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Abstract
Hyperbolic graph convolutional networks have been successfully applied to represent

complex graph data structures. However, optimization on Riemannian manifolds is non-
trivial thus most of the existing hyperbolic networks build the network operations on the
tangent space of the manifold, which is a Euclidean local approximation. This distorts the
learnt features and limits the representation capacity of the network. In this work, we in-
troduce a fully hyperbolic graph convolutional network (GCN), referred to as SRBGCN,
which performs neural computations such as feature transformation and aggregation di-
rectly on the manifold, using manifold-preserving Lorentz transformations that include
spatial rotation (SR) and boost (B) operations. Experiments conducted on static graph
datasets for node classification and link prediction tasks validate the performance of the
proposed method.

1 Introduction
Graph convolutional networks (GCNs) were proposed to make use of the graph topology
and model the spatial relationship between graph nodes, hence generalizing the convolution
operation to graph data [6, 11]. Initially, the proposed models were built in the Euclidean
space [10, 14, 22, 26, 29] which is not the natural space for embedding graph data and
produces distorted feature representations [2, 17]. Hyperbolic spaces are more suitable for
representing graph data as the space volume is increasing exponentially which is perfect for
embedding tree-like data structures that also grow exponentially with the depth of the tree
whereas the space grows polynomially for the Euclidean space. Motivated by this, recent
works built GCNs in the hyperbolic space to take advantage of the hyperbolic geometry
properties [2, 13]. The hyperbolic graph convolutional networks (HGCNs) achieved better
performance than the corresponding Euclidean ones which shows the effectiveness of using
the hyperbolic space to model hierarchical data structures and graph data.
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However, these works performed the network operations in the tangent space of the man-
ifold which is a Euclidean local approximation to the manifold at a point. The Euclidean
network operations such as feature transformation and feature aggregation are not manifold-
preserving and can not be directly applied on the manifold, that is why these methods resort
to the tangent space. However, using a tangent space may limit the representation capa-
bilities of the hyperbolic networks which is caused by distortion specially as most of these
works used the tangent space at the origin.

In this work, we propose a full manifold-preserving Lorentz feature transformations us-
ing both boost and spatial rotation operations to build SRBGCN fully in the hyperbolic space
without resorting to the tangent space. Experiments conducted on node classification and
link prediction tasks on static graph datasets show the effectiveness of our proposed method.
SRBGCN has a good physical interpretation and can be used to build hyperbolic networks
to produce less distorted features.

2 Related Work

Chami et al. [2] proposed HGCNs where networks operations are performed in the tangent
space of the manifold. They were able to achieve better performance than the Euclidean
analogs on node classification and link prediction tasks. Concurrently to this work, Liu et al.
[13] proposed the Hyperbolic Graph Neural Networks (HGNNs) which performed well on
graph classification tasks. Several models have been proposed using different hyperbolic
models especially the Lorentz and the Poincaré models for different other tasks such as
image segmentation [9], word embeddings [23], human action recognition [16, 18], text
classification [34], machine translation [9, 21], knowledge graph embeddings [3] and so on.
Zhu et al. [33] built a two-stream network for Euclidean and hyperbolic features and used
an interaction module to enhance the learnt feature representations in the two geometries.
Similarly, Xu et al. [28] uses a two-stream network and adds joint layers to embed complex
structures using the two geometries. Peng et al. [19] presented a comprehensive survey for
hyperbolic networks.

