
MÜLLER, BURGERT: PROTECTING PUBLICLY AVAILABLE DATA 1

Protecting Publicly Available Data With
Machine Learning Shortcuts

Nicolas M. Müller1

nicolas.mueller@aisec.fraunhofer.de

Maximilian Burgert2

max.burgert@tum.de

Pascal Debus1

pascal.debus@aisec.fraunhofer.de

Jennifer Williams3

j.williams@soton.ac.uk

Philip Sperl1

philip.sperl@aisec.fraunhofer.de

Konstantin Böttinger1

konstantin.boettinger@aisec.fraunhofer.de

1 Fraunhofer AISEC
Lichtenbergstraße 11
85748 Garching, Germany

2 TU Munich
Arcisstraße 21
80333 München, Germany

3 University of Southampton
University Road
Southampton, UK

Abstract

Machine-learning (ML) shortcuts or spurious correlations are artifacts in datasets that
lead to very good training and test performance but severely limit the model’s general-
ization capability. Such shortcuts are insidious because they go unnoticed due to good
in-domain test performance. In this paper, we explore the influence of different shortcuts
and show that even simple shortcuts are difficult to detect by explainable AI methods. We
then exploit this fact and design an approach to defend online databases against crawlers:
providers such as dating platforms, clothing manufacturers, or used car dealers have to
deal with a professionalized crawling industry that grabs and resells data points on a large
scale. We show that a deterrent can be created by deliberately adding ML shortcuts. Such
augmented datasets are then unusable for ML use cases, which deters crawlers and the
unauthorized use of data from the internet. Using real-world data from three use cases,
we show that the proposed approach renders such collected data unusable, while the
shortcut is at the same time difficult to notice in human perception. Thus, our proposed
approach can serve as a proactive protection against illegitimate data crawling.

1 Introduction
Machine learning shortcuts or spurious correlations are artefacts in data that significantly
change the learning process of models. These features F contain no real semantic informa-
tion, but have a strong correlation with a target label L nevertheless, i.e. P(L|F) ̸= P(L).
For example, in audio data the presence or absence of leading silence in speech recordings
correlates strongly with whether the corresponding audio is real or a deepfake. Synthesized
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speech recordings often have no or very little leading silence due to text-to-speech (TTS)
data processing. Models take advantage of this and classify according to the length of the
leading silence [24]. In vision research such as X-ray image datasets for the detection of
Covid-19, the label ‘sick/healthy’ correlates with the type of X-ray equipment used. Learn-
ing models thus do not learn to distinguish between sick and healthy patients, but merely
to distinguish between X-ray machines [7]. This makes the model useless in practice, c.f.
Figure 1.

The challenge in dealing with ML shortcuts is that practitioners often are not aware of
their presence. This is because even with a valid train/test split, it is hard to notice that the
model is not generalizing. Due to errors in the data collection process, shortcuts are also
present in the test data, which results in good testing performance. It seems that new data
unseen during training is adequately handled. It is therefore essential to understand whether
the model learns shortcuts or actually semantically significant features.

However, ML shortcuts can also be used productively, as we show in this paper. The abil-
ity to render datasets unusable for machine learning can be used to protect publicly available,
yet proprietary datasets. Many companies offer access to labelled data via websites, apps, or
APIs. Used vehicle dealers such as cars.com or AutoScout publish ads for used vehicles
on their websites and include labels such as vehicle type, make, age, mileage, etc. Dating
platforms like Tinder, Bumble and co. publish photos of users incl. description text and
labels such as nationality, sexual preference, gender, hometown, ethnicity, and place of resi-
dence. Furthermore, clothing manufacturers like Zalando or Esprit publish large catalogues
of clothing items on their websites, labelled by category, colour, and price.

All of this data is potentially interesting for machine learning, and a large number of
vendors sell crawling services to collect this data, process it, and make it usable for ML.
In the process, the circumvention of protection measures is also explicitly advertised. This
industry has a yearly turnover of USD $402 million [14] and may harm legitimate data
creators. Their intellectual property is violated, and their infrastructure is overloaded or even
damaged by crawling. Additionally, in the case of user information, highly sensitive personal
data flows into third-party hands.

We propose to protect such datasets by ML shortcuts that render the data unusable by
ML, making crawling unattractive and thereby protecting the producers and users, as well as
leaving the visual presentation of the data unaffected so that vendors can continue to serve it
as usual. This paper presents the following contributions:

• We evaluate the impact of several visual shortcuts on different datasets and show that
the generalization ability of the models decreases by over 50%.

