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Abstract

Few-shot classification and segmentation model realizes classification and segmenta-
tion by learning the feature correlation between a small number of samples. The lack
of correlation learning between samples and the similarity of target foreground and
background boundary pixels lead to segmentation errors, we propose Few-Shot Clas-
sification and Segmentation combining Bi-directional Feature Correlation and Bound-
ary constraint(BFC-BL). Firstly, the correlation between query set and support set is
calculated by cosine similarity to construct a 4D tensor. Then, a cross-scale bidirec-
tional feature correlation fusion module (BFCP) is designed and embedded into the
encoder structure to perform the interactive fusion of deep semantic correlation and
shallow spatial correlation, while a bounding-constrained loss function is introduced to
guide the model to learn the boundary information of the target foreground and back-
ground. Finally, a multi-level weight ratio loss function was constructed to make the
network converge faster and generalize better. The experimental results show that com-
pared with the ASNet method, the classification accuracy of the proposed method is
increased by 1.7% and 1.8%, and the segmentation mean intersection over union ratio
is increased by 1.3% and 1.4% on the Pascal − 5i. The code is publicly available at:
https://github.com/XIAO1HAI/BFC-BL.

1 Introduction
In the era of big data and rapid technological advancements, artificial intelligence (AI) has
found applications in various fields such as computer vision [13, 17], natural language pro-
cessing [9], and medical imaging [26]. Deep learning, as a representative AI technique [21],
has achieved remarkable success. However, the widespread adoption of deep learning comes
with challenges. It requires complex model design, large-scale labeled training data, and
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high-performance computing infrastructure for accurate and efficient training. Moreover, the
cost of data labeling and the limited availability of extensive datasets pose difficulties, lead-
ing to overfitting and reduced generalization in conventional deep learning models [6, 24].
Applying such models to scenarios with limited data becomes challenging. Nevertheless, the
fundamental goal of AI is to mimic human intelligence, where humans can learn new knowl-
edge and concepts from limited guidance and make accurate judgments. This ability aligns
with the concept of few-shot learning, which aims to train models using a small number of
samples [7, 8, 10, 12, 23]. Few-shot learning methods have gained attention and become a
research hotspot in recent years.

In the field of computer vision [1, 3, 4, 14, 18], several methods have been proposed
for Few-Shot Classification and Segmentation (FS-CS) [2, 16, 25]. These methods address
the challenge of accurately classifying and segmenting multiple targets, even when the target
category is missing in the query set. Most of these methods use metric meta-learning to ex-
tract and fuse features from the support set. In the fusion stage, the commonly used feature
pyramid network[5, 11, 19] fuses shallow features and deep features. However, they often
lack interaction between fine-grained semantic information and global spatial information.
Additionally, the segmentation results often suffer from poor boundary segmentation due to
the lack of learning boundary pixel semantic information. To overcome these challenges,
we propose a few-shot classification and segmentation approach that combines bidirectional
feature correlation and boundary constraint. Our method aims to improve the fusion of se-
mantic and spatial information and enhance the segmentation accuracy at object boundaries.
The main contributions of this paper are summarized as follows：

(1) This paper proposes bidirectional feature fusion for few-shot classification and seg-
mentation. The cross-scale bidirectional semantic correlation fusion module (BFCP) inte-
grates deep semantic and shallow spatial correlation measurements, facilitating rapid learn-
ing of the correlation between support and query samples.

(2) To enhance the segmentation performance of the model, we introduce a bound-
ary constraint function, which is integrated with the region loss to construct a multi-level
weight ratio loss function. This loss function guides the model to learn boundary informa-
tion, thereby improving its ability to accurately segment target boundary pixels.

(3) By leveraging the two-way high-level semantic correlation between support and
query samples, low-level spatial correlation, and the boundary constraints, we construct an
end-to-end few-shot classification and segmentation network model. This model enables
rapid and effective few-shot classification and segmentation, providing significant advance-
ments in the field.

