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Abstract
Novel view synthesis has recently made significant progress with the advent of Neu-

ral Radiance Fields (NeRF). DietNeRF is an extension of NeRF that aims to achieve this
task from only a few images by introducing a new loss function for unknown viewpoints
with no input images. The loss function assumes that a pre-trained feature extractor
should output the same feature even if input images are captured at different viewpoints
since the images contain the same object. However, while that assumption is ideal, in
reality, it is known that as viewpoints continuously change, also feature vectors contin-
uously change. Thus, the assumption can harm training. To avoid this harmful train-
ing, we propose ManifoldNeRF, a method for supervising feature vectors at unknown
viewpoints using interpolated features from neighboring known viewpoints. Since the
method provides appropriate supervision for each unknown viewpoint by the interpo-
lated features, the volume representation is learned better than DietNeRF. Experimen-
tal results show that the proposed method performs better than others in a complex
scene. We also experimented with several subsets of viewpoints from a set of view-
points and identified an effective set of viewpoints for real environments. This provided
a basic policy of viewpoint patterns for real-world application. The code is available at
https://github.com/haganelego/ManifoldNeRF_BMVC2023

1 Introduction
Novel view synthesis is one of the challenging tasks to generate an arbitrary viewpoint im-
age from images at a limited number of viewpoints. NeRF [16] is a method that learns a
volumetric scene function from images obtained from a scene using an MSE loss and gen-
erates arbitrary viewpoint images by volume rendering [11]. NeRF has been a breakthrough
in novel view synthesis, and many methods have been proposed to improve accuracy [28],
training speed [17] and application to various fields [15, 25, 30].
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Figure 1: A vanilla NeRF is trained by minimizing the mean squared error (MSE) between
a rendered image and the ground truth image at each known viewpoint (NeRF MSE loss).
However, when only a few known viewpoints are available, the volumetric scene function
cannot be learned, and the rendering of unknown viewpoints does not perform well. If we
could give a loss for the outputs from unknown viewpoints, it can be a clue to learning the
volumetric scene function even from a few known viewpoints. We propose a new loss for
image features at unknown viewpoints supervised by interpolated features from neighboring
known viewpoints (Manifold loss), which makes it possible to provide supervision even at
unknown viewpoints.

Although NeRF is a breakthrough method in novel view synthesis, it still has many
limitations. One of the most critical limitations is that it requires a lot of viewpoint images.
Recently, the problem of few-shot novel view synthesis has been addressed. DietNeRF [9],
one of the few-shot NeRF methods, is based on the assumption that the feature vectors of
images of an object at arbitrary viewpoints in the same scene are consistent. In the method,
the feature vector at the known viewpoint and feature vectors at arbitrary viewpoints are
made closer to each other. Here, the features are obtained from a feature extractor of a
pre-trained classifier; we call it “a pre-trained model”. This enables supervision for any
viewpoints that are not included in the training dataset, and it demonstrates high performance
in the few-shot novel view synthesis task.

However, are the feature vectors obtained by a pre-trained model actually similar for all
viewpoints? In an ideal case, the pre-trained model should output identical feature vectors for
images of the same object, but in actual situations, feature vectors vary depending on various
factors. Among these factors, viewpoint change makes a drastic change in the observed
images, which leads to significant changes in the feature vectors. Also, it has been shown
that a continuous change in viewpoint causes a continuous change in the feature vectors
in the feature space, as introduced in the Parametric Eigenspace method [18]. In the field
of pattern recognition, a set of features that varies continuously along some parameters is
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conventionally called a manifold, and methods such as GAN [7] and VAE [14] acquire the
manifold as a latent representation, allowing them to generate continuous changes in facial
expressions [3], for example.

Based on the above, we reconsider the assumptions used in DietNeRF. While the feature
vectors of images from close viewpoints will certainly be similar, the feature vectors of im-
ages from very different viewpoints, such as front and back, are likely to be very different.
Therefore, DietNeRF’s training process may constrain the feature vectors, which are inher-
ently very different, to be close to each other; this harms the training of the volumetric scene
function. This can be prevented by providing a relaxed assumption that the feature vectors
change as the viewpoint changes.