Zhang et al. [31] rebuilt the network operations in HGCNs to guarantee that the learnt
features follow the hyperbolic geometry and used the Lorentz centroid [12, 20] for aggre-
gating the features. Zhang et al. [30] used attention modules in the hyperbolic space to
build hyperbolic networks. Dai et al. [5] built a hyperbolic network by imposing the or-
thogonal constraint on a sub-matrix of the transformation matrix (subspace transformation).
They used the same number of learnable parameters for the feature transformation step as
the networks built on the tangent space, however the orthogonal constraint ensured that the
transformation is manifold-preserving and they did not need to learn the parameters on the
tangent space. They used the Einstein midpoint method defined in the Klein model [24]
for the feature aggregation step. Chen et al. [4] used a normalization procedure to keep the
points on the manifold. The idea is to learn a linear transformation then to normalize the
vector to lie on the manifold. In this work, we introduce a full space manifold-preserving
transformation matrix in SRBGCN without the need for normalization to keep the points on
the manifold. Moreover, our method is more physically interpretable and also can be easily
extended to spatio-temporal or dynamic graphs.
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3 Background

3.1 Graph Convolutional Networks

A static graph G = {V,E} where V = {v1,v2, . . . ,vn} is the set of n graph nodes with E
representing the set of graph edges. The edge set E can be encoded in an adjacency matrix
A ∈ Rn×n where Ai, j ∈ [0,1] if there is a link between vi and v j otherwise, Ai, j = 0. Each
node vi has a feature vector in the Euclidean space xi ∈ Rd of dimension d and X is the set of
features for all the n nodes in the graph. The feature transformation step in GCNs is:

Yl = XlWl +Bl (1)

where Wl is the weight matrix corresponding to the input Xl at layer l and Bl is the bias trans-
lation matrix. The weight matrix acts as a linear transformer whereas the optional bias matrix
makes the transformation affine. Then the feature aggregation from neighboring nodes step
with nonlinear activation applied can be formulated as:

Xl+1 = σ(D−1/2(A+ I)D−1/2Yl) (2)

where σ is an activation function. D−1/2(A+ I)D−1/2 is the normalized adjacency matrix
to normalize nodes weights in the neighboring set. D is a diagonal matrix where Di,i =
1+∑ j Ai, j and I is the identity matrix to keep identity features. Xl+1 represents the output
of layer l which can be the input to the next layer l+1. A GCN is built by stacking a number
of those layers. Clearly, the linear transformation matrix W can not be used in hyperbolic
networks as this unconstrained transformation matrix will not keep points on the manifold
i.e. not manifold preserving transformations. The same applies for the aggregation step as
the Euclidean mean operation is not manifold-preserving.

3.2 Hyperbolic Rotation/ Squeeze Mapping

A hyperbolic geometry review is provided in Appendix A in the supplementary material to
make the paper self-contained. A regular rotation is a linear map that preserves the Euclidean
inner product ⟨., .⟩E : Rd ×Rd → R where ⟨x,y⟩E := ∑

d−1
i=0 xiyi whereas a hyperbolic rotation

or a squeeze mapping is a linear map that preserves the Lorentz-Minkowski inner product
⟨., .⟩L : Rd+1 × Rd+1 → R. Regular rotations can be realized by trigonometric functions
whereas hyperbolic rotations can be realized by hyperbolic functions which are related to
their trigonometric counterparts through complex angles. Intuitively, regular rotations can
be thought of as a regular rotation to the axes whereas hyperbolic rotations are rotations in the
hyperbolic sense and can be thought of as squeezing the axes (see Figure 1 for visualization),
hence the name. The following matrix is a squeeze mapping that keeps the points rotating
on a hyperbola (H1,K) which is a 1D hyperboloid with a −1/K constant negative curvature:

L(ω) =

[
coshω sinhω

sinhω coshω

]
(3)

where ω is the hyperbolic rotation parameter.
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Figure 1: Regular/ circular rotation vs hyperbolic rotation/ squeeze mapping. The axes and
the points are color coded for illustration purposes.

4 Spatial Rotation Boost Graph Convolutional Network
In this part, we show how to build Spatial Rotation Boost Graph Convolutional Network
(SRBGCN) fully in the hyperbolic space. A manifold-preserving Lorentz transformation is
used for feature transformation that includes the boost and spatial rotation operations.