2 Problem Definition

The training samples of Few-shot Classification and Segmentation (FS-CS) usually contain
N categories and each class has K samples, which is called N-way K-shot. First, assume that
the target class set is Cs, and the data set is divided into a training set Dtrain and a test set
Dtest . Every time training will be randomly selected from a training set K sample Is in each
category and tag Ms as Support set S =

{
Ii
s,M

i
s
∣∣Mi

s ∈Cs
}NK

i , The label Mi
s contains both

classification labels (weak labels) and segmentation labels (strong labels). After selecting
from a training set and support set is not the same sample Iq and label Mq as a Query set
Q =

{
Ii
q,M

i
q
∣∣Mi

q ∈Cs
}NK

i , including segmentation tags binary matrix that is the true seg-
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mentation mask. For the query set image Iq, we aim to identify objects ŷc ∈ RN of multiple
categories and an accurate segmentation mask Ys ∈ RH×W×(N+1) of classes.

3 Model Architecture

We propose combining Bi-directional Feature Correlation and Boundary constraint Loss
(BFC-BL) model is an encoder-decoder structure, and the overall architecture diagram is
shown in Figure 1.

Figure 1: Overall architecture of the BFC-BL model.The model is mainly divided into three
stages: (1) ResNet50 is used as the backbone network for feature extraction. This process
involves computing the correlation between the query and support samples, resulting in a
4D tensor constructed using cosine similarity. (2) A cross-scale bidirectional feature correla-
tion fusion module (BFCP) is designed and embedded into the encoder structure to perform
an interactive fusion of deep semantic correlation and shallow spatial correlation features.
(3) Utilizing the context information obtained from the encoder, a 2D decoder decodes the
learned encoder knowledge and generates the final output.

3.1 Semantic correlation construction

Given the input support set image Is and its corresponding mask information Ms, as well as
the query set image Iq, represented as Is, Iq ∈ R3×H×W , we can obtain m layers of support
feature maps denoted as Fs and query feature maps denoted as Fq. Here, m represents the
number of layers in the bottleneck of the ResNet50 architecture. Furthermore, for each inter-
mediate query feature map Fs in each layer, a Hadamard dot product operation is performed
with the label mask Ms, as depicted in Equation 1 [12]. This operation helps calibrate the
pixel positions of the true target class through the mask.

F̂s = Fs ⊙BI(Ms) , (1)

Where Fs ∈ RC×H×W , Ms ∈ {0,1}H×W , ⊙ is the Hadamard dot product, BI(·) is a bilinear
interpolation function that interpolates the input mask to the size of the feature map, followed
by an expansion along the channel dimensions such that RH×W → RC×H×W . Afterward,
the cosine similarity calculation is performed on the feature map acquired at each layer
to construct the correlation between the query and the support, and finally form the 4D
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correlation tensor Clt ∈ Hq ×Wq ×Hs ×Ws, thus completing the construction of semantic
correlation, the calculation Equation is:

Clt (Iq, Is) = ReLu

(
Fq (Iq) · F̂s (Is)∥∥Fq (Iq)

∥∥∥∥F̂s (Is)
∥∥
)
, (2)

The correlation tensor has dimensions Hq×Wq to represent the query dimension, and Hs×Ws
to represent the support dimension.

The m-layer support and query intermediate feature similarity calculations are formed
L pairs of feature correlation tensors (L=m), L pairs of correlation tensors are divided into
G groups according to the size of the spatial dimension, and are spliced into a correlation
tensor along the new dimension,{Clt(g) |Clt(g) ∈Cin ×Hq ×Wq ×Hs ×Ws

}G
g , the size of

Cin depending on the number of correlation tensors of the g-th group, Hq ×Wq ×Hs ×Ws is
the spatial resolution of the g-th layer pyramid correlation.