We propose ManifoldNeRF, a novel few-shot NeRF method based on the concept of
the manifold. The overview of ManifoldNeRF is shown in Figure 1. In this method, we
introduce a novel manifold loss for the training of NeRF. For the calculation, a feature vector
at an arbitrary viewpoint is interpolated by the neighboring known viewpoints. The loss is
calculated from the interpolated feature vector, named a pseudo ground truth. The difference
between the feature vectors extracted from the rendered images at arbitrary viewpoints and
the pseudo ground truth is used as the auxiliary loss, as well as the original MSE loss, to
train a model. Our contributions are as follows:

• We propose ManifoldNeRF for the few-shot novel view synthesis. We introduce a
novel loss function named manifold loss to give supervision for arbitrary viewpoints
based on the concept of the Parametric Eigenspace [18].

• We show that by interpolating the feature vectors of neighboring viewpoints, a feature
vector that is a good approximation of the ground truth of an interpolated viewpoint
can be generated. This enables us to prepare a pseudo ground truth of unknown view-
points and enables training possible even when the number of known viewpoints is
limited.

• We conducted experiments to clarify which viewpoints are important for training a
volumetric scene function with a limited number of images. These results establish a
basic policy for capturing images for real-world applications.

2 Related work

2.1 Few-shot NeRF
NeRF [16] is a method that embeds a volumetric scene into a volumetric scene function
implemented by a multilayer perceptron (MLP), which output color c=(r,g,b)⊤ and volume
density σ , 3D location x = (x,y,z)⊤ and direction d = (θ ,φ)⊤ as input to MLP. The value of
each pixel in an image is calculated by differentiable rendering that enables backpropagation.
The loss function is the MSE loss which is commonly used in image reconstruction tasks
such as an autoencoder [8].

One drawback of vanilla NeRF is that it requires a lot of images for training. To address
this problem, various approaches have been proposed, such as using feature vectors obtained
from pre-training models [2, 9, 23, 26], optimization for depth using sparse 3D points [4]
and reducing artifact generation by constraining each point on the ray [13, 19].

DietNeRF: In addition to the MSE loss of the vanilla NeRF, DietNeRF introduces a
semantic consistency loss to enable training with few images. The loss provides a constraint
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to force the feature vector obtained from an image at a randomly sampled known viewpoint
and the feature vector of a rendered image at an arbitrary viewpoint to be closer. In the
method, a pre-trained vision transformer [5] of CLIP [21], which we call it “CLIP-ViT”,
is used as a feature extractor. Equation 1 show the semantic consistency loss LSC between
feature vectors vk,vu of known and unknown viewpoint is measured by cosine similarity,
where λ is a scaling factor.

LSC(vk,vu) = λ (1−v⊤k vu), (1)

Experiments conducted on DietNeRF have shown that the semantic consistency loss is
effective when the number of pixels selected is 15%∼20% of the total number of pixels.
This method can be trained from a one-shot image and is currently one of the most effective
few-shot NeRF methods.

In the proposed method, we select an unknown viewpoint from the neighborhood of the
known viewpoints, and we interpolate the feature vector of a viewpoint from the feature vec-
tors of the known viewpoints to obtain pseudo ground truth, aiming to give richer supervision
than DietNeRF.

2.2 Manifold

When a camera pose relative to an object changes smoothly, the observed image will also
change smoothly. Hence, we can assume that the feature vector extracted from the observed
image also changes smoothly according to the camera motion. Based on this assumption,
the Parametric Eigenspace method, proposed by Murase et al. [18], interpolates feature vec-
tors at intermediate camera views from two adjacent existing camera views. On the basis
of the key concept, the Parametric Eigenspace can model a 3D object using a few images.
The method uses a low-dimensional eigenspace calculated by the principal component anal-
ysis (PCA) as a feature space and interpolates intermediate image features in the feature
space. Here, since a camera pose has six degrees of freedom, the feature vectors are mapped
on a 6D hyperplane in the Eigenspace according to the camera parameter. On the hyper-
plane, feature vectors at similar viewpoints are mapped onto similar points and can be used
for interpolation, while calculation using two points far from each other is meaningless. Tra-
ditionally, this hyperplane is called a manifold in this field.

Ninomiya et al. [20] have extended the concept of the Parametric Eigenspace; they pro-
pose the deep manifold embedding that finds a low-dimensional feature space using deep
Learning. The method can find more suitable feature spaces for object pose estimation than
PCA. Kawanishi et al. [12] have proposed to use this concept for the latent space of GANs.
The method samples a latent variable from a distribution on the manifold corresponding
to the camera pose; it makes GANs able to generate an image from a specific viewpoint
intuitively. The concept, the Deep Manifold Embedding, has been used in various applica-
tions [3, 6, 27] to find a feature space that can model the target with variations.

