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Abstract

The ability to accurately and efficiently match between sets of items has always been
fundamental in computer vision pipelines and applications with a wide variety of realiza-
tions that involve finding correspondences between sets of local features, small patches
or entire images collections. In recent years, the emergence of deep learning has fa-
cilitated significant improvements of matching based applications. This progress was
achieved through advancing improved data embedding and description, and less focus
was put on the matching process itself. Specifically, relying on simple pairwise or triplet
distance-based metric learning, ignoring the set-to-set nature of the problem.

We suggest a holistic approach to matching, by observing its natural connection to
few-shot classification (FSC), a largely growing research area that deals with learning
using limited amounts of data. We argue that certain popular FSC paradigms, such as
meta-learning and transductive learning, are particularly suitable for tackling the specific
challenges that arise in matching problems. Our approach, MFSC, builds upon state-
of-the-art features and FSC algorithms, significantly improving the quality of matching.
Moreover, we show how to construct a meta-learning scheme based on our approach,
which allows end-to-end training of the entire matching process. We validate our method
on the tasks of patch-correspondence, image-alignment and person re-identification.

1 Introduction
We deal with the problem of finding a matching or correspondence between two sets of
items. Of particular interest, is the case of matching between sets of images [1, 42], local
features [1, 33] or patches [4, 19]. This problem appears abundantly in computer vision
applications, as a mid-level or high-level task, and therefore the development of accurate
and efficient matching techniques is of high importance. Given two sets of items A and B,
of cardinality N and M respectively, indexed by [N] := {1,2, ...,N} and [M] := {1,2, ...,M},
the goal is to recover an underlying matching, which is a set of matches, or pairs of items
- one from each set. The matches are typically assumed to be mutually exclusive, meaning
that each item belongs to at most one match. Such a matching can be defined by a mapping
πB : [M]→{0}∪ [N], where item j in B is matched to item i in A if and only if πB( j) = i.
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In computer vision, a common example is the correspondence between a pair of related
images, in the form of pairs of matching interest points that were independently detected in
each of the images as the basis for most geometric fitting and alignment algorithms. Another
example, at the application level, is the relation between sets of images of different items,
identities or classes. This happens when comparing between face corpuses, or sets of people
captured by different surveillance cameras (person re-id [42]), between animal or plant image
reference guides, or between sets of alphabet characters handwritten by different individuals.

We suggest a new perspective on the matching problem, by framing it as a few-shot
classification task. The domain of few-shot learning (FSL), and few-shot classification (FSC)
in particular, has enjoyed a tremendous amount of research over the last years [11, 12, 28,
31, 39, 44, 47]. A wide variety of techniques have been developed to face the difficulty in
training standard supervised machine learning methods on limited amounts of data. This
situation occurs when data-sets are either small, or long-tail distributed and is related to the
settings of transfer-learning and domain adaptation.

Why do we think of matching in terms of FSC? Matching can be considered, a priori,
to be an unsupervised task since at test time inference is not done with respect to any prior
training data, but rather between data (e.g. images of objects) that has not been seen before.
On the other hand, examples of matched data can be used to learn how to match correctly, in
a supervised manner. This reasoning naturally leads us to consider the episodic-based meta-
learning (or "learn to learn") framework, where a matcher can be trained on offline matching
tasks, in a way that it can efficiently adapt to new test-time tasks.

Another paradigm extensively used in FSC, in order to fully exploit additional sources
of information, is that of transductive learning. The use of auxiliary information in the
unlabeled test data has been shown to provide a significant source for improvements in the
data-scarce setting. Transductive learning techniques are especially relevant to matching,
where most of the information is present in the task itself, including certain regularities that
should be exploited, such as the one-to-one matching relations.

We initiate the study of image matching using few-shot learning techniques. Our main
contribution is in making this possibility explicit, by a rather simple reduction, that allows
employing a variety of general FSC tools and developing some dedicated ones. Our tech-
niques are demonstrated on 3 very different settings of the problem, suggesting its wide
applicability and further potential.