3.2 BFCP module for bidirectional feature correlation fusion

Semantic features play a crucial role in guiding the learning process of network models, and
their fusion is a key aspect. In this paper, we optimize and apply Bi-FPN[19] to few-shot
classification and segmentation tasks for the first time. We propose a bidirectional feature
correlation fusion module, called BFCP, for integrating the semantic correlation between the
support and query images, as illustrated in Figure 2. The BFCP module effectively captures
the bidirectional feature correlation within the semantic and spatial information interaction.
To streamline the network and reduce computational overhead, we eliminate redundant in-
puts from the same compressed network layer and the input path from the low-level com-
pressed network to the high-level. This ensures the effectiveness of the fusion process while
reducing computational costs for the same correlation. Additionally, the BFCP module fa-
cilitates the integration of semantic feature correlation with the encoding stage. Initially, the
correlation 4D tensor is input to the attention compression network, which performs feature
compression and target positioning while preserving crucial correlation connections. The
output of the compression network is then fused using the BFCP module and input into the
encoder. Through the encoding stage, the final model effectively learns target-specific local
and global context feature correlation information, leading to more accurate classification
and segmentation of the target object during the decoding stage.

3.3 Multi-head Attention Compression Networks

To analyze the global context of each support image and preserve query dimension features,
we reshape the correlation tensor into a matrix of size Hq×Wq. This matrix retains the query
dimension while extracting and representing support dimension features. Each element xq in
the correlation matrix corresponds to a support correlation, denoted as Clt(xq)∈RHs×Ws×Cin .
This support correlation matrix is then embedded into the Query, Key, and Value components
of the attention mechanism [21].

Firstly, the matrix multiplication of Query and Key is calculated to obtain the weight
coefficient corresponding to the Key feature representation of each key, which is normalized
by the softmax function. Then the foreground mask Ys is used to mark the key pixels in the
foreground with 0 and 1 so that more attention is paid to the foreground. The calculation
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Figure 2: BFCP module for bidirectional feature correlation fusion. the green node repre-
sents the feature map of each layer of feature extraction, the blue node represents the feature
processing layer (such as the attention layer), and the line of each node represents the feature
fusion path.

Equation is as follows:
A = QKT ∈ RH′

s×W ′
s×H′

s×W ′
s . (3)

A
(

pq, pk
)
=

exp(A(pq, pk)Ys (pk))

∑p′k
exp
(
A
(

pq,p′k
)

Ys
(

p′k
)) , (4)

In Eq. 4,

Ys (pk) =

{
1, pk ∈ Fg

−∞, pk /∈ Fg
, (5)

Where Fg is the foreground and Y (pk) is 1, if pk is the foreground pixel; Otherwise, it is −∞.
Next, the attention coefficient obtained from the foreground mask attention and the

Value are utilized for the weighted summation of the aggregated embedding values. The
equation representing this process is as follows:

Os
A = AV ∈ RH′

s×W′
s×Chd , (6)

To preserve the integrity of the network and prevent degradation, the query dimension
feature correlation output undergoes a residual module using the original input. When the
input and output dimensions do not match, the input is optionally fed to the convolutional
layer WI , and ϕ(·) is the activation function.

Os
o = ϕ (Wo (Os

A)+WI (Os)) ∈ RH′
s×W′

s×Cout . (7)

Finally, the input is passed through the MLP layer to obtain the output, as follows:

Os′ = ϕ (WFF (Os
o)+Os

o) ∈ RH′
s×W′

s×Cout . (8)

3.4 Construction of Boundary Constraints
For objects with similar boundaries between the foreground and the background, it is easy
to classify the foreground into the background, resulting in classification errors and subpar
segmentation results. Hence, the learning of boundary information plays a crucial role in
semantic segmentation. In our approach, we introduce a boundary constraint function that
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measures distances in the contour space (specifically, the boundary of the target area) and in-
tegrates them along the region boundaries. This enables comprehensive learning of the target
subject while placing additional emphasis on the learning of boundary features. Ultimately,
we construct a loss function using multi-level weight ratios.

