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Abstract

Segment Anything Model (SAM) has achieved brilliant results on many segmenta-
tion datasets due to its strong segmentation capability with visual-grouping perception.
However, the limitation of the three-channel input means that it is difficult to apply di-
rectly to cross-modality data. Therefore, this paper proposes a pipeline called E2SAM
with the knowledge inheritance stage and downstream fine-tuning stage step by step that
can efficiently inherit the capabilities of SAM and extend to both cross-modality data
and relevant task-specific application. In order to enable the feature alignment of varying
single-modality to cross-modality data, an auxiliary branch with a channel selector and
a merge module is designed in the first stage. It is worth noting that we do not need a
large amount of additional annotated training data during our pipeline. Furthermore, the
strengths of the proposed method are discussed in detail through experiments on general-
ization performance and resistance to size changes. The experimental results and visual-
izations on the SFDD-H8 and SHIFT datasets demonstrate the effectiveness of our pro-
posed methods compared to other methods such as random initialization and SAM-based
fine-tuning. The code is available at https://github.com/BUPT-PRIS-727/
BMVC2023_E2SAM.

1 Introduction
In recent decades, with the continuous development of sensor technology, humans can ob-
tain more and more abundant data through various types of sensors, such as multi-spectral
or hyper-spectral data in remote sensing area [9, 28], Lidar or depth data in autonomous
driving [14] and CT or X-ray data in medical diagnosis [4], that some samples are as shown
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Figure 1: (a) Some samples of cross-modality data from SHIFT and SFDD-H8 dataset,
including depth, near infrared and infrared image other than RGB image. (b) Insights of
our proposed method. The arrow from Block 1 to 2 indicates cross-modality data expansion
because this ability marked as a yellow star brings better performance under the random
initialization setting. Besides, the arrow from Block 1 to 1* indicates the performance gain
of foundation models under the same data marked as a blue star. Therefore, the goal of this
paper is to utilize both advantages from cross-modality data and large foundation model.

in Fig. 1 (a). These cross-modality data, which are generally considered to be meaningful
for data-driven deep learning algorithms, can help algorithms to better recognise and under-
stand scenes, and are therefore of great importance for people to better perceive the world as
shown as the arrow from Block 1 to Block 2 in Fig. 1 (b).

Nowadays, the emergence of large foundation models [11, 16, 18] has made the field of
artificial intelligence flourish rapidly. Among them, Segment Anything Model (SAM) [11]
proposed in early April 2023 is more of a milestone with strong segmentation performance
with good visual-grouping ability and shape sensitivity. Some works [3, 10, 27] have evalu-
ated SAM on different tasks and fine-tuned with better performance on most diverse datasets.
However, due to the limitation of three-channel input and the absence of meteorological re-
mote sensing data in SA-1B, SAM cannot be directly applied to cross modality data with
task-specific application as indicated by the arrow from Block 1* to Block 2* in Fig. 1 (b).

There are two approaches to resolve this dilemma. (1) One approach is to realize the
adaptation of the model size. For example, it can be achieved by replacing the patch-
embedding structure. However, the performance gain is lower because some of the SAM
knowledge is discarded. (2) Another approach is to allow cross-modality data as the input
of SAM. One naive way is to resample the input dimension through a convolutional mod-
ule with the cost of compressing data. Moreover, different three-channel-combined data can
be regarded as the subset of cross-modality data, and then can be sent to the model one by
one in order to integrate at the feature level. However, this method is time-consuming and
laborious, and cannot take into account the correlation between different modality data.

Based on the issues mentioned above, our goal in this paper is to obtain a model that can
not only allow the cross-modality as input under the premise of not compressing data, but
also inherit the feature extraction capabilities of existing large-scale models like SAM for
efficient and high-fidelity feature learning, that those are marked as yellow and blue stars in
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Fig. 1 (b), respectively. Therefore, we introduce the Knowledge Distillation (KD) spirit [5] to
achieve knowledge inheritance as the first stage during the process of encoder initialization
weight acquisition. However, most of the current knowledge distillation methods [17, 20, 23]
realize the transfer from the teacher model to the student model under the condition of the
same modality, thus it is difficult to realize the registration from a single modality to a cross
modality. Immediately after, an Auxiliary Branch is presented for feature alignment includ-
ing the Channel Selector and Merge Module to separate and then integrate features extracted
from different modality. In order to obtain better performance, we still adopt the method
of fine-tuning on downstream tasks as the second stage, based on the distilled student en-
coder and randomly initialized decoder. Moreover, we discuss the strengths of the proposed
method through experiments on generalization performance and resistance to size changes.