2 Related Work
2.1 Few-Shot Classification

Few-Shot-Classification (FSC) is a branch of few-shot-learning in which a classifier needs
to learn to recognize previously unseen classes given a limited number of labeled exam-
ples. A FSC task [39] is a self-contained instance that includes both support (labeled) and
query (unlabeled) items. In the meta-learning approach, the training data is split into tasks
(or episodes) mimicking the test time tasks to which the learner is required to generalize.
MAML [12] “learns to fine-tune" by learning a network initialization from which it can
quickly adapt to novel classes. In ProtoNet [34], a learner is meta-trained to predict query
feature classes, based on distances from support class-prototypes in the embedding space.
The trainable ’meta-learning’ version of SOT can be viewed as a meta-learning algorithm.

Subsequent works [8, 11] advocate fine-tuning pre-trained networks, with larger and
more expressive backbones, and employ transductive inference, which fully exploits the
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data at inference, including unlabeled images. Finally, a significant number of works [16, 17,
47] have adopted the Sinkhorn algorithm [9] as a parameterless unsupervised classifier that
computes matchings between query embeddings and class centers. Laplacian-Shot [47] is
based on minimizing a unary term that assigns query samples to nearest class prototypes, and
a pairwise Laplacian term that encourages label consistency between nearby query samples.
In PTMAP [16] the features are first preprocessed to better align to a Gaussian distribution
and then undergo an optimal-transport based iterative algorithm to estimate the class centers.

2.2 Matching Applications
Matching of Local Patches The introduction of local patch matching benchmarks has en-
couraged rigorous, reproducible, and large scale experimentation on local feature description
and matching. Benchmarks like PhotoTourism [41], RomePatches [29] and HPatches [4] are
large and diverse, facilitating the growing needs of learning based methods. Patch based
benchmarks consist of patches extracted from interest point locations in images that are
size-normalized, and annotated pair- or group-wise with labels that indicate positive or neg-
ative examples of correspondence. They were used extensively to evaluate local descriptors,
whether handcrafted [23] or learned [25, 36, 37] and matching algorithms [15, 20].

In this work we focus on the most challenging task of the HPatches benchmark [4] -
the ’image matching’ task, which contains millions of patches extracted from hundreds of
images pairs. Each matching task consists of matching between the entire set of (thousands
of) extracted feature points as they appear in a pair of related images, after the addition of
synthetic geometric distortions. We improve upon nearest-neighbor matching of state-of-the-
art descriptors such as HardNet++ [25] and SOSNet [37] that were trained using advanced
model architectures and triplet-based deep metric learning formulations.

Pose Estimation The task of estimating the Fundamental matrix between a pair of un-
calibrated images of a scene, has been a long-standing challenge, allowing to stress-test
each of the stages that are needed to regress the relative pose between the cameras. This
includes feature detection, description, robust matching and fitting algorithms.

While the classical pipeline of SIFT and RANSAC with the 8-point algorithm is still
a strong baseline, improvements have been achieved using deep-learning detectors and de-
scriptors such as HessAffNet [26] and HardNet++ [25], pruning methods [6, 22] and robust
estimators (e.g. LMedS [32] and MLESAC [38]). FM-Bench [5] is a feature matcher evalua-
tion benchmark that compares many relevant algorithms, over four datasets [14, 18, 35, 40].

Person Re-Identification (Re-ID) is the task identifying a certain person (identity) between
multiple detected pedestrian images, from different non-overlapping cameras. It is challeng-
ing due to the scale of the problem and large variation in pose, background and illumination.
Re-ID is typically considered an instance retrieval problem and hence can be tackled us-
ing metric learning tools. The data is divided into a set of query images and a large set of
gallery images, with the goal of finding a representation that minimizes the relative distances
between matching samples. See [43] for an excellent recent and comprehensive survey.