Figure 3: Diagram of the boundary loss function calculation. ∂G is the set of all points on the
boundary of the ground truth region G, ∂R is the set of boundary points of the segmentation
region R output by the network model, DG(q) = ∥y∂R(p)− p∥2, DG denotes the distance
map concerning the boundary, ∥·∥ denotes the L2 norm, and p and y∂R(p) denote the points
on the true and predicted boundary.

Boundary loss function Dist(∂G, ∂R), partial R is in the region boundary space Ω

distance metric, namely edge pixels for expression for predicting L2 distance between the
boundary and real boundary, such as Eq. 9-12:

Dist(∂G, ∂R)≈ 2
∫

∆S
DG(q)dq. (9)

The calculation diagram for the boundary loss is depicted in Figure 3. To address the
issue of non-differentiability in the differential calculation of contour points, the domain
integral is employed to represent the boundary change. Eq. 10 demonstrates the validity of
the domain integral.

∫ y∂R(p)
p 2DG(q)dq =

∫ ∥y∂R(p)−p∥
0 2DGdDG = ∥y∂R(p)− p∥2 . (10)

Eq. 11 is derived from Eq. 9, where ∆S represents the area between the real and pre-
dicted boundary contoursΩ →{0,1} is the binary indicator function on the area, r(q) and
g(q) denote the indicator functions above R and G, respectively. If q ∈ R, r(q)=1, otherwise
r(q)=0; xGæG → R is the representation of the boundary ∂G, if q ∈ G, xG = −DG(q), oth-
erwise xG = DG(q). The latter item in Eq. 11 does not contain model parameters and can be
omitted during training. Use the softmax output rθ (q) of the network to replace r(q) in Eq.
11, Instant Eq. 12:

1
2 Dist(∂G, ∂R) =

∫
R ΦG(q)dq−

∫
G ΦG(q)dq =

∫
Ω

ΦG(q)r(q)dq−
∫

Ω
ΦG(q)g(q)dq,

(11)

LB(θ) =
∫

Ω

ΦG(q)rθ (q)dq. (12)

In addition to the learning of the object boundary contour, the learning of the central
region is also more important. The central-region segmentation loss is calculated as the
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Table 1: Experimental results of 1-way 1-shot and 2-way 1-shot for different network mod-
els.

Methods
1-way 1-shot 2-way 1-shot

classification 0/1 exact ratio（%） Segmentation mIoU（%） classification 0/1 exact ratio（%） Segmentation mIoU（%）
50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg. 50 51 52 53 avg.

PANet[22] 69.9 67.7 68.8 69.4 69.0 32.8 45.8 31.0 35.1 36.2 56.2 47.5 44.6 55.4 50.9 33.3 46.0 31.2 38.4 37.2
PFENet[20] 69.8 82.4 68.1 77.9 74.6 38.3 54.7 35.1 43.8 43.0 22.5 61.7 40.3 39.5 41.0 31.1 47.3 30.8 32.2 35.3
HSNet[12] 86.6 84.8 76.9 86.3 83.7 49.1 59.7 41.0 49.0 49.7 68.0 73.2 57.0 70.9 67.3 42.4 53.7 34.0 43.9 43.5
ASNet[8] 84.9 89.6 79.0 86.2 84.9 51.7 61.5 43.3 52.8 52.3 68.5 76.2 58.6 70.0 68.3 48.5 58.3 36.3 48.3 47.8

ours 87.4 89.4 81.1 88.5 86.6 52.9 62.7 44.6 54.2 53.6 70.6 77.0 60.4 72.1 70.1 50.2 59.2 37.8 49.7 49.2

average cross-entropy between the class distribution at each location and its corresponding
true segmentation annotation:

LR =− 1
N+1

1
HW

N+1

∑
n=1

∑
p∈[H]×[W]

Y(n)
gt (p) lnY(n)

S (p). (13)

The overall loss function constraint can be expressed as follows:

L = (1−α)LR(θ)+αLB(θ). (14)

4 Experimental Results and Analysis

4.1 Experimental Setup and Metrics
The experiments in this paper were conducted on a server with an Intel i9-9900X 10-core
processor and an NVIDIA RTX2080ti graphics card. The model was trained using the gra-
dient descent method, and the Adam optimizer was utilized with a dynamically adjusted
learning rate, initialized at 0.001. The dataset used for the experiments is the widely adopted
Pascal −5i dataset in the field of few-shot classification and segmentation. [15].