In this study, we borrow the concept from the Parametric Eigenspace and the Deep Man-
ifold Embedding; we aim to interpolate feature vectors at unknown viewpoints from feature
vectors at adjacent known viewpoints to calculate an additional loss for the NeRF training.
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Figure 2: Histogram of cosine similarity scores for all pairs of the 100 images in the LEGO
training dataset

3 Feature vector difference according to viewpoints

In this section, we show the results of preliminary experiments that investigate the relation-
ship between viewpoints and feature vectors obtained from a pre-trained model. We used
images of the LEGO scene from the NeRF synthetic dataset [16].

First, Figure 2 shows a histogram of the cosine similarity scores for all pairs of the 100
images in the training dataset. The lowest cosine similarity score was about 0.5. We presume
that pairs with significantly different viewpoints are included in the area where the cosine
similarity score is low.

Figure 3 shows the comparison of the cosine similarity between the image from the back
(target view) of the LEGO and other viewpoints in the training dataset. The cosine similarity
score was relatively high when the viewpoint was close to the target view; in contrast, the
cosine similarity score was relatively low when the viewpoint differed significantly from the
target view. From the above, we expect that the loss function given by DietNeRF would not
be so effective when the viewpoints are largely different since it violates the assumption of
DietNeRF, while it works when the viewpoints are close to each other.

We further investigated the interpolation of the feature vectors at an unknown viewpoint
from two neighboring known viewpoints. The back and side of the LEGO in the training
dataset are used as the images at known viewpoints, and a viewpoint between them is selected
as an unknown viewpoint. We compared the feature vectors at the three known/unknown
viewpoints using cosine similarity. We also compared the groud-truth feature vector at the
unknown viewpoint with an interpolated feature from two known viewpoints, which is sim-
ply calculated by averaging the two vectors at the known viewpoints, assuming that the
unknown viewpoint is exactly in the middle of the two known viewpoints.

The experimental results are shown in Figure 4. The cosine similarity score with the
interpolated feature vector was 0.9624, indicating that the interpolated feature vector was
closer to the ground-truth feature vector of the image at the unknown viewpoint.
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Figure 3: The cosine similarity scores are
relatively high for viewpoints that are close
to the target view, but the cosine similarity
scores are relatively low for viewpoints that
are largely far from the target view.
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Figure 4: The interpolated feature vectors
had a higher cosine similarity score than the
cosine similarity scores of the feature vec-
tors obtained from CLIP-ViT for different
viewpoints.

4 Proposed method: ManifoldNeRF
Unlike DietNeRF, the proposed method requires an unknown viewpoint to be located be-
tween two known viewpoints. Since most 360-degree view scenes are taken from cameras
located in a hemisphere from the center of the scene, an arbitrary viewpoint image is gener-
ated based on this assumption. Thus, we select an unknown viewpoint pu by interpolating
two known viewpoints pk,1 and pk,2 using spherical linear interpolation (Slerp) [22];

pu =
sin(1− s)θ

sinθ
pk,1 +

sinsθ

sinθ
pk,2, (2)

θ = arccos(pk,1,pk,2), (3)

where s is an interpolation coefficient, which is a random value following a uniform dis-
tribution in the range [0, 1]. Each pair of two known viewpoints for choosing unknown
viewpoints cannot be too distant since the computation is meaningful only between close
points on a manifold; interpolation of feature vectors obtained from the pre-trained model
cannot work well between viewpoints that are too distant. Pairs of known viewpoints are
sampled if the distance between them is less than a threshold. When interpolating a feature
vector v̂u between feature vectors vk,1,vk,2 of two viewpoints pk,1 and pk,2 is performed by
linear interpolation (Lerp) using the following formula:

v̂u = (1− s)vk,1 + svk,2. (4)

The training process is the same as that of DietNeRF except that we replace the semantic
consistency loss with the manifold loss. The manifold loss is the cosine similarity between
the feature vector vu of a rendered image at an arbitrary viewpoint and the feature vector v̂u
interpolated from known neighboring viewpoints and is calculated by

LML(vu, v̂u) = λ (1−v⊤u v̂u). (5)
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Table 1: The results of training 8 randomly selected images in each scene of the NeRF
synthetic dataset. The highest score is in bold, and the second highest score is underlined.