OSNet [46] developed an efficient small-scale network with high performance and the
two-branch structure Batch DropBlock (BDB) Network [10] and its extension (Top-DB-
Net) [30] learn comprehensive and spatially distributed features consisting of both global
and attentive local representations. From our point of view, this task differs from the others
considered in that it is larger scale (querying thousands of identities against a target of tens
of thousands) and more real-world compared to the carefully curated FSC sets.
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Figure 1: Matching by Few shot Classification (FSC): Any few-shot classifier (FSC) can be used
for matching between two sets of items. A 1-shot 1-query N-way classifier receives a support set (of
labeled examples) consisting of one example of each of N classes (given by image set A). Its goal is
to classify the items of an unlabeled query set with (at most) one query per class (given by items set
B). Its output on the entire query set can be arranged in a match probability matrix, with one row per
query, and the final matching πB is obtained by taking an argmax on the matrix rows.

3 Matching by Few-Shot Classification (FSC)
A basic observation that we make, is that a typical matching problem can be framed as a
few-shot classification problem. The FSC problem has been standardized [39] as follows: In
the N-way K-shot Q-query classification problem, a task consists of a classification instance,
for which the learner has access to K labeled examples from each of N classes and is tested
on Q unlabeled examples per class. The problem becomes more challenging as the number
of ways N increases and as the number of shots K decreases1. Typical settings are 5-way or
20-way in combination with 5-shots or 1-shot, with up to 15 queries.

The problem of matching between sets of size N and M can naturally be posed as an
N-way 1-shot classification task. Consider two sets of items to be matched, A and B, where
a motivating example would be sets of interest-points (e.g. patches) extracted independently
from a pair of images in a two-view (stereo) setting. Each item in A can be thought of as the
single example representative of its own class2. Finally, an item in B can be matched to A by
classifying it with respect to the N classes defined by the items in A.

This concept is illustrated in Figure 1, showing how any few-shot classifier (FSC) can
be used for matching between sets of items. A 1-shot 1-query N-way classifier receives a
support set (of labeled examples) consisting of one example of each of N classes (given by
image set A). Its goal is to classify the items of an unlabeled query set with (at most) one
query per class (given by image set B). Its output on the entire query set can be arranged in
a match probability matrix, with one row per query, and the final matching πB is obtained
by taking an argmax on the matrix rows. While any FSC method could be plugged in to this
framework, we next look into the desired properties of such a classifier and suggest a specific
one in the following.

3.1 Design Considerations

Posing a matching problem as an N-way 1-shot classification problem comes with the large
benefit of being able to use recent FSC machinery to tackle the matching problem, with
promising results that we show below.

While the reduction between the problems is seemingly simple, several unique properties

1Some methods exploit the test samples as well and hence might improve as the number of queries Q increases.
2In the two-view setting, a patch is a single example of the class of image realizations of a particular 3D scene

location - Such classes are well defined, since different 2D image locations are reprojections of distinct 3D points
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Figure 2: Few-Shot Classification (FSC) paradigms: non-transductive (left) and transductive
(right) FSC designs differ in whether the unlabeled query set is used at test time. In meta-learning,
the learning of the inference parameters (θ and φ ) is done at training time, by using the exact same test
time inference process, except that the query labels LB are available for supervision.

of the matching problem must be taken into account. (i) symmetry: Matching between two
sets is a symmetric problem. Therefore, learning on one set and classifying the other with
respect to the first is likely sub-optimal; (ii) injectivity: A matching task can often be assumed
to be injective (as in the case of patches from a pair of images), as opposed to the general
case of classification, where different queries might belong to the same class. This is a strong
constraint that should be exploited, i.e. the classification of an item is not independent from
the classification of the rest; (iii) available data at test time: In classification, queries are
typically given in an online incremental fashion and hence the target set cannot be used for
fine-tuning, which this is not the case for matching; (iv) partiality: each query belongs to
some class, while some items might not be matched.

In addition to the differences from standard FSC mentioned above, real world setups of
the matching version tend to be more challenging in terms of the general setting. First, FSC
is typically tested on randomly generated groupings of a small number of classes (e.g. up
to 20) [12, 28, 31, 39, 44], while in image matching one needs to deal with a very large
number of classes (e.g. interest points per image, up to thousands). Second, the number of
classes might substantially vary across a collection of matching tasks (e.g. in the range of
hundreds to thousands when matching between images) and can not be assumed to be con-
stant throughout the learning process. Third, we are in the case of 1-shot and 1-query, which
is the most extreme in terms of information per class at training and testing, respectively.