• We evaluate Explainable-AI methods for shortcut detection.

• We introduce ML shortcuts as a novel protection measure for public datasets. Using
real-world use cases and data, we show that cleverly employed shortcuts can render
public datasets unusable such that there is a strong disincentive for illegitimate crawl-
ing.

2 Related Work
Machine learning shortcuts have not yet entered the wider consciousness of the scientific
community, but academic research on them does exist. One of the first shortcuts in the liter-
ature was found in the Pascal VOC 2007 dataset: Here, all images of horses had a watermark
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Figure 1: Visualisation of the impact of shortcuts on the machine learning pipeline: Errors in
the data-collection process create imperceptible correlations between data and target, which
lead to good train accuracy, but do not transfer to the real-world distribution.

of the photographer in the lower right corner. The model then learned to identify horses
based on this watermark alone[19]. Similarly, a recent Nature publication [7] looks at the
generalization ability of Covid-19 detection algorithms. The authors investigate why such
algorithms do not generalize and conclude that the models mainly identify shortcuts such
as patient position, the presence of tubes and other medical equipment, or the type of X-ray
machine itself. All of this allows conclusions about Covid-19 within the data set, but does
not generalize.

Shortcuts also occur in the classification of audio deepfakes. The most established data
set in this area contains a shortcut in which the label correlates with the length of the leading
silence. If the silence is removed, the model performance deteriorates by up to a factor of
five [24]. Recently published work proposes several approaches to discovering or even re-
moving these shortcuts from the dataset. However, this remains a challenging problem even
with precise knowledge of the dataset [9]. ML shortcuts do not only affect classification:
self-supervised methods like contrastive learning are also vulnerable [23, 27].

Recent work also highlights the use of ML shortcuts to protect personal data. Using
shortcuts as ‘machine learning availability attacks’, the authors of [37] show that their ef-
fectiveness lies in the linear separability of shortcuts and data. The authors of [13] cre-
ate ’unlearnable examples’ by crafting an error-minimizing noise that tricks the model to
learn nothing from a given data point. This, however, is based on adversarial perturbations
and requires white-box access to an attacker’s assumed learning model. Alternatively, per-
sonal data can be protected using data poisoning [8, 32]. Unlike shortcuts, however, which
are model-agnostic, adversarial perturbations require the target model architecture and/or
weights, since the perturbation δ is found via gradient-based techniques.

Finally, our approach of ML shortcuts has similarities to the field of digital watermarking,
where data is covertly embedded in a carrier signal in order to enforce usage control, e.g.
with respect to copyright of audio or video content. Likewise, ML shortcuts also aim for
usage control in the sense that usage for third-party machine learning applications becomes
technically infeasible. Whereas watermarks restrict unauthorized presentation of data (such
as images on websites), ML shortcuts restrict unauthorized usage in knowledge discovery
and machine learning.

3 Machine Learning Shortcuts
In this section, we present ML shortcuts based on plausible data-collection errors and inves-
tigate their impact on known image classification problems. Additionally, we evaluate the
applicability of different Explainable-AI (XAI) techniques for shortcut detection.
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Figure 2: Visualisation of the used shortcuts, which correspond to real-world data collection
errors: dust on the lens, differences in ambient light (Hue), impairment of the photo lens
(Lens), or sensor error (Sensor). Top row: ImageNette, Bottom Row: Visualisation of the
shortcut on a constant background.

3.1 ML-Shortcuts Due To Data Collection Errors

We discuss four different types of shortcuts which reflect real-world data collection errors,
and which can be leveraged for protecting publicly available data. First, the obstruction of
a few image pixels by dust particles may inadvertently encode the class label (dust shotcut).
This mimics dust on the camera lens when collecting real-world data of a particular class.
Second, slight overall color changes in an image can indicate the class (hue shortcut). This
may be, for example, due to different weather conditions when collecting the images, for
example when collecting images of class A in the morning and images of class B in the
evening. Third, specific camera settings may cause alterations to the border of the image,
resulting in a lens-like effect that may hint at the target label (lens shortcut). This might
result from different settings when taking pictures from different classes, for example when
using different levels of zoom or exposure. Fourth, specific low-intensity color patterns
stemming from, for example, a characteristic or faulty camera sensor can indicate the image
class (sensor shortcut) [38]. Here, the assumption is that different classes were collected
using different cameras. We present examples of the shortcuts in Figure 2 and evaluate how
they impact classification models in Section 5.2.