PSNR ↑ LEGO Chair Drums Ficus Mic Ship Materials Hotdog

NeRF 9.727 18.920 17.032 19.894 12.889 19.535 7.945 10.561
InfoNeRF 9.667 24.964 19.116 20.924 24.233 20.299 20.773 10.752
DietNeRF 22.063 24.722 18.757 21.173 26.383 22.480 20.671 25.746
ManifoldNeRF (ours) 22.171 26.155 18.900 20.489 25.967 23.001 20.819 26.321

NeRF, 100 views 30.336 32.807 25.144 28.174 32.196 28.654 28.459 35.758

5 Experiments
In this study, all experiments used a 40GB NVIDIA A100. The number of training iterations
was 100,000. In Experiments 5.1, 5.2 and 5.3, viewpoint pairs were selected using a
threshold of 2.5, while viewpoint pairs were predefined in Experiment 5.4. We used PSNR,
SSIM [24], and LPIPS [29] as evaluation metrics. We used the following two public datasets
to evaluate the proposed method.

NeRF synthetic dataset: This dataset contains 100 images in each of the 8 scenes by
cameras randomly placed in a hemispherical pattern from the center of each object [16].
To evaluate the performance of the proposed method in few-shot scenarios, we randomly
selected 8 images as the training dataset for each scene.

DTU MVS dataset: This dataset captures physical object in real environmets and con-
tains 49 images in each of the 128 scenes [10]. We conducted experiments on the 8 scenes
and randomly selected 8 images as the training dataset while testing with the remaining 41
images.

5.1 Randomly sampled NeRF synthetic dataset
Table 1 shows the experimental results for each scene. ManifoldNeRF was competitive with
DietNeRF and InfoNeRF depending on the scenes, and we could not conclude which method
was better in overall performance from this experiment alone.

One of the reasons why the proposed method sometimes performed not well is that the
effectiveness of the manifold loss strongly depends on the locations of the known viewpoints.
In DietNeRF, the loss can be calculated for any viewpoint in the training process due to the
assumption that all feature vectors of arbitrary viewpoints in the same scene should be the
same. In contrast, the proposed method can only compute the loss for viewpoints between
two neighboring known viewpoints closer than a threshold. Therefore, the proposed method
may not perform well depending on the bias of the viewpoints in the training dataset.

5.2 Uniformly sampled NeRF synthetic dataset
Based on the experiments in the previous section, we selected images for training and eval-
uation to avoid bias. This experiment was conducted in the LEGO scene of NeRF synthetic
dataset. We generated 8 viewpoint images from the Blender model that were evenly dis-
tributed across the scene, with 4 images for each side and 4 images for the overhead view as
shown in Figure 5. The experimental results are shown in Table 2 and Figure 5.2. These re-
sults show that the proposed method achieves better PSNR+7.471, SSIM+0.146, and LPIPS-
0.150 than DietNeRF, confirming the superior performance of the proposed method.

Citation
Citation
{Wang, Bovik, Sheikh, and Simoncelli} 2004

Citation
Citation
{Zhang, Isola, Efros, Shechtman, and Wang} 2018

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2021

Citation
Citation
{Jensen, Dahl, Vogiatzis, Tola, and AanÃ¦s} 2014



8 KANAOKA, SONOGASHIRA, TAMUKOH, KAWANISHI: MANIFOLDNERF

Figure 5: Viewpoint images of the LEGO training dataset for the experiment in Sec. 5.2.

Table 2: The result of training using images at uniformly selected viewpoints from the LEGO
scene of the NeRF synthetic dataset. The highest score is in bold.

Method PSNR ↑ SSIM ↑ LPIPS ↓
DietNeRF 15.233 0.713 0.267
ManifoldNeRF (ours) 22.704 0.859 0.117

In this experiment, the performance of DietNeRF was low compared to the experiment of
Sec. 5.1. We consider that this is due to constraints on DietNeRF. As shown in Figure 2, the
cosine similarity is varied, and Figure 3 shows that the lowest cosine similarity is 0.68. From
the above, the constraints on DietNeRF may bring feature vectors that are very different
close together. On the other hand, the proposed method showed high performance when the
viewpoints were evenly distributed across the scene. Considering real-world applications, we
can control the viewpoints to be taken. Therefore, the viewpoint constraint in the proposed
method is not a drawback in real-world applications.

5.3 Randomly sampled DTU MVS dataset
Table 3 and Figure 7 shows the experimental result for #65 and #114 scenes. We confirmed
that the proposed method achieved the best performance in this experiment with two scenes.