Transductive Learning In Transductive FSC, the idea is to use information from the query
set, at test time, to guide the learning of the classifier, which is largely based on the support
set. This approach is especially suitable for ’1-shot-many-way’ data-scarce case of matching.
In Figure 2 we show generic designs of non-transductive and transductive FSCs. These
designs are rather general and can be used to frame most non-transductive and transductive
FSC methods (e.g. [12, 28, 34, 39, 44] and [8, 11, 16, 47] respectively).

In the non-transductive setting (Fig. 2 left), the inference pipeline which includes a
feature extractor and a classifier is trained on the labeled support set and then applied to
the unlabeled query set. This fits the general classification setup, where queries are not
available in advance and are given in an online manner, which is not the case in matching.
Furthermore, this approach is very asymmetric in nature, which is, as previously discussed,
sub-optimal for the matching case. In the transductive setting (Fig. 2 right), both image sets
undergo feature extraction followed by a joint processing that outputs the query classification
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results. This approach enables exploiting the information in the query samples, e.g. for
jointly estimating class distributions or for enforcing the injectiveness of the matching.

Meta Learning By making prediction conditioned on a given (support) set of examples,
meta-learning [39] methods can ’learn to learn’ from limited labeled data by meta-training
on a collection of labeled tasks (episodes), which are of the exact same structure of those in
the meta-testing stage, where the classification model adapts to predict novel classes based
on a new support set of examples. Methods of this kind are typically distance metric learning
based [34, 39] or initialization based, such as the seminal MAML [12].

In our setting, we experiment with using meta-learning after reducing a matching task
to a few-shot task, with the goal of obtaining better generalization between matching tasks.
In particular, rather than using feature extractors that have been trained using a separate
protocol on the entire training set, we consider episodic training, where in a meta-training
stage random matching tasks are generated from the train set to imitate the test tasks.

Partial Matching A major challenge that one needs to consider in many practical matching
tasks, is the fact that certain items in one set will not have a match in the other. This is in
contrast to the typical classification setting, where each item is assumed to belong to one of
the given classes and usually each class is assumed to have representative items in the data.

In the field of FSC, which we are building upon, the datasets are curated in the way-
shot-query setting, which implies a full and balanced matching between items and classes.
We aim to tackle the more general setting, where items from either of the sets might not be
matchable. In order to do so, we will add a dummy node (or ’dustbin’) item in each of the
sets, which can be matched to an unlimited number of items from the other set. The output
of our few-shot matcher will include assignment probabilities to these dummy nodes, as is
depicted by the shaded last row and column of PB, in Figure 1.

3.2 A (Meta-)Transductive Matching Algorithm
In this section we describe our FSC-based matching algorithm, outlined in Fig. 3. Following
the arguments in the previous section, we favor a transductive approach, that follows the
design in Fig. 2 right. We start by explaining the transductive FSC block (Fig. 2 right)
which is referred to as procedure Transd-FSC in Algorithm MFSC. Notice that it can be
executed directly at inference using the ’testing’ mode if provided with a pretrained feature
extractor f , or one can first use the ’meta-training’ mode to train a feature extractor.

We present here a particular transductive FSC algorithm, which is based on the recent
PTMAP [16] (while stressing that our approach is general and could be based on other trans-
ductive methods that follows the design in Fig. 2 right, such as [8, 11, 47]). The main idea,
following [16] (and similarly [47]) is to iteratively estimate "class centers" for each of the
classes represented by the items in set A and the assignments of items in B to these centers.