3.2 Explainable AI for Shortcut Detection

One obvious approach for the mitigation of ML-Shortcuts is Explainable AI (XAI). When
it is clearly understood what the model is learning, mitigation strategies can be derived.
Shortcuts may either be removed manually, for example by adequately cropping or post-
processing the input. Alternatively, new data can be collected and applied as a shortcut.
And finally, efforts can be made to counteract the shortcut, for example using segmentation
masks [36]. Our goal is to evaluate whether and to what degree XAI methods can indeed
detect shortcuts.

3.2.1 Explainable AI Overview

Explainable AI strives to make the behavior of a learning model f explainable: for some
input x, XAI-methods λ typically produce an explanation z = λ ( f (x)) of the same dimen-
sionality as the image. From the large number of available XAI methods [20], we limit our
analysis to some of the most popular methods:
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Saliency maps (SM) [33] calculate the magnitude of the gradient with respect to the
loss function for some input x. This results in a heatmap z, which shows the influence of
single pixels and regions on the final classification result. Closely related is the Integrated
Gradients Methods (IG) [35], where the model’s gradients are computed for a progression
of interpolations of a baseline and the input image. Similarly, Smooth Grad [34] computes
regions of interest by analyzing the model’s gradients w.r.t. the input image but uses addi-
tive gaussian noise in order to create averaged explanations. This reduces the noise in the
resulting explanations. Finally, Grad-Cam (GC) [31], a refinement of Class Activation Map
(CAM, [39]), analyzes the gradient of the model’s prediction f (x) in order to compute the
averages of the penultimate convolutional layers, which allows identifying which parts of an
input image contribute to the model prediction the most.

3.2.2 Evaluation Strategy

We apply all of these techniques to our datasets and models and investigate whether the pre-
sented shortcuts can be detected. To this end, we train models on shortcut-affected datasets
and compare the XAI representation λ ( f (x)) with that of a model trained on a clean dataset.
For saliency maps, for example, we compare the absolute gradients between shortcut and
clean models via L2, using the same input image in each case. Formally:

1
N

√
N

∑
i=1

(
λ ( fθ (xi),yi)−λ ( fγ(xi),yi)

)2
(1)

where xi,yi represent the data in a dataset of size N. λ is some Explainable AI method

λ : RK ×N→ RK (2)
xi,yi 7→ zi (3)

and θ and γ are clean and shortcut-affected model parameters, respectively. The larger this
L2 difference, the more the shortcut is potentially identifiable by the corresponding XAI
method. Section 5.3 presents the results.

4 Using Shortcuts to Protect Data
Despite all the challenges they introduce, ML-Shortcuts can also be used beneficially, pro-
tecting public but proprietary datasets. This is because shortcuts can be used to discourage
web scraping. The profitable but problematic collection of proprietary data from open-access
sources such as websites and apps.

4.1 The Threat of Web Scraping
The market for web scraping generated USD $402 million in revenue in 2020 [14] and is
expected to surpass USD $1.7 billion in 2030 [22]. Numerous vendors offer web scraping
explicitly for the creation of machine learning datasets [5, 28, 29].

Observers estimate that web scraping causes millions of dollars in damage, and up to
two percent of web store sales lost [4]. Recent research [16, 17] has shown that besides the
economic effects of web scraping, there are also legal and ethical implications.
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Not only is the scraped data often a critical and proprietary asset of the targeted website
but the scraping process itself puts a strain on the infrastructure potentially compromising
the availability of the service provided by the website. In US law, the latter aspect is a tort
that is also known as trespass to chattels and led to a number of court cases, such as eBay
versus Bidder’s Edge (2000) [6]. Additional web scraping lawsuits are discussed in [16] or
[26]. Other important legal aspects are a violation of copyrights and confidentiality or are
concerned with how the scraped data is used and of course, the access to the scraped data
might have violated the terms of service or might have been illegal in the first place.

From an ethical perspective, web scraping compromises confidentiality and privacy of
the users of a website (consider, e.g., the cases of scraping data from a dating platform) and,
depending on how the leaked data is used, might contribute to bias and discrimination.