4.1 Lorentz Transformations
The linear transformation matrix used in Equation 1 for Euclidean features can not be used
directly for hyperbolic features as this linear transformation unconstrained matrix is not
manifold-preserving for the hyperbolic space. Instead, a Lorentz transformation matrix Λ

should satisfy the following constraint:

Λ
T gLΛ = gL (4)

where Λ∈R(d+1)×(d+1),T is the transpose operation of the matrix and gL = diag(−1,1, . . . ,1)
is a diagonal matrix that represents the Riemannian metric for the hyperbolic manifold. A
Lorentz transformation matrix is a matrix that is orthogonal with respect to the Minkowski
metric gL and belongs to the Lorentz group. When Λ0

0 is positive (the first element in the
transformation matrix), the mapping remains on the upper half of the hyperboloid. Taking
the determinant of this equation, we obtain (detΛ)2 = 1 i.e. (detΛ) = ±1. The set of ma-
trices Λ with (detΛ) = 1 and Λ0

0 > 0 are referred to as the proper Lorentz group SO(d,1)+.
The Lorentz transformation can be decomposed into a boost and a spatial rotation operations
[7, 15] by polar decomposition. The boost matrix is symmetric semi-positive and the spa-
tial rotation matrix is unitary. The spatial rotation operation rotates the spatial coordinates
and the boost operation moves a point along the time coordinate without rotating the spatial
coordinates.

4.1.1 Spatial Rotation

Intuitively, the subspace manifold at a given level x̂0 ∈ x0, x̂0 > K is a (d − 1)-dimensional
sphere for a d-dimensional hyperboloid since ∑

d
i=1 x2

i = x̂2
0−K is a sphere for any value x̂0 >

K. Hence, a regular rotation transformation matrix represents the spatial rotation operation
in this subspace manifold.
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The spatial rotation matrix is given by:

P =

[
1 0
0 Q

]
(d+1)×(d+1)

(5)

where Q belongs to the special orthogonal group SO(d) i.e. QTQ = I. It can easily verified
that P is a Lorentz transformation matrix which satisfies Equation 4.

The rotation matrix Q in Equation 5 can be realized using different representations such
as the basic rotations using Trigonometric functions (d degrees of freedom in this case), axis
and angle (d+1 degrees of freedom) or using the Gram-Schmidt orthonormalization process.
We enforce the orthogonalization constraint on the spatial rotation feature transformation
matrix as the angles in the other two methods form a discontinuous search space [32] and
also there are singularities in this search space (gimbal lock problem).

4.1.2 Boost

The boost operation can be realized using hyperbolic rotation or squeeze mapping. Since the
squeeze mapping matrix in Equation 3 satisfies the constraint 4, we can use such transforma-
tion matrix in the hyperbolic feature transformation step. A d basic hyperbolic rotations as in
Equation 3 for each spatial axis with the time axis can be used to realize the boost operation.
A more compact hyperbolic rotation representation using a hyperbolic rotation axis nd ∈ Rd

and a hyperbolic rotation parameter ω (regular circular rotation can be realized also using
an axis and an angle for rotation) in a d-dimensional hyperboloid can be represented by the
transformation matrix:

L =

[
coshω (sinhω)nT

d
(sinhω)nd I− (1− coshω)nd ⊗nd

]
(d+1)×(d+1)

(6)

where ⊗ represents the outer product operation. The hyperbolic rotation plane is the plane
parallel to the plane spanned by the normal vector nd (a normalized linear combination of the
spatial axes) and the axis x0 (referred to as the time axis in special relativity). Note that when
n is a canonical basis vector, the resulting matrix will be similar to the one in Equation 3 after
padding with zeros for other canonical spatial basis vectors. The proofs for the derivation of
P and L are provided in Appendix B in the supplementary material.