In detail, an input pair of sets of items A = {a1, ...,aN} and B = {b1, ...,bM}, is em-
bedded into a common feature-space, by a given trained feature extractor f , resulting in
fA = { f (a1), ..., f (aN)} and B= { f (b1), ..., f (bM)}. These features then go through a power-
transform of the form PT (v) = (v+ ε)β/||(v+ ε)β || where β > 0 is a hyper-parameter that
controls the skewness of the feature distribution and ε > 0 is a small constant for used for
stability. For more details refer to [16]. The class centers C are initialized with fA (step 3.),
the resulting features of set A, followed by an iterative update of: image-to-class distances
(step 4. (a)), image-to-class assignments (step 4. (b)), where the images in set B are frac-
tionally assigned to these classes (each image is assigned a vector of probabilities that sums
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Algorithm MFSC (matching tasks {(Ai,Bi)}; learnt/pretrained extractor f ; labels (train only) {Li})
1. Pi =Transd-FSC(Ai, Bi, f ) # inference over batch (per i)
2. if ’testing’ return argmax(Pi) # matching (predictions vector, per i)
3. if ’meta-training’

(a) `= ∑i CEL(Pi,Li) # calculate cross-entropy loss
(b) update and return extractor f # through back-propagation

Figure 3: Pseudocode of MFSC - Matching by FSC with sub-routines Transd-FSC and Sinkhorn.
It operates in either ’testing’ (inference) or ’meta-training’ (learning) mode, by matching between the
sets Ai and Bi, using a feature extractor f that is either learnt or pretrained. The Transd-FSC call (step
2.) performs the few-shot inference (here implemented in the lines of the PTMAP [16] algorithm).
Meta-learning is performed (step 3.) by updating the embedding f using cross-entropy loss.

to 1) and class center updates (step 4. (c)), where each item contributes, with a weight that
is proportional to its assignment probability, to the re-estimation of each class center.

The fractional assignment itself (step 4. (b)) is found using the Sinkhorn algorithm [9]
which approximates the optimal assignment of images to classes, under the updated pair-
wise distance matrix between images and classes. We provide a detailed implementation
of the Sinkhorn algorithm, one which can explicitly handle both ’full’ (permutation like)
or ’partial’ matching modes. Partial matching is achieved by padding the distances matrix
D (and transport plan) by a row and column, which allow for a source or target item to be
unmatched. δ is a parameter that determines the cost of not matching an item, which we set
heuristically to equal the maximal value of D.

4 Results
4.1 Matching of Patches

In this section we evaluate the suggested approach by experimenting on the challenging
’image matching’ task of the HPatches dataset [4], which contains over 2.5 million patches
extracted from 116 image sequences, each with 6 images with known homography. Each
matching task consists of matching between the entire set of extracted feature points (in the
form of patches, typically up to 2000) as they appear in a pair of related images, after the
addition of synthetic geometric distortions.

We have implemented the reduction from matching to FSC for three different FSC meth-
ods [12, 16, 47] over several leading feature embeddings [25, 27, 37]. The reduction is to
a 1-shot-1-query-M-way instance, with target/source image patches serving as shots/queries
respectively, where M is the number of patches, which is equal for source and target images
in this dataset, hence using the mode=’full’ option in step 4b of Alg. Transd-FSC. Our
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Table 1: mean average-
precision (mAP) on HPatches
[4] matching task. Blocks 1-
2: Handcrafted and learned de-
scriptors, with nearest neigh-
bors based matches. Blocks
3-5: MFSC based matching.
Blocks 3 and 5 involve MFSC
meta-training. bold/underlined
results are best/second-best per
column. The ’meta’ methods
involve fine-tuning of the fea-
tures on the ’train’ split.

method category ’easy’ ’hard’ ’tough’ mean
SIFT [23] handcrafted 46.5% 20.3% 9.7% 25.5%
Root-SIFT [3] 49.4% 22.0% 9.7% 27.1%
Hnet++ [25]

learned

72.2% 56.2% 37.9% 55.4%
Hnet-PS [27] 69.3% 58.6% 44.6% 57.5%
L2-Net [36] 73.0% 57.5% 39.1% 56.6%
DOAP-ST-LM [15] 74.5% 66.9% 57.0% 66.3%
SOSNet [37] 76.3% 68.4% 56.5% 67.1%
MFSC-MAML [2, 12] meta 77.8% 65.9% 50.8% 64.9%
MFSC-LapShot [47] (HNet++)