Legislation such as the Computer Fraud and Abuse Act [1], the Digital Millennium
Copyright Act [2], or the European General Data Protection Regulation [3], provide de-
fense or at least compensation mechanisms against scrapers, however, as shown by [30],
legal professionals are struggling to define precisely what web scraping actually means re-
sulting in some oscillations between too broad and too narrow interpretations over the last
two decades.

Technical measures such as captchas, obfuscated HTML code, or access restrictions can
increase the effort required by scrapers. However, this is associated with significant effort
on the defender side, and can still be circumvented by the scrapers. This ’arms race’ is
asymmetrical and to the advantage of the scraper, whose very core business it represents as
opposed to the defender. A different kind of defense is therefore necessary.

4.2 Technical Description of Proposed Defense

We suggest data owners add shortcuts to proprietary, publicly available, implicitly labeled
data such that it is no longer an attractive target for crawling and subsequent machine learning
use. If data is labeled with respect to several categories, e.g. pictures from dating platforms
according to gender, religious affiliation as well as ethnicity, each combination of labels
must be encoded by the shortcut. Since this complexity increases rapidly, the following
requirements for shortcuts arise. First, to be able to encode as large a number of labels as
possible. Second, to strongly influence the training of ML models so that they extract as little
information as possible from the original data. Third, to be as inconspicuous as possible for
human perception.

5 Experiments and Evaluation

5.1 Data and Methodology

We evaluate our proposed shortcuts (c.f. Figure 2) on four image classification tasks: Im-
agenette [11], a subset of the ImageNet Dataset, Covid-QU-Ex [36], CIFAR10 and CI-
FAR100 [15]. We use a pre-trained DenseNet-121 [12], which we fine-tune on all of the
datasets. We train our models using PyTorch [25], using a learning rate of 0.001, a batch
size of 256, and data augmentation (centre crop, vertical flip and random translations). The
shortcuts are added before the data augmentation, as would be the case in the real world.
We then train for 40 epochs (using early stopping) and report accuracy on a separate test set
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original hue lens dust sensor

Covid 93.7±0.6 34.1±1.3 35.0±0.0 35.8±2.7 33.7±1.5
ImageNette 87.2±0.4 47.5±0.8 84.2±0.2 88.1±0.5 40.4±5.4
CIFAR10 90.0±0.4 47.9±0.5 48.2±0.3 78.5±1.6 51.1±0.4
CIFAR100 68.4±0.3 35.4±0.0 30.1±0.7 54.5±1.8 38.4±1.0

Table 1: The impact of machine-learning shortcuts on DenseNet-121 on the CIFAR10, CI-
FAR100 and ImageNette. Accuracy aggregated over three independent trials, with standard
deviation shown.

Figure 3: Visualisation of smooth-grad output for all shortcuts presented.

(about 10% the size of the training data). The training data either has no shortcut (original)
or one of the four shortcuts mentioned above.

5.2 Impact of ML Shortcuts
As shown in Table 1, the shortcuts strongly deteriorate model performance, from about 87%
to 42% in test accuracy for ImageNette and from about 93% to 33% for Covid-QU-Ex, which
is equivalent to random guessing for a three-way classification problem. We can observe
that while the shortcuts are effective for all datasets, they are especially powerful when the
classification task is hard as in the case of Covid-QU-Ex.

5.3 XAI for shortcut detection
We now analyze whether XAI methods can detect such shortcuts. Consider Table 2, which
provides the XAI-score as derived by Equation (1), aggregated over all models and datasets.
We compute the difference in Explainable AI output between a baseline model, trained on a
non-shortcut dataset, and one of the following. First, a control model, which is also trained
on a non-shortcut dataset. This is in order to have a comparison of how the XAI output
differs between two identically trained models. Second, a shortcut-affected model, where
we use one of the four shortcuts introduced in Section 3.1.

We can see that even though the baseline and control models are identically set up, they
have different XAI outputs. The shortcut-affected models however have an even larger L2
difference in XAI output. Consider for example the Sensor shortcut, which reduced the
model performance on ImageNette from 87% to 40%, c.f. Table 1. For the Smooth Grad
(SG) Explainable-AI method, the control has a difference of 7.5 to the baseline, while the



8 MÜLLER, BURGERT: PROTECTING PUBLICLY AVAILABLE DATA

control dust hue lens sensor

SG 7.5±2.3 9.1±2.4 8.4±2.4 8.1±2.3 15.9±1.9
SM 9.7±2.5 11.7±2.7 10.8±2.7 10.5±2.6 11.2±2.7
IG 24.8±7.8 24.4±7.8 24.9±7.8 25.0±7.7 40.2±9.7
GC 0.7±0.4 1.5±0.5 0.8±0.4 0.8±0.4 2.6±0.3

Table 2: The L2 difference in four XAI output for clean and shortcut-affected models on
the COVID dataset, c.f. Equation (1). Higher values indicate that the addition of the shortcut
triggers different XAI output, meaning that the shortcut has a higher chance of being detected
by humans.