4.2 Feature Transformation and Aggregation in SRBGCN
Since L and P represent the boost and spatial rotation operations, respectively. We use
the following Lorentz transformation matrix as the feature transformation matrix for the
hyperbolic space:

M = PL (7)

To show that M is a Lorentz transformation matrix: (PL)T gL(PL) = LT (PT gLP)L =
LT gLL = gL since both P and L are Lorentz transformation matrices as shown before. Fig-
ure 2 shows a visualization comparison between different methods. SRBGCN is fully hy-
perbolic as the boost and spatial rotation operations are manifold-preserving transformation.
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Figure 2: Left: the transformation step in the methods that rely on the tangent space of the
manifold. Middle: the normalization method used for feature transformation in [4]. Right:
our transformation method using a circular regular rotation and a hyperbolic rotation.

The feature transformation step in SRBGCN in contrast to the Euclidean one in Equation
1 can then be formulated as:

Yl
h = Xl

hMl = Xl
hPlLl (8)

where the subscript h represents features on the hyperboloid. To get the initial features
representation on the hyperboloid, the exponential map at the origin is used to map the
features from the tangent space at the origin to the hyperboloid.

For the feature aggregation step, we use the Lorentz centroid [12, 20] which minimizes
the squared Lorentzian distance. It can be computed as:

xh,l+1
i =

√
K

∑ j∈NS(i) wi, jy
h,l
j

|∥∑ j∈NS(i) wi, jy
h,l
j ∥L|

(9)

where −1/K is the constant negative curvature (K > 0) ,NS(i) is the neighbor set for node i
which includes the node itself and wi, j is the weight between nodes i and j in the normalized
adjacency matrix. Figure 3 shows a visualization of different aggregation techniques used in
hyperbolic networks.

4.3 Loss Functions in SRBGCN
The margin ranking loss is defined as:

Loss = max(d − d̂ +m,0) (10)

where m is the non-negative margin hyperparameter. For node classification tasks where the
goal is to predict the label of a given node in a graph, d is the distance between a node and
its correct class whereas d̂ is distance between the node and wrong class. We calculate the
hyperbolic distances between the node and a set of trainable centroids on the manifold and
feed the distances vector to a softmax classifier for node classification. For link prediction
tasks where the goal is to predict the existence of links between graph nodes, cross-entropy
is used as the loss function. We use the Fermi-Dirac decoder [23] to calculate the probability
for link existence between nodes.
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Tangent space methods

Lorentz centroid

Figure 3: Left: aggregation step in the tangent space methods. Right: the Lorentz centroid.

5 Experiments
This section presents the experiments which are performed on four publicly available datasets.
The datasets description, evaluation metrics and the evaluation results with comparison to
other methods are presented in the following subsections.

5.1 Datasets and Evaluation Metrics
Experiments are conducted on four publicly available datasets: Disease, Airport, PubMed
and Cora. The Disease dataset is constructed by using the SIR disease spreading model [1]
and the label indicates whether the node is infected or not. In the Airport dataset, the nodes
represent airports with the population of the city as the label and the edges represents the
flight routes between different cities. PubMed and Cora are citation network datasets where
the nodes representing the scientific papers with the academic area as the label and the edges
representing the existence of citations between papers.

F1 score is used as the evaluation metric for node classification tasks and the Area Under
Curve (AUC) as the evaluation metric for link prediction tasks. 10 independent runs are
performed and the mean and the standard deviation for each experiment are reported with
the same data splits as in [8] that were used in previous works.

5.2 Evaluation Results and Comparisons with other Graph Methods
Table 1 shows the performance of different methods including Euclidean and hyperbolic
ones. The Euclidean methods include GCN [11], GAT [25], SAGE [10] and SGC [27].
HGCN [2], HAT [30], LGCN [31] and HYPONET [4] are the hyperbolic methods used in
the comparison. The hyperbolic methods outperform the Euclidean ones specially for the
tree-like Disease dataset which has a zero δ -hyperbolicity (Gromovs hyperbolicity). This
proves the effectiveness of using the hyperbolic space to model graph data specially graphs
with small δ -hyperbolicity. As shown in the table, SRBGCN outperforms all other methods
for most of the benchmarks. Even for the other benchmarks that SRBGCN do not get the
best performance using a latent representation of 16, our method can still get comparable
results that are much better than other methods in an efficient way. This is a clear evidence
of the advantage of learning the graph features directly in the hyperbolic space. It is worth
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Dataset Disease (δ = 0) Airport (δ = 1) PubMed (δ = 3.5) Cora (δ = 11)