transductive

79.9% 70.3% 55.1% 68.3%
MFSC-PTMAP [16] (HNet++) 82.2% 71.6% 52.8% 68.8%
MFSC-PTMAP [16] (HNet-PS) 79.5% 73.1% 61.6% 71.4%
MFSC-PTMAP [16] (SOSNet) 84.3% 80.0% 71.6% 78.6%
MFSC-PTMAP [16] (HNet++) meta +

transductive
77.9% 73.0% 63.9% 71.6%

MFSC-PTMAP [16] (SOSNet) 85.2% 81.1% 73.1% 79.8%

MFSC variants are compared to the baseline nearest-neighbor matching based results with
the respective features, either ’learned’ (trained on HPatches) or ’handcrafted’.

The results are aggregated in Table 1. We begin by using the PTMAP [16] based Transd-
FSC with HardNet++ [25] or SOSNet [37] features, within Alg. MFSC, with either ‘testing’
only (e.g. pre-trained features), denoted by ‘transductive’ or with the preliminary ’meta-
training’, denoted by ‘meta+transductive’. In addition, we evaluate using the ’LapShot’
version of Transd-FSC (with Laplacian-Shot [47] replacing PTMAP as the FSC algorithm),
or using the improved version [2] of MAML [12], which is a non-transductive meta-learning
FSC. Also, we consider applying MFSC-PTMAP on Hardnet-PS [27] (Hardnet features pre-
trained on the extensive patch-matching PS dataset).

As can be seen by comparing the mean average-precision (mAP) results in Table 1, the
MFSC variants consistently improve upon their baselines, across the different ’hardness’
sub-splits of the test-set. While previous work has focused on improving the quality of de-
scriptors (whether handcrafted or learned) which are matched by a simple nearest-neighbor
(NN) based assignment, we take a holistic approach to the matching problem, exploiting
more information and specific properties of the task. For example, the meta-learning nature
of MAML which allows for the descriptor (embedding) to adapt to the specific data at test
time or the transductive nature of [47] and [16] which allows to treat the matching bijectivity.

4.2 Matching for Image Alignment
In this experiment we use the comprehensive FM-Bench [5] benchmark, following its eval-
uation protocols verbatim. It includes thousands of image matching pairs, over a diverse
set of datasets, with the goal of evaluating components of geometry estimation pipelines for
fundamental matrix estimation. The comparison is done by ablating each of the three main
stages of a typical matching pipeline: (i) Local feature description and establishing initial
correspondences across images ; (ii) Correspondence pruning ; and finally (iii) Fitting of a

Table 2: Image Alignment on FM-Bench [5]:
CPC [40] dataset. Bold results are best ’recall’,
which refers to the percentage of image pairs
whose matching error (Normalized SGD) was
below 0.05; ’desc’, ’fit’ and ’prune’ are short for
descriptor, fitting method and pruning method;
’RSC’ and ’LMS’ are short for RANSAC and
LMedS; See text for details on the additional
measures: ’IR-m’/’IR’ and ’corrs-m’/’corrs’.

desc fit prune recall IR-m IR corrs-m corrs

SI
FT R

SC

RT 28.2 48.1 67.2 415.3 60.5
MFSL 34.5 53.4 82.0 352.0 54.0

L
M

S RT 45.5 48.1 75.4 415.3 208.3
MFSL 52.8 53.4 81.8 352.0 177.0

H
ar

dN
et

++

R
SC

RT 49.5 80.0 87.2 259.1 52.7
MFSL 52.4 78.5 88.3 367.7 70.5

L
M

S RT 61.9 80.0 88.3 259.1 130.5
MFSL 64.3 78.5 88.8 367.7 184.9
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Table 3: Person Re-Identification (Re-ID)
results on CUHK03 [21] and Market-1501
[45]. Best results in bold. See text for details.

benchmark CUHK03-det CUHK03-lab Market-1501
network mAP Rank-1 mAP Rank-1 mAP Rank-1
MHN [7] 65.4 71.7 72.4 77.2 85.0 95.1
OSNet [46] 67.8 72.3 – – 84.9 94.8
BDB [10] 73.6 76.4 76.7 79.4 86.2 94.5
MFSC-BDB 75.8 77.3 80.4 89.8 87.0 95.2

geometric model using a robust estimator.