To better evaluate the multi-label classification and segmentation effect of the model,
this paper uses the 0/1 accuracy rate exact ratio ER = 1 [ygt = yc] evaluation index to eval-
uate the multi-label classification and uses the average intersection and union ratio mIoU =
1
C ∑

c
IoUc evaluates the target segmentation (IoUc represents the IoU value of the C-th cate-

gory), where the evaluation examples cover All three cases of C =∅, C ⊂Cs, and C =Cs.

4.2 Experimental Result
This paper presents an analysis of recent few-shot classification and segmentation methods.
The ResNet50 model is chosen as the backbone network for feature extraction, and its per-
formance is compared with the few-shot segmentation model proposed in this paper on the
widely used Pascal − 5i dataset. The models are evaluated within the IFSL framework of
the ASNet[8] network. The experimental results for the 1-way 1-shot and 2-way 1-shot
scenarios are presented in Table 1.

The experimental results in Table 1 demonstrate the superior performance of our pro-
posed model compared to other few-shot segmentation network models. Specifically, on the
1-way 1-shot task, our model outperforms the recent ASNet network model. The classifi-
cation accuracy ratios and average intersection over union (mIoU) ratios on the 4-fold data
exhibit improvements of +2.5%, -0.2%, +2.1%, +2.3%. The mIoU ratios also show improve-
ments of +1.2%, +1.2%, +1.3%, +1.4%. However, there is a need for improvement in the
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accuracy rate on the second dataset. Overall, the exact ratio and mIoU of our model show an
increase of 1.7% and 1.3%, respectively. Furthermore, our model achieves better results on
the 2-way 1-shot task with 4 folds, with an increase of 1.8% in the exact ratio and 1.4% in
mIoU.

The performance improvement achieved by our proposed BFC-BL model can be at-
tributed to the following factors: (1) The proposed bidirectional feature correlation fusion
network enables the model to fuse the semantic and spatial correlation between different
layers of learning samples; (2) The method of fusion of regions and boundaries is adopted to
alleviate the problems of over-fitting and insufficient boundary information learning of the
model for the central main area; (3) We combine the above two to construct an end-to-end
model, which makes the convergence faster and the segmentation effect better.

4.3 Convergence and Visual analysis

The proposed BFC-BL network, which combines bidirectional feature correlation and bound-
ary constraint, achieves superior experimental results and faster convergence compared to
the baseline ASNet model.As shown in Figure 4(a) and 4(b), the convergence line graphs
of the model training demonstrate that the accuracy rate and mIoU of our proposed model
reach convergence between 200-250 epochs, outperforming the baseline. The experimental
results in Figure 5 indicate that our model achieves satisfactory classification and segmenta-
tion performance, accurately identifying and segmenting objects. However, there is room for
optimization in capturing finer details under challenging lighting conditions, such as overex-
posed or excessively dark backgrounds.

Figure 4: Comparison of model accuracy and convergence speed of mIoU training.Figure
(a) with training accuracy on the left and Figure (b) with the convergence of sum and mIoU.

4.4 Ablation analysis

We propose a comprehensive loss function that incorporates both boundary semantics and
region semantics with varying weight ratios. In our ablation experiments, we compare the
hyperparameter α with four different weights: 0.001, 0.01, 0.05, and 0.1. The experimental
results are presented in Table 2.