Method LP NC LP NC LP NC LP NC

GCN 64.7±0.5 69.7±0.4 89.3±0.4 81.4±0.6 91.1±0.5 78.1±0.2 90.4±0.2 81.3±0.3
GAT 69.8±0.3 70.4±0.4 90.5±0.3 81.5±0.3 91.2±0.1 79.0±0.3 93.7±0.1 83.0±0.7
SAGE 65.9±0.3 69.1±0.6 90.4±0.5 82.1±0.5 86.2±1.0 77.4±2.2 85.5±0.6 77.9±2.4
SGC 65.1±0.2 69.5±0.2 89.8±0.3 80.6±0.1 94.1±0.0 78.9±0.0 91.5±0.1 81.0±0.1

HGCN 91.2±0.6 82.8±0.8 96.4±0.1 90.6±0.2 96.1±0.2 78.4±0.4 93.1±0.4 81.3±0.6
HAT 91.8±0.5 83.6±0.9 - - 96.0±0.3 78.6±0.5 93.0±0.3 83.1±0.6
LGCN 96.6±0.6 84.4±0.8 96.0±0.6 90.9±1.7 96.8±0.1 78.6±0.7 93.6±0.3 83.3±0.7
HYPONET 96.8±0.4 96.0±1.0 97.3±0.3 90.9±1.4 95.8±0.2 78.0±1.0 93.6±0.3 80.2±1.3
SRBGCN 97.3±0.2 93.0±0.4 97.3±0.0 91.6±0.9 97.2±0.0 79.1±0.3 95.2±0.0 82.9±0.2

E
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n
H

yb
er
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Table 1: Evaluation results and comparison with other methods. ROC AUC results are
reported for Link Prediction (LP) tasks and F1 scores are reported for Node Classification
(NC) tasks. The latent feature representation dimension is set to 16 for fair comparison.

Dataset dim GAT HGCN HAT LGCN HYPONET SRBGCN

Disease
4
8

49.4±6.3
76.7±0.7

73.2±6.5
81.5±1.3

-
82.3±1.2

87.4±3.1
82.9±1.2

91.0±3.8
92.9±1.0

93.1±0.3
93.3±0.4

Cora 64 83.1±0.6 82.1±0.7 83.1±0.5 83.5±0.5 81.5±0.9 83.8±0.3

Table 2: Comparison between different methods using different dimensions (dim) on the
Disease and Cora datasets for the node classification task.

mentioning that HAT and LGCN methods use techniques such as attention modules to im-
prove the performance. Our method is simple yet very effective. For the disease dataset that
has a tree structure with depth of 4, our method achieved a very good performance using
latent feature representation dimension of 4 or 8 compared to other methods which shows
the effectiveness of using the intrinsic transformations on specially tree-like datasets. This
in turn can help in building more compact models for such datasets. For larger and more
complicated datasets with higher δ -hyperbolicity such as Cora dataset, our method achieved
better performance than other methods using higher dimensional latent space to embed the
features for such more complicated datasets. Table 2 shows this comparison between the
different methods.