We experiment with using the proposed MSFL matcher to replace the feature correspon-
dence and pruning stages. To do so, we first extract features using a baseline feature extractor
(SIFT [23] or HNet++ [25]). Note we did not fine tune HNet++ [25] here, since there is no
train/test split. Next, we run a 1-shot-1-query-M-way FSC, where M is the number of fea-
tures in image 1, the sets A and B are the interest points in images 1 and 2 respectively. We
used the PTMAP [16] based Transd-FSC, with mode=’partial’, to account for partial feature
matching. Finally, a robust FM estimator is applied on the putative matches (RANSAC [13]
or LMedS [24]). Lowe’s ratio-test (RT), also known as "second nearest neighbor test", was
used as the baseline for comparison, with the default threshold of 0.8.

Table 2 reports resutls on the CPC [40] dataset, which is the most challenging in [5]. We
follow [5] and report: recall is the overall percentage (of all image pairs to match) of ’accu-
rate’ estimates - those for which the Normalized SGD error is less than a threshold of 0.05.
IR-m and IR are the average (over matching pairs) of the inlier rates of obtained matches,
before and after outlier rejection (that is part of the robust estimation stage). Finally, corrs-m
and corrs are the number of correspondences obtained, before and after robust estimation.
Note that recall is the main metric of [5], wherein MFSL shows a major boost. This can
be attributed to several limitations of ratio-test [23] that is able to overcome: The ability
to (i) avoid or resolve non-injective matches; (ii) allow a flexible (not predetermined) ratio
between the first and second NNs; and (iii) pick matches that are not necessarily NNs.

4.3 Matching for Person Re-Identification (Re-ID)

In this section, we explore the possibility of applying MFSC to large-scale datasets by con-
sidering the person Re-Identification task [43]. Given a set of query images and a large set of
gallery images, the task is to rank the similarities of each query against the entire gallery set.
The ranking is typically done by learning specialized image features and comparing query
features to gallery ones using Euclidean distances. MFSC is applied on pre-trained Batch
DropBlock [10] resnet-50 features (termed BDB) and tested on the large-scale ReID bench-
marks CUHK03 [21] (both ’detected’ and ‘labeled’ versions) as well as the Market-1501
[45] set, reporting the conventional mAP (mean Average Precision) and Rank-1 metrics.
Note that we return the sorted ranking by probability

The results, where the ranking is obtained by returning the sorted probability indices
rather than just the maximal one (line 2. in MFSC), are presented in Table 3. They show that
the addition of MFSC clearly improves the baselines in both measures, across datasets. It can
handle large-scale instances (with number of features in tens of thousands) and successfully
improve performance measures in such retrieval-oriented tasks. Moreover, it successfully
handles the more general setting (compared to the previous experiments) where the data
is severely unbalanced (in number of images per individual) and matches are one-to-many,
where we significantly improve the mAP measure that captures not only the best match.

