet110 74.11 89.62 ResNet101 77.38 95.82

identifying which parts of an image are focused on by a teacher model. We, therefore, want
to leverage the relevance-reinforced input as a key component to transfer knowledge to the
student model.

3.2 Step B: Transfer Knowledge via Oracle Teacher Model

Following the standard response-based knowledge distillation technique [18], we first com-
pute the soft predictions P7 from the last layer of our teacher model, i.e., a probability
distribution over different categories with a softmax layer: Py = Softmax(o7/7), where
o7 is the final output feature from the teacher model. We also use the temperature 7 to pre-
vent overconfidence issues during training. Further, we distill the teacher model’s response
knowledge to the student model by minimizing the KL divergence of soft predictions as
follows:

Laistin = DxL(Pr||Ps) 3)
where Ps = Softmax(0s/7) is the soft prediction from the last layer of the student model.

Loss Function. We train our model end-to-end by minimizing the following loss £:
L = Las+ aListin “4)

where L. s = H(Ps,y) is the cross-entropy loss for the classification task from the student
model. We use hyperparameter ¢ to control the strength of the distillation loss term.

4 Experiments

Through various experiments, 1) we validate that our Oracle teacher model made by us-
ing XAI extracts high-quality knowledge and 2) conduct a comparative analysis between
our Oracle teacher model and SOTA knowledge distillation methods to demonstrate that
the proposed method significantly enhances the performance of the student model without
increasing the size of the teacher model.

4.1 Is the Knowledge Obtained from Our Oracle Teacher Model Good
Enough?

To validate whether the extracted knowledge from the Oracle teacher model can effectively
train the student model, we conducted the following four experiments: (i) We measure the
Expected Calibration Error (ECE) [15] of the Oracle teacher model, aiming for measur-
ing the quality of the response knowledge of train dataset as presented in Table 2. (ii) We
provide visualization results using t-SNE for the output representation of the Oracle teacher
model. (iii) We measure the silhouette score of the output representation of the Oracle teacher
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Table 2: The number of parameters and ECE scores for ResNet-based variant models on
ImageNet dataset.

Model # of Param Scratch model Oracle model
ECE) ECEW)
ResNet18 11.2M 0.0327 0.0311
ResNet34 21.3M 0.0313 0.0247
ResNet50 23.7M 0.0284 0.0216
ResNet101 42.7M 0.0237 0.0164

model [7, 43, 50]. Lastly, (iv) we measure the entropy whether the knowledge from the
teacher model can effectively be compressed to alleviate the capacity gap issue.

Expected Calibration Error (ECE) Analysis. Expected Calibration Error is a metric that
approximates how well the confidence scores conf(-), obtained by applying softmax to the
logits of a classification model, align with the actual probability acc(+) of a correct prediction.
It is measured as follows:

B
_ v
ECE = ;;1 N lacc(b) — conf(b)] )

where conf(b) = ﬁ Yjcp pj and acc (b) = ﬁ Yje» 1(pj =y;) inbin b. N is the total number
of data samples.

The ECE, which quantifies the difference between conf(-) and acc(-), is commonly used
as a metric to evaluate the level of overconfidence of the model. In recent deep neural net-
works, it is often observed that increasing the model’s capacity improves accuracy but can
lead to higher ECE due to overconfidence [15]. If a model exhibits not only high accu-
racy but also low ECE, it can be considered as extracting good knowledge for classification.
Therefore, we verify whether our Oracle teacher model extracts high-quality knowledge that
strikes a balance between accuracy and confidence.

Our Oracle teacher model demonstrated high performance in both accuracy and ECE
metrics. In Table 1, it consistently shows better (higher) accuracy that is up to 1.4 times
(ResNet18), and in Table 2, it consistently shows better (lower) ECE that is up to 1.4 times
(ResNet101). This result arises from the fact that reinforced data serves to increase the con-
fidence scores for the target class while decreasing those for the non-target classes. Conse-
quently, we confirm that the response knowledge extracted from our Oracle teacher model is
superior to that of conventional scratch models.

t-SNE Analysis. t-SNE is used for computing pairwise similarities of classes in the latent
space and visualizing in a low dimensional space [55]. It is generally observed that seman-
tically similar inputs tend to evoke similar activation patterns in a trained model [18, 53]. If
knowledge is extracted that enhanced the distinct representation among similar inputs, it can
lead to improved performance of classification. Consequently, we expect to observe well-
distinguishable clusters among similar inputs. In the well-known CIFAR-100 dataset [24],
each image comes with a fine label as sub-classes and a coarse label as super-classes. We
use these super-classes as similar inputs and evaluate the quality of extracted knowledge by
the models. In Figure 3, we visually confirm that clustering is more distinct in our Oracle
teacher model (y = 0.5, 1.0) compared to clustering in the scratch model (y = 0).