The main contributions of this paper are summarised as follows:
(1) We propose a pipeline named E2SAM for Efficiently Extending SAM’s capability

on cross-modality data through knowledge inheritance stage and fine-tuning stage of down-
stream step by step. It simultaneously allows multiple modalities data as input and has the
visual grouping ability of inherited from foundation model such as SAM.

(2) In the knowledge inheritance stage, there is no need to introduce additional data and
any annotations since the model can be trained unsupervised. Besides, an Auxiliary Branch
with a Channel Selector and a Merge Module is designed in this stage to enable the alignment
of efficient features between different modality data.

(3) The experimental results and visualizations on several datasets [7, 21] demonstrate
the effectiveness of our proposed method compared to other methods including random ini-
tialization and SAM-based fine-tuning.

2 Related Work
Applications for Cross-Modality data. Cross-modality data can be seen everywhere in
real-world scenarios [12]. Taking meteorological scenes as an example, the sensors carried
by meteorological satellites [8, 9] can simultaneously obtain cross modality data collected
varying from visible bands to near-infrared bands, that which are used to comprehensively
monitor and forecast meteorological elements. Thus the most obvious and important effort
in cross-modality data is valuable and meaningful. In addition, a large number of experi-
ments [7, 13, 22] can prove that the comprehensive use of data from multiple modalities has
superior performance compared to using only a single modality. Thus, in this paper, we hope
to allow cross-modality data as the input of large foundation model to improve performance.

Segment Anything Model. The goal of SAM [11] is to establish a large foundation
model for image segmentation based on diverse prompt, that its structure consists of an Im-
age Encoder, a Prompt Encoder and a Mask Decoder. A lot of works [10, 19, 31] have
evaluated the performance of SAM on multiple modality data through operations such as
direct prediction and normalized mask selection. For example, this paper [19] selects 6 com-
monly remote sensing datasets applied into two applications to measure SAM’s ability, and
proves that there is still a huge promote for SAM to extend more data types and applications.
Although there are also a lot of works based on SAM for secondary development, including
combining semantics correlation [31], caption [25], inpainting or generation [30] tasks, aim-
ing to cross-modality data, the methods [2] mainly focus on how to take advantage of the
existing SAM model to construct multi-modal datasets, without realizing the integration and
expansion of SAM capabilities. Thus, in this paper we want to achieve extending SAM’s
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Figure 2: A brief introduction of our proposed method. (a) Knowledge inheritance stage
based on a Teacher Model, a Student Model and an Auxiliary Branch marked in blue, green
and red color, respectively. It is feasible to achieve alignment through Alignment Constraint
selection (ACS) between feature extracted from different modality data. (b) Fine-tuning
stage on downstream application through fine-tuning based on distilled Student Model and
decoder under Task Loss constraints.

capability via knowledge inheritance on cross-modality.
Knowledge Distillation. Knowledge distillation is first proposed by Hinton et al. [5]

that these works can transfer knowledge or representations learned by a large teacher model
into a smaller student one. On this basis, a large number of response-based [17], feature-
based [20], and relation-based [23] knowledge distillation methods have been gradually de-
veloped for various applications such as semantic segmentation [6, 29], person ReID [15],
medical CT synthesis [4] and so on. However, most current distillation methods focus on
feature alignment or global constraints between the same modalities but different models,
without considering how to separate and then merge features between different modalities.
Thus in our proposed method, an Auxiliary Branch is designed to align representations from
different cross-modality data.

3 Methods
In this paper, a pipeline named E2SAM with knowledge inheritance stage and fine-tuning
stage is proposed for efficiently extending SAM’s capability on cross-modality data. A brief
introduction of our proposed method is shown in Fig. 2.

3.1 Knowledge inheritance stage based on distillation
The core of knowledge inheritance stage is to design multiple branches at the end of the
encoding module to assist in training, enabling the model to have the ability inherited from
SAM to extract features from more than three channels. During this stage, a teacher model
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and a student model are the cornerstones used to represent cross-modality data efficiently.
In order to solve feature alignment between the feature FSAM extracted by SAM using single
modality data and the feature FMC extracted by student model based on cross modality data,
an auxiliary branch is designed in this stage to separate different modality data according to
the index output of the Channel Selector and then fuse them in the Merge Module.