We consider that the high performance of the proposed method in this experiment is due
to its constraint, which can be optimized well in complex scenes such as the DTU MVS
dataset. The NeRF synthetic dataset is generated from a 3D model in Blender, so there is
less noise in the image. On the other hand, datasets taken in real environments are likely
to contain disturbance due to background effects and other factors. Therefore, the feature
vectors at different viewpoints in the same scene are likely to differ significantly. The con-
straints of the proposed method generate feature vectors between neighboring viewpoints
considering disturbances. From the above, we believe that the proposed method performs

Ground Truth DietNeRF ManifoldNeRF(ours)

Figure 6: Qualitative comparison on the NeRF synthetic dataset for the experiment in
Sec. 5.2
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Table 3: The results of training 8 randomly selected images in #65 and #114 scene of the
DTU MVS dataset. The highest score is in bold, and the second-highest score is underlined.
#65 PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 11.970 0.481 0.527
InfoNeRF 14.786 0.484 0.431
DietNeRF 20.883 0.698 0.352
ManifoldNeRF (ours) 22.197 0.702 0.302

#114 PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 18.691 0.636 0.396
InfoNeRF 21.382 0.611 0.364
DietNeRF 20.861 0.673 0.337
ManifoldNeRF (ours) 23.202 0.732 0.299

Ground Truth NeRF InfoNeRF DietNeRF ManifoldNeRF
(ours)

Figure 7: Qualitative comparison on the #65(Top) and #114(Bottom) of the MVS DTU
dataset for the experiment in Sec 5.3

well in real environments.

5.4 Evaluation of viewpoint patterns for real-world application

In this section, we evaluate several viewpoint patterns to see which viewpoints are appropri-
ate for training ManifoldNeRF from images taken in real environments. In this experiment,
we used “cheezit”, one of the Yale-CMU-Berkeley object [1], which is used as a common
benchmark dataset for object manipulation and object recognition. This object was taken im-
ages using a Realsense D435, and the image was center-cropped and background-removed.
As shown in Figure 8, each viewpoint pattern was taken from 8 directions around the ob-
ject: (1) horizontally toward the object, (2) diagonally above the object, and (3) alternate
horizontally and diagonally to the object.

Table 4 shows the results of training on each pattern with the proposed method. The
proposed method had the best performance for Pattern 3.

The reason why viewpoint Pattern 3 had the best performance in the proposed method

Pattern 1 Pattern 2 Pattern 3

Figure 8: Patterns for taking images for Experiment 5.4
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Table 4: Experimental results for each viewpoint pattern. The highest score is in bold, and
the second highest score is underlined.

ManifoldNeRF PSNR ↑ SSIM ↑ LPIPS ↓
Pattern1 17.983 0.849 0.147
Pattern2 21.143 0.871 0.114
Pattern3 23.203 0.899 0.074

is due to the wide range of unknown viewpoints for which feature vector interpolation was
possible. In Patterns 1 and 2, we could only interpolate feature vectors horizontally. On
the other hand, Pattern 3 could interpolate feature vectors not only horizontally, but also for
viewpoints in diagonal directions. Therefore, we expect that, when taking pictures in a real
environment, it will be possible to generate a high-quality volume scene with a few viewpoint
images by taking pictures from viewpoints from which feature vectors can be interpolated
more variously. S

6 Conclusion

In this study, we proposed ManifoldNeRF, a new method for few-shot novel view synthesis.
On the basis of the assumption that the feature vectors obtained from the pre-trained model
also change continuously when the viewpoint of the image changes continuously, the feature
vectors at unknown viewpoints nearby known viewpoints can be obtained by interpolation.
Experimental results show that ManifoldNeRF performs well when the known viewpoints
are uniformly selected for the scene. In addition, we clarified which viewpoint pattern is
better in real environments, and established a basic policy for practical applications.

In future work, we aim to improve performance further and apply the proposed NeRF
method to real-world applications using robots.

In this study, we considered that optimization for various unknown viewpoints is impor-
tant for improving performance, so we employed uniform sampling. Although not addressed
in this study, a strategy that focuses sampling near the centre of the two known viewpoints
is based on the assumption that the area around the known viewpoints can be trained with-
out using pseudo ground truth. From the above, we believe that the accuracy can be further
improved by changing the method of selecting unknown viewpoints.

In real-world environments, robots may encounter unknown objects, which they need
to learn by themselves. A large number of object images are required for training, but it is
time-consuming for the robot to take a large number of images by its own observation. Using
the proposed method, we can obtain a volumetric representation of an unknown object from
a few images. From this volumetric representation, we can generate a large data set, which
can be used for object recognition and other purposes.
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