Silhouette Score. Silhouette coefficient is a metric that validates consistency within the clus-
ter. It is calculated for each data as shown in Eq. 6, and the value for the entire dataset
is derived by taking the average. In this paper, we refer to this averaged value as the sil-
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Figure 3: Visualizations by t-SNE [55] for output representation of the our Oracle teacher
model (ResNet20) on CIFAR-100 dataset with varying 7 in Eq. 2. For better understanding,
we provide sample images and denote color coding points according to their superclass.

houette score, with values closer to 1 indicating better performance. D;. (k) indicates the
intra-cluster distance, the mean distance between k and all other data points in the same
cluster, Dj. (k) = ﬁ Yjcsgkjd (k, j), and Dy (k) indicates the nearest-cluster distance,

the smallest mean distance of k to all data in any other cluster, D, = an#lIlg (i Yjes, d(k, ])) .

Dnc (k) - DiC (k)
max (D (k) ,Djc (k))

Sil (k) = (6)

where k is data in cluster K, Sk is set of cluster K, and d (-) is a distance function.

As depicted in Figure 4, variations in the silhouette score are measured by varying y
in Eq. 2. As can be seen, silhouette scores for both super-class and sub-class increase as y
grows up to a certain threshold. This implies that our Oracle teacher model (y = 0.5, 1.0)
extracts superior knowledge compared to the scratch model (Y = 0) in terms of the silhouette
score. However, if 7 is set too high, we observe a drop in the silhouette score. Therefore, we
confirm that the optimal y can be explored through the silhouette score.

Entropy. In our proposed approach, we elevate the confidence score for the target class
while attenuating it for non-target classes. This action effectively reduces the entropy (i.e.,
reduces the amount of information) of our knowledge, as outlined in Table 3. Nonetheless,
empirical evidence from our experiments suggests, that information among similar classes is

ResNet20 (Student) ResNet32 (Student) ResNet56 (Student) ResNet110 (Student)

I
%

Silhouege Score
S 2 s

=)
[*]
cv‘ 7

1]

Sub-Class ===+ Super-class @ Max Silhouette Accuracy Best Accuracy

Figure 4: Variation of silhouette score and top-1 accuracy with varying 7 in Eq. 2. The best
and maximum scores are indicated by a circle.
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Table 3: Comparison of entropy between confidence score about original data (x) and Refined
data (x*) on two datasets: CIFAR-10 and CIFAR-100.

Dataset CIFAR-10 CIFAR-100
Model ResNet20 | ResNet32 | ResNet56 | ResNetl1 0 | ResNet20 | ResNet32 | ResNet56 | ResNetl10
Original data (x) 5.39 5.30 5.02 4.82 0.66 0.50 0.41 0.40
Reinforced data (x*) 5.01 4.87 4.60 4.25 0.37 0.27 0.22 0.21

Table 4: Classification accuracy of the student model with different knowledge distillation
methods applied. We use CIFAR-10 and CIFAR-100 datasets. Note that bold represents the
best score, and the underlined scores represent the second best. Accuracy of the teacher
model is also shown in parentheses.

Dataset CIFAR-10 dataset CIFAR-100 dataset
Teacher model ResNet20 | ResNet32 | ResNet56 | ResNetl110 | ResNet20 | ResNet32 | ResNet56 | ResNetl10
= Student model (90.31) (90.88) (91.62) (92.06) (69.26) (71.14) (72.34) (74.31)
DKD [60] 90.27 91.07 92.25 91.99 69.42 72.87 74.94 76.21
ATT [59] 91.11 91.88 92.59 92.43 69.50 71.86 73.88 75.38
FitNet [42] 92.17 93.06 93.81 93.87 70.76 73.67 75.32 75.64
KD [18] 92.57 93.58 93.79 93.95 70.94 72.72 74.64 75.48
SAD [21] 92.71 93.61 93.52 93.37 70.52 73.34 75.01 76.36
Oracle (Ours) 92.94 93.77 94.01 94.69 71.97 74.32 75.52 77.22

preserved(refer to Figure 3 and Table 2). Consequently, our method preserves valid informa-
tion while diminishing the total amount of information. Therefore, our method can alleviate
the capacity gap issue because it only needs to transfer a smaller amount of information to
the student model.