To accomplish this task, we pretrain the multi-channel model with the same number
of auxiliary branch as the number of channels. The input to the teacher model is random
selection of three channels from three-channel data, while the input to the student model is
the entire channel data. The features from the teacher model correspond to the outputs of
the three auxiliary branch of the student model, and we combine the outputs of these three
branches as a three-channel feature. During optimisation, this synthesised feature is used to
calculate the similarity to the output features of the teacher model.

3.1.1 Auxiliary branch

Merge Module. In order to transfer capacity from RGB-pretrained model to multi-channels
input network, we divide the feature map of student encoder output Mt into c branches which
is same size as the teacher network output Ms ∈ RB×H×W×D, and then combine them into a
single tensor through two Fully-Connection (FC) layers.

Mbranch = Ms ·W1 , (1)

Mt = Norm1(Concat(Mi
branch,M

j
branch,M

k
branch)W2) (2)

where the fully-connection layer are learnable parameter matrix W1 ∈RD×cdk , W2 ∈R3dk×D,
Mi

branch,M
j
branch,M

k
branch ∈ RB×H×W×dk where i, j,k is the index selected by the Channel Se-

lector. In this work we set dk = D/3, each Mi
branchi.e. is independent and corresponds to

a specific channel, and we utilise these branches to network optimization to improve the
overall feature extraction ability.

Share Encoder. Once we get Ms and Mt , we can begin calculating the loss and optimiz-
ing the network. In our work, we use the convolutional layer after the transformer blocks of
the teacher model to constrain the features. The output features of the student model and the
teacher model are jointly passed through this shared layer and the resulting tensors are used
to calculate the loss. The input of the network’s computed loss function is as follows:

M′
t = Norm2(Conv1(Mt)) , (3)

M′
s = Norm2(Conv1(Ms)) , (4)

Loss =Criteron(M′
s,M

′
t ) , (5)

where the parameters of the convolutional layer Conv1 are copied from the teacher model
and participate in back-propagation but do not update the parameters.

3.1.2 Alignment constraint selection

Our proposed pipeline E2SAM aims to align the features M′
s extracted from each channel

based on SAM with the features M′
t extracted from the student model. In practice, the align-

ment constraint between two features can be reduced using Mean Squared Error (MSE) or
Maximum Mean Discrepancy (MMD) [1] namely.
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MSE calculates the distance between two features in numerical terms:

Lmse =
1
n

n

∑
i=1

(yi − y′i)
2 , (6)

where y and y′ are an element in M′
s and M′

t , n = H ×W ×D.
Besides, MMD calculates the difference between the two features in the division, where

k(∗) is a Gaussian kernel,

Lmmd =
1
n2

n

∑
i=1

n

∑
j=1

k(yi,y j)−
2
n2

n

∑
i=1

n

∑
j=1

k(yi,y′j)+
1
n2

n

∑
i=1

n

∑
j=1

k(y′i,y
′
j) . (7)

3.2 Fine-tuning stage

To make the model usable in downstream tasks, a suitable decoding module must be designed
or selected to complete the fine-tuning of the downstream tasks after the model’s encoding
module has been learned. If the size of the dataset is too far from the input of the model, it
will be a great waste of computational resources. For the transformer model, the different
size of the image input only requires changing the position embedding layer to match the
input of the network. This also means that our method can be adapted to different tasks and
datasets of different sizes, and the number of model parameters can be changed flexibly with
different tasks to save computational resources.

4 Experiments

4.1 Experimental Setups

Datasets and evaluation metrics. The SFDD-H8 [7, 26] dataset for sea fog detection task is
a cross-modality data collected from Himiwari-8/9 meteorological satellite, that it includes
Visibility (VIS), Near-Infrared (NIR) and Infrared (IR) bands. The training and test dataset
contain 1128 and 680 samples at a resolution of 1024×1024, respectively. Since sea fog
areas need to be paid more attention in the image, Critical Success Index (CSI), the mean
Intersection-over-Union (mIoU), mean Accuracy (mAcc) and all Accuracy (allAcc) are se-
lected as the evaluation metrics according to existed works [7, 32].

In order to evaluate the generalization and robustness of our proposed pipeline, the cross-
modality dataset SHIFT [21] with domain discrepancy is considered since it is the largest
synthetic dataset for autonomous driving and provides the most inclusive set of annotations
and conditions. We selected 3040, 1468, 1492 samples and 1268, 596, 640 samples from
the three sub-datasets of Daytime, Dawn/dusk, and Night conditions as the training set and
test set according to the proportion of the original dataset. In SHIFT dataset, the mean
Intersection-over-Union (mIoU), mean Accuracy (mAcc) and all Accuracy (allAcc) are used
as main metrics in our experiments.