Table 2 reveals that when the weight α is set to 0.001 and 0.01, there is a slight im-
provement in learning boundary pixel information. However, the improvement is minimal,
and in some folds, the results even decrease compared to the baseline. With the introduction
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Figure 5: Figure of the experimental results of model 1-way 1-shot and 2-way 1-shot.The
blue mask represents the first category of the support set, and the red mask represents the
second category of the support set.

Table 2: Results of ablation experiments for hyperparameter α in boundary constraints.
Hyperparameters classification 0/1 exact ratio（%） Segmentation mIoU（%）

50 51 52 53 avg. 50 51 52 53 avg.
α=0.001 85.9+1.0 87.8−1.8 80.1+1.1 87.1+0.9 85.2+0.3 51.6−0.1 61.9+0.4 44.1+0.8 53.1+0.3 52.7+0.4
α=0.01 86.4+1.5 88.1−1.5 80.4+1.4 87.6+1.4 85.6+0.7 52.1+0.4 62.2+0.7 44.1+0.8 53.3+0.5 52.9+0.6
α=0.05 87.4+2.5 89.4−0.2 81.1+2.1 88.5+2.3 86.6+1.7 52.9+1.2 62.7+1.2 44.6+1.3 53.9+1.4 53.6+1.3
α=0.1 86.9+2.0 89.5−0.1 80.8+1.8 87.8+1.6 86.2+1.3 52.5+0.8 62.4+0.9 44.2+0.9 53.5+0.7 53.1+0.8

of α=0.05, there is a significant enhancement in experimental results, with an average in-
crease of 1.7% in accuracy rate (ER) and 1.3% in mIoU. The experiments demonstrate that
an effective α allows the model to learn boundary information more effectively by increas-
ing the weight of the boundary loss function, thereby focusing more on learning boundary
pixels. It is worth noting that a larger weight for α does not necessarily lead to better results.
Analysis of the proportion of target pixels indicates that the proportion of target pixels ex-
ceeds that of boundary pixels, suggesting that an excessively large boundary weight may not
be an optimal learning strategy.

Table 3: Ablation experimental results of each module of the proposed model."✓" means
that the model adds this module, and "✘" means that the model removes this module

BFCP module boundary constraints classification 0/1 exact ratio（%） Segmentation mIoU（%）
✓ ✘ 86.1+1.2 52.5+0.2
✘ ✓ 85.3−0.8 53.2+0.9
✓ ✓ 86.6+1.7 53.6+1.3

Based on Table 3, we comprehensively evaluate the impact of each module in the model
on classification and segmentation performance. Adding only the BFCP module results in a
1.2% increase in classification accuracy, while the segmentation mIoU remains unchanged.
Conversely, adding only boundary constraints leads to a decrease of 0.8% in classification
accuracy, but an increase of 0.9% in segmentation mIoU. This indicates that the boundary
constraints primarily enhance the mIoU of the segmentation boundary, while the classifica-
tion accuracy is less affected. However, the best results of 86.6% and 53.6% are achieved
when both modules are added simultaneously. The experiments demonstrate that the ef-
fectiveness of our model stems from the BFCP module’s ability to capture the correlation
between few-shot semantic features and sample correlations. Additionally, the inclusion of
the boundary loss function enables the model to focus on learning target boundary pixels,
resulting in overall improvements in both classification accuracy and segmentation mIoU.
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5 Conclusion
Aiming at the problems of insufficient learning of correlation information between a small
number of samples and the error of boundary pixel segmentation caused by the similarity of
foreground and background, we proposes Few-Shot Classification and Segmentation com-
bining Bi-directional Feature Correlation and Boundary constraint (BFC-BL), which fuses
deep semantic and shallow spatial feature correlation between a small number of samples,
and constructs a multi-level weight ratio loss function. It makes the network convergence
speed faster and generalization ability stronger.

Acknowledgements This work was supported in part by the Key Technology Project of
Shunde District, Foshan City, under Grant 2130218003002.
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