4.2 Knowledge Distillation Performance Comparison

We further compare the knowledge distillation performance with other existing SOTA mod-
els, including DKD [60], ATT [59], FitNet [42], KD [18], and SAD [21]. Following the stan-
dard setting for the knowledge distillation task, we conduct two scenarios: (i) The teacher
and student models have the same backbone (i.e., self-distillation), and (ii) The teacher and
student models have and do not have different backbones. Our experiment is based mainly
on ResNet-based backbones [17] with different numbers of layers, i.e., 18, 20, 32, 34, 56,
and 110, while we use the following four publicly available image classification datasets:
CIFAR-10, CIFAR-100 [24], ImageNet, and Tiny-ImageNet [8].

Self-distillation Performance. We first observe in Table 4 that our model clearly outper-
forms the other knowledge distillation methods on two datasets (CIFAR-10 and CIFAR-
100) in cases where the teacher and student models have the same backbones (which could
be called self-distillation [35]). This performance gain is consistently observed for all types
of backbones.

Knowledge Distillation Performance. Further, we also compare the knowledge distillation
performance in cases where the teacher and student models have and do not have the same
backbone. We compare the student model’s classification accuracy on CIFAR-100 dataset
with the other KD methods, including DKD, ATT, FitNet, KD, and SAD. We test 16 different
pairs of ResNet-based backbones. As depicted in Figure 5, ours demonstrates a superior per-
formance across overall different pairs for each student model. Interestingly, despite setting
the teacher and student models to be the same, ours outperformed all other model pairs using
the same student model in other KD methods. This demonstrates the effectiveness of our
method in extracting and transferring high-quality knowledge, even with a smaller teacher
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Figure 5: Comparison of accuracy of our Oracle and SOTA knowledge distillation methods
on CIFAR-100 dataset. X-axis represents a different teacher model and Y-axis represents the
accuracy. We denote the best performing method for each student model with a star symbol.

Table 5: Classification accuracy on Tiny-ImageNet and ImageNet datasets. Note that bold
represents the best score, and the underlined scores represent the second best. Accuracy of
the scratch model is also shown in parentheses.

Dataset Tiny-ImageNet ImageNet
ResNet18 ResNet34 ResNet34
Teacher model
(59.83) (61.50) (73.31)
Student model ResNet18 ResNet34 ResNet18 ResNet34 ResNet18 ResNet34
(59.83) (61.50) (59.83) (61.50) (69.75) (73.31)
DKD [60] 64.15 66.89 64.61 65.79 71.85 74.84
ATT [59] 63.58 65.04 64.59 65.08 71.33 73.83
FitNet [42] 65.56 67.63 65.16 67.28 71.11 74.72
KD [18] 65.13 67.43 65.19 66.22 71.34 74.69
SAD [21] 65.78 67.21 66.33 67.79 71.53 7443
Oracle (Ours) 66.25 67.99 66.33 67.87 72.02 74.85

model. We further validate our findings by benchmarking performance on large-scale image
classification datasets, including Tiny-ImageNet and ImageNet, to enhance the reliability of
our experimental results. In Table 5, we observe ours outperforms other KD methods on
Tiny-ImageNet dataset and ImageNet dataset.

5 Conclusion

In this paper, we propose using gradient-based explainable Al techniques to improve the
model performance and compression effect of knowledge distillation techniques effectively,
reducing the commonly observed degradation issue of the student model given a large teacher-
student model capacity gap. Show that our method clearly outperforms existing knowledge
distillation approaches, when we set the teacher and student models to be the same, ours per-
forms better than all others using the same student model. Plus, our analysis demonstrates
the validity and usefulness of that reinforced teacher-to-student knowledge with Expected
Calibration Error (ECE), t-SNE, Silhouette Score and Entropy.
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