Implementation Details. All experiments are based on ViT-base model structure with
patch size 16 and learning rate of 1e−4. The models at the first stage were trained for 50
epochs using batch size as 1 on 2 NVIDIA RTX 3090s while the models at the second stage
were fine-tuning 100 epochs using batch size as 2 on 1 NVIDIA RTX 3090.
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Data Model CSI mIou mAcc allAcc

SFDD-H8

C3*-1024 Rand 34.66 65.72 72.63 96.83
SAM 57.76 (+23.10) 77.88 (+12.16) 86.27 (+13.64) 98.06 (+1.23)

C16-1024

Rand 52.18 74.86 85.40 74.86
SAM-ReSam 59.78 (+7.60) 78.88 (+4.02) 89.69 (+3.42) 98.04 (+0.43)

SAM-RePE 56.96 (+4.15) 77.46 (+2.78) 85.79 (+0.39) 98.02 (+0.41)

Ours 61.57 (+9.39) 79.91 (+5.05) 87.52 (+2.21) 98.29 (+0.66)

C3*-512 SAM 60.26 78.81 90.06 98.00
C16-512 Ours 59.92 79.01 87.78 98.15

SHIFT

C3-1024 Rand – 63.72 73.92 94.85
C3-1024 SAM – 73.15 (+9.43) 82.31 (+8.39) 96.56 (+1.71)

C4-1024 Rand – 78.17 86.44 98.04
C4-1024 Ours – 81.78 (+3.62) 89.25 (+2.81) 98.59 (+0.55)

Table 1: The experimental results of our pipeline and other methods based on SFDD-H8
and SHIFT dataset, where C* indicates that we have taken a variety of three-channel and
displayed the average values of all evaluation metrics.

4.2 Quantitative and Qualitative Results
To demonstrate the effectiveness of our proposed method, we design two sets of controlled
experiments by comparing the input of different modalities and the advantages of inheriting
the powerful capabilities of SAM. The quantitative results are as shown in Table 1, where
’Rand’ indicates random initialization and ’SAM-’ means performing different operations
based on SAM [11] as the pre-trained model.

(1) To compare the effects of different modality as inputs, experiments are designed
varying the combination of different three-channel data from multi-modal data with the same
random initialization operation, as shown in the Line ’C3*-1024 Rand’ and ’C16-1024 Rand’
in Table 1. It can be seen that due to the introduction of more modality data, the sea fog
recognition task produces a significant performance gain of 17.52 CSI points under the same
experimental conditions of model training.

(2) To demonstrate the effectiveness of our method for extending the capabilities of
SAMs, we first design a set of experiments by using the SAM model as initial weights on
three-channel data compared with random initialization, as shown in the 2rd and 3th row of
the Table 1. The experimental results prove that the powerful segmentation ability of SAM
is valuable for inheritance and extension.

In addition, we design two comparative experiments on cross-modality data, that which
are SAM-ReSam through resampling the input dimension using a convolutional module and
SAM-RePE by replacing the Patch-Embedding structure, respectively. Specifically, SAM-
ReSam uses a trainable convolutional module to downscale multi-channel data to three chan-
nels. SAM-RePE loads the SAM’s pretrained weights but modifies the first layer to adjust
multi-channel inputs. Compared these aboved methods, our proposed pipeline achieves the
best performance and is illustrated the effectiveness of our method.

The qualitative results through visualization of RGB images, Ground Truth (GT) and
different methods’ predictions based on SFDD-H8 dataset as shown in Fig 3. Compared
with the random initialization methods, the SAM-based models have better recognition per-
formance for fog areas due to the more fitting edges and significantly reduces misjudgment
areas. The qualitative results of the SHIFT dataset will be found in the Supplementary I.

Besides, for the performance of the knowledge inheritance stage, we select the distillation
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GT C3*-1024 SAMC3*-1024 Rand C16-1024 OursC16-1024 RandRGB Image

Figure 3: The qualitative results through visualization of RGB images, Ground Truth (GT)
and different methods’ predictions based on SFDD-H8 dataset.

model every 20 epochs and use the prediction results of fine-tuning on downstream task to
evaluate the inheritance quality, which is shown in the Supplementary II. We can find that
fine-tuning performance on downstream tasks is better as the knowledge inherited from SAM
is more complete.