5.3 Ablation study
We present an ablation study to show the effectiveness of using both the boost operation
and the spatial rotation operation which are the decomposition of the Lorentz transformation
matrix. Table 3 shows the performance comparison using the boost operation Yl

h =Xl
hLl , the

spatial rotation operation Yl
h =Xl

hPl and using the full Lorentz transformation Yl
h =Xl

hPlLl .
Using both the boost and the spatial rotation operations i.e. the full Lorentz transformation
usually gives better performance and increases the model expressiveness of the hyperbolic
network specially for the node classification tasks with deeper networks. For a model with
a d-dimensional latent representation, the spatial rotation operation has d ×d parameters (a
quadratic operation) whereas the boost has d + 1 parameters (a linear operation). So, the
spatial rotation operation can be considered to contribute more to the performance of the
model, which can be seen in the ablation study. It can be noticed that for the link prediction
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Dataset Disease Airport PubMed Cora

Transformation LP NC LP NC LP NC LP NC

B only
Yl

h = Xl
hLl 97.2±0.3 91.4±1.9 94.4±2.8 87.3±1.4 96.9±0.1 76.6±1.7 94.1±0.2 81.7±0.7

SR only
Yl

h = Xl
hPl 97.2±0.3 92.1±0.6 97.3±0.0 89.7±1.4 97.2±0.0 78.8±0.4 95.2±0.0 81.4±0.4

SR and B
Yl

h = Xl
hPlLl 97.3±0.2 93.3±0.4 96.8 ±0.0 91.6±0.9 97.2±0.0 79.1±0.3 94.3±0.0 83.8±0.3

Table 3: Ablation study on different datasets to show the effect of using only the spatial
rotation (SR) transformation operation, the boost (B) operation and both the spatial rotation
and the boost (SR and B) operations.

Dataset GCN HGCN SRBGCN

Disease 67.92±54.91 1.04±0.55 0.35±0.03
Airport 175.02±216.90 1.39±0.64 0.27±0.00

Table 4: Distortion values for Disease and Airport datasets.

tasks, the boost operation can slightly lower the performance as the models for the link
prediction tasks are usually shallow models, not as deep as the case for the node classification
tasks, which seems to slightly benefit from such operation.

5.4 Distortion

The average distortion can be computed as: 1
n2 ∑

n
i, j
(
(

nedi, j
ngdi, j

)2−1
)2 where nedi, j is the normal-

ized embedding distance between nodes i and j and ngdi, j is the normalized graph distance
between them. The distortion reflects how close the structure of the graph is preserved in
the graph embeddings and the closer the value to zero, the less-distorted the features. Ta-
ble 4 shows the distortion using GCN, HGCN and SRBGCN methods on the Disease and
Airport datasets. The Euclidean GCN method introduces a lot of distortion compared to the
hyperbolic ones. At the same time, our method has less distortion than the HGCN method
which resorts to the tangent space to perform network operations. This shows the effec-
tiveness of using the intrinsic Lorentz transformations to build fully hyperbolic networks.
Figure 4 shows the initial embeddings and the learnt embeddings in the last layer using these
methods on the whole Disease dataset. For the link prediction task (top row), it is visually
clear that the hyperbolic methods preserve the structure of the tree dataset better than the
Euclidean method. Moreover, the hierarchies learnt from our method is much clearer than
the one learnt by tangent-space methods. The visualizations and distortion values show that
our method generates higher quality features with less distortion. The ability to build better
features with less distortion leads to higher performance which shows the superiority of our
method. Similarly, for the node classification task (bottom row), our method separates the 2
classes of the Disease dataset more efficiently.



10 MOSTAFA, PENG, ZHAO: TANGENT SPACE-FREE LORENTZ NETWORK

(a) Initial embeddings (b) GCN ( c) HGCN (d) Ours

Figure 4: Initial and learnt embeddings using different methods on the whole Disease dataset
for the link prediction (top row) and the node classification task (bottom row).

6 Conclusion
In this work, we presented a tangent-free full Lorentz transformation layer using the polar
decomposition of the Lorentz transformation into both the boost operation and the spatial
rotation operation. Our results show the effectiveness of using hyperbolic space to model
graph data and to learn less distorted useful features which can be used to build more ex-
pressive and compact models for graph learning tasks. We hope this work can be extended
to cover and build a unified framework that include other geometries such as Euclidean and
Spherical spaces to match the geometry of more complicated structures.
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