Citation
Citation
{Li, Zhao, Xiao, and Wang} 2014

Citation
Citation
{Zheng, Shen, Tian, Wang, Wang, and Tian} 2015

Citation
Citation
{Chen, Deng, and Hu} 2019

Citation
Citation
{Zhou, Yang, Cavallaro, and Xiang} 2019

Citation
Citation
{Dai, Chen, Gu, Zhu, and Tan} 2019

Citation
Citation
{Lowe} 1999

Citation
Citation
{Mishchuk, Mishkin, Radenovic, and Matas} 2017

Citation
Citation
{Mishchuk, Mishkin, Radenovic, and Matas} 2017

Citation
Citation
{Hu, Gripon, and Pateux} 2021

Citation
Citation
{Fischler and Bolles} 1981

Citation
Citation
{Massart, Kaufman, Rousseeuw, and Leroy} 1986

Citation
Citation
{Wilson and Snavely} 2014

Citation
Citation
{Bian, Wu, Zhao, Liu, Zhang, Cheng, and Reid} 2019

Citation
Citation
{Bian, Wu, Zhao, Liu, Zhang, Cheng, and Reid} 2019

Citation
Citation
{Bian, Wu, Zhao, Liu, Zhang, Cheng, and Reid} 2019

Citation
Citation
{Lowe} 1999

Citation
Citation
{Ye, Shen, Lin, Xiang, Shao, and Hoi} 2021

Citation
Citation
{Dai, Chen, Gu, Zhu, and Tan} 2019

Citation
Citation
{Li, Zhao, Xiao, and Wang} 2014

Citation
Citation
{Zheng, Shen, Tian, Wang, Wang, and Tian} 2015



10 D. SHALAM ETAL: MATCHING BY FEW-SHOT CLASSIFICATION

Table 4: MFSC components ablation.
bold/underlined results are best/second-
best per column. See text for explana-
tions.

method feature ’easy’ ’hard’ ’tough’ mean

Nearest-Neighbor Hnet++ 72.2% 56.2% 37.9% 55.4%
SOSNet 76.3% 68.4% 56.5% 67.1%

Sinkhorn Hnet++ 79.0% 66.5% 47.7% 64.4%
SOSNet 81.0% 75.4% 65.2% 73.9%

MFSC Hnet++ 82.2% 71.6% 52.8% 68.8%
SOSNet 84.3% 80.0% 71.6% 78.6%

MFSC (meta) Hnet++ 77.9% 73.0% 63.9% 71.6%
SOSNet 85.2% 81.1% 73.1% 79.8%

4.4 Ablations
In Table 4 we present four different ablation levels of our method, over the HPatches match-
ing task, for both the state-of-the-art HNet++ and SOSNet features: "Nearest-Neighbor"
(NN) is the conventional closest-embedding matching; "Sinkhorn" is the result of applying
Sinkhorn on the pairwise correlation matrix to produce a probability (assignment) matrix,
showing a significant improvement over NN; "MFSC / (meta)" relate to our method, where
the feature embeddings are pre-trained in the former or learnt in the latter. Our full ap-
proaches obtain major improvements across the board.

We also ran ablations on the main hyper-parameters of Algorithm Transd-FSC, with the
resulting blue plot mAP performance curves in Figure 4. These ablations were performed on
the HPatches matching task, for different ranges of: k (main-loop count, step 4), α (center
update weight, step 4 (c)) and λ (Sinkhorn entropy parameter). The vertical red lines depict
the default PTMAP values that we worked with throughout the experiments. As can be
seen, the original choices provide a good setting, with low sensitivity to the precise choice.
We also used the default power-transform (PT) choice of β = 0.5, with β = 1 (i.e. no PT)
when features are not non-negative. In addition, the orange curves in Figure 4 quantify the
injectivity of the matching, by measuring the percentage of unique matches. Clearly, it is
not fully correlated with accuracy, and can be tightly manipulated by the Sinkhorn entropy
parameter. Interestingly, it is also affected by the other PTMAP parameters.

5 Conclusions
In this work, we propose a new perspective on set-to-set matching tasks, showing that they
can be simply reduced to few-shot classification (FSC) tasks, for which a rich and well
studied range of techniques and methodologies are available to be used. While the typical
FSC methods were not meant to handle the (rather extreme) properties of the resulting tasks
we obtain, we show that particular choices work well on a range of matching problems that
arise in the applications of patch-matching, pose-estimation and person re-identification.

We have demonstrated, conceptually and empirically, that certain ideas in meta-learning
and transductive inference are highly relevant to matching. Nevertheless, many aspects of
this setting need to be further studied. For one thing, the solution we suggest is asymmetric
(queries classified among classes), while the matching problem is symmetric by nature. In
addition, matching between multiple sets could be possibly tackled in a more general way.

Figure 4: Transd-FSC Hyper-parameter Ablations: Sinkhorn entropy λ , PTMAP iterations k and
weight α . Red line shows the choice we use, which is the default from [16].
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