Sensor shortcut has a difference of 15.9. This means that, for the most part, the shortcut
changes the XAI output dramatically, which should allow identification by XAI methods.

This is corroborated by Figure 3. The model learns to ignore the regions of interest in
the original training data and only focuses on the shortcut-affected areas. Small, pixelated
areas for the dust shortcut, the outer regions of the image for the Lens shortcut, or specific
checkerboard-like patterns for the sensor shortcut.

5.4 Protection against web-scraping

To leverage ML-Shortcuts beneficially, we suggest data owners employ shortcuts to make
real-world datasets unlearnable. Based on Table 1, we suggest using the sensor shortcut.
This is because it is highly effective, cannot easily be removed (as, for example, the dust
shortcut), but also visually nearly imperceptible.

We evaluate our approach not on the datasets proposed in Section 5.1, but on the three
real-world use cases: the protection of image data from dating platforms, used car dealers,
and the fashion industry.

• Online Dating. We use the CelebA data set [21], which contains 202,599 face images
of celebrities, and is annotated with 40 binary attributes. We select five particularly
sensitive binary attributes. Attractive, Male, Young, Pale_Skin, Bald. The defender’s
shortcut must therefore cover 25 = 32 combinations of features.

• Fashion. We use the Clothing dataset [10], which consists of 5000 real-world images
of 20 different clothing items.

• Used Cars. We use the Cars Dataset [18], which contains 4000 images of seven car
types.

• Additionally, we obtained permission to collect a dataset of real-world used car images
from a major European online car vendor. For 10 different car models, we collect 800
images each, which results in a dataset of 8000 images of used cars people uploaded
in late 2022.

For each of these datasets, we create a sensor shortcut (c.f. Section 3) and add it to all the
data points in the training set. We then train different models on this training set, and then
evaluate these models on the unperturbed test dataset. This procedure serves as a proxy to
estimate the real-world generalization ability of the model trained on the shortcut dataset. For
CelebA, we create only one shortcut, which is then used to protect five different attributes.
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Figure 4: Samples with and without the sensor shortcut, for the three publicly available
datasets Cars, CelebA and Clothing.

original sensor

Online Dating (32 classes) 67.9±0.0 7.5±2.7
Fashion (20 classes) 87.7±4.5 34.1±6.6
Used Cars (7 classes) 60.6±0.1 34.7±11.8
Used Cars (real world, 10 classes) 94.8±0.2 15.2±7.4

Table 3: Test accuracy of a Dense Net, trained either on the original dataset, as well as
the sensor-shortcut affected dataset. The introduction of the shortcut degrades the model,
making it unsuited for productive use.

This corresponds to a real-world system where a defender does not know the attacker’s use
case.

Figure 4 visualizes the application of our proposed sensor shortcut. Additionally, Table 3
presents the results of training a deep neural network (DenseNet-121, c.f. Section 5.1) on this
data. It can be seen that in each case, the performance of the model is significantly reduced so
that productive use of the model would no longer be possible. For example, for the real-world
Used Car dataset, the performance is reduced from 94.8 to 15.2 percent. At the same time,
the shortcut is difficult to perceive visually due to the small magnitude of the perturbation
added, c.f. Figure 4. This will allow data vendors to still openly employ the data in question
while crawling for machine learning usage is strongly disincentivized.

6 Conclusion
We show that shortcuts can greatly affect the performance of models. This enables practical
use cases in protecting publicly available but proprietary data, such as implicitly labelled
datasets in fashion or used vehicles. Since they cannot be detected with the analysis of
train/test performance, the use of Explainable AI methods is necessary. As we show, these
methods can indicate the presence of shortcuts. In future work, explainable AI methods
might serve to attack ML shortcuts, namely to identify them in order to remove them au-
tomatically. However, cleaning datasets from ML shortcuts without creating new shortcuts
and artefacts is a challenging question on its own and subject to future research.
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