In practice, the alignment constraint in the knowledge inheritance stage can be chosen
according to the dataset. MSE is suitable for larger datasets or datasets with many unlabelled
data. It allows the model to converge more quickly. Conversely, MMD is more appropriate
when the data is small or there is no unlabelled data. In our work, we have found that MSE
is more responsive to the learning progress of the distillation task than MMD, and the lower
the MSE, the better the performance in downstream tasks. The details of different alignment
constraint selection experiments are supplied in the Supplementary III.

Moreover, we attempt to reduce the size of the cross-modality data input to the Student
Model in knowledge distillation stage, in order to extend the application to more abundant
datasets and tasks. We have performed the above experiments on the SFDD-H8 dataset with
the resolution as 512x512 px. It can be found that although the recognition performance of
the model is slightly reduced, the performance of our method is basically the same as that
of directly using SAM fine-tuning. Thus, inheriting the segmentation ability of SAM can
effectively resist the impact of size changes.

In addition, we visualize the ratio of different channel selection on SFDD-H8 dataset
during training process as shown in Fig 4 (a), where the abscissa represents the average
probability of being selected and the ordinate represents the number of iterations. Although
the selection ratio of different channels fluctuates to a certain extent in the early stage of
training, the probability of selection of different channels is basically equal throughout the
training process, and they are all maintained around the value of 1/16.
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Model All Daytime Dawn/dusk Night
All-C4 Rand 78.17 78.00 79.41 77.20
All-C4 Ours 81.78 (+3.62) 81.58 (+3.58) 82.51 (+3.10) 81.12 (+3.92)

Daytime-C4 Rand 76.03 73.50 63.62 55.05
Daytime-C4 Ours 76.57 (+0.54) 77.86 (+4.18) 77.52 (+13.90) 73.50 (+18.45)

Dawn/dusk-C4 Rand 61.82 60.25 63.78 62.88
Dawn/dusk-C4 Ours 73.58 (+11.76) 73.01 (+12.76) 74.24 (+10.46) 73.61 (+10.73)

Night-C4 Rand 52.88 43.63 59.36 64.58
Night-C4 Ours 72.79 (+19.91) 71.49 (+27.86) 73.01 (+13.38) 74.21 (+9.63)

Table 2: Generalization performance experimental results based on SHIFT dataset. The text
in blue color indicate the results directly test on other sub-dataset.

(a) (b1) (b2)

Figure 4: (a) The ratio of different channel selected on SFDD-H8 dataset during training
process, that which is shown the probability of different channels being selected is nearly
equal. (b) t-SNE visualizations for the aligned feature Fstu from rand initialization model
and our pipeline, where red, blue and green numbers represent daytime, dawn/dusk and
night samples, respectively.

4.3 Experiments for generalization ability

In order to explore the advantages of the ability based on SAM extending, we attempt to eval-
uate the model generalization performance on the SHIFT dataset with domain differences
constructed for unsupervised domain adaptation task, mainly selecting three sub-datasets:
daytime, dawn/dusk, and night. We leverage both models with random initialization and our
proposed pipeline, trained on a single sub-dataset and directly tested on other datasets. There
are the results of experiments in Table 2. The experimental results show that compared with
the random initialization method, we can better adapt to the data of various distributions
through the knowledge distillation of SAM.

Besides, the t-SNE [24] visualizations for the aligned feature Fstu between rand initial-
ization model and our proposed pipeline are as shown in Fig 4 (b1) and (b2). The red points
represent daytime data in SHIFT while the blue points represent night samples. We can
find that the distribution of data points of different colors in b2 is more confusing than that
in b1. Thus, we can draw a conclusion the model from our proposed pipeline has better
generalization performance in dealing with data with domain differences.
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5 Conclusion
In this paper, in order to realize the capability expansion of SAM based on cross-modality
data, we propose a universal two-stages pipeline, which is the knowledge inheritance stage
for inheriting SAM capability, and the fine-tuning stage for better downstream adaptation.
An auxiliary branch including a Channel Selector and Merge Module is designed to separate
different cross-modality to achieve feature alignment. It is worth mentioning that we do
not need to lead into additional data and labels during the knowledge inheritance process,
reducing the cost of collecting and annotating data. Through meticulous experiments and
visualization results, it can be demonstrated that our method can efficiently inherit the ability
of SAM on cross-modality data without compressing data.

In future work, our method also can be applied not only cross-modality data, but also var-
ious computer vision tasks that which need fusion of diverse data, such as change detection,
temporal optical flow and other tasks.
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