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Abstract

Lung cancer is responsible for 21% of cancer deaths in the UK and five-year survival
rates are heavily influenced by the stage the cancer was identified at. Recent studies have
demonstrated the capability of AI methods for accurate and early diagnosis of lung cancer
from routine scans. However, this evidence has not translated into clinical practice with
one barrier being a lack of interpretable models. This study investigates the application
Variational Autoencoders (VAEs), a type of generative AI model, to lung cancer lesions.
Proposed models were trained on lesions extracted from 3D CT scans in the LIDC-IDRI
public dataset. Latent vector representations of 2D slices produced by the VAEs were
explored through clustering to justify their quality and used in an MLP classifier model
for lung cancer diagnosis, the best model achieved state-of-the-art metrics of AUC 0.98
and 93.1% accuracy. Cluster analysis shows the VAE latent space separates the dataset of
malignant and benign lesions based on meaningful feature components including tumour
size, shape, patient and malignancy class. We also include a comparative analysis of the
standard Gaussian VAE (GVAE) and the more recent Dirichlet VAE (DirVAE), which
replaces the prior with a Dirichlet distribution to encourage a more explainable latent
space with disentangled feature representation. Finally, we demonstrate the potential for
latent space traversals corresponding to clinically meaningful feature changes. Our code
is available at https://github.com/benkeel/VAE_lung_lesion_BMVC.

1 Introduction
Lung cancer is the third most common cancer in the UK, accounting for 13% of cases [10]
and the biggest cause of cancer death at 21% [11]. Early diagnosis of lung cancer is important
for prognosis, with five-year survival rates for diagnosis in stages 1–3 at 32.6% compared
to 2.9% at stage 4 [39]. Radiologists diagnose lung cancer from medical images including
Computed Tomography (CT) scans by visually inspecting lesions in a time-consuming and
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Figure 1: Examples of Dirichlet distribution simplex with 5000 samples given α parameters.

subjective process [2]. A lesion is an area of tissue which has been damaged and is either
a malignant tumour or a benign area of inflammation, abscess or ulcer [22]. CT scans are
non-invasive and provide high detail images for medical diagnosis and treatment planning.
The main contribution of this research is to:

• Build state-of-the-art prediction models for lung cancer lesions using VAEs.

• Investigate the effectiveness of Dirichlet VAEs for lung lesions, to the best of our
knowledge this is the first application in the cancer imaging domain.

Several research papers have investigated the application of AI methods to lung cancer, utilis-
ing their ability for complex pattern recognition [9, 25]. The Variational Autoencoder (VAE)
is an encoder-decoder architecture that maps input data to an n-dimensional latent space [29].
Smoothness constraints on the latent space, typically enforced using a Gaussian distribution,
promote clustering between similar images. Assuming this space captures sufficient infor-
mation, these latent vectors can be used for classification purposes. Exploration of the space
via latent arithmetic and clustering can lead to new insights about a dataset [21, 31, 42].

This paper also explores the use of a Dirichlet distribution in place of the Gaussian. The
K-dimensional Dirichlet distribution is a multivariate generalisation of the beta distribution
with K strictly positive parameters, {αi ∈ R+}i=K

i=1 . These α parameters influence the sparsity
and density of the probability simplex, the impact of different values is shown in Figure
1. The sum of the α values is known as the concentration parameter, which controls the
dispersion. When all α equal 1 it is a uniform distribution (Figure 1 (b)) and a lower/higher
sum causes sparsity/density (Figure 1 (a), (c), (d)). A relatively high αi will encourage more
probability to be concentrated in the corresponding area of the simplex (Figure 1 (e), (f)).
Choosing target α values in DirVAE influences the distribution of the VAE latent space.

In summary, VAE models will be trained on 2D slices of CT scans cropped to lung
lesions. The latent vector representations are used in Multilayered Perceptron (MLP) classi-
fication models for the task of lung cancer diagnosis. The latent vectors will be evaluated to
justify their quality as feature vectors by showing that tumours with similar characteristics
are grouped together in the latent space and to demonstrate the ability to predictably change
features. This enhances the explainability of the method as it is more intuitive and inter-
pretable for a non-technical audience. Additionally, comparisons between the Gaussian and
Dirichlet latent space will show that the DirVAE has better disentanglement of features. To
inform this research, we conducted a review of the published literature on AI for lung lesion
diagnosis, applications of VAEs in the cancer domain and applications of DirVAEs.
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2 Related Works

Jassim and Jaber [25] conducted a systematic review of Artificial Intelligence (AI) for lung
lesion diagnosis from medical images in the years 2017-2021 and found an accuracy range
of 88% to 99.2% and AUC range of 0.7 to 0.967. Over half of the studies use 2D Convo-
lutional Neural Network (CNN) architectures for feature extraction and a separate classifier,
with transfer learning (TL) commonly applied. For instance, Mathews and Jeyakumar [37]
used TL with ResNet 50 [19] and a shallow CNN, achieving 97.6% accuracy. Additionally,
some studies have fused clinically known features with CNN derived features, for instance,
Xie et al. [51] obtained AUC of 0.967 and an accuracy of 89.5%. Jassim and Jaber [25]
did not include any papers applying VAE to lung cancer detection, however, there are some
existing studies in this domain [5, 13, 43]. In the most similar study with the best diag-
nostic performance using VAEs, Silva et al. [43] applied a VAE to lesions extracted from
the LIDC-IDRI dataset and used retraining of the encoder with a Multi-Layered Perceptron
(MLP) classifier, achieving AUC of 0.936. Additionally, several papers have applied VAEs
to lung cancer for other tasks including segmentation, survival analysis and tumour growth
prediction [26, 35, 40, 45, 47, 49]. This paper builds upon the work of Silva et al. [43] by
improving both the diagnostic performance and the interpretability of the method.

Regarding the application of generative models to the cancer domain, several papers
have explored the value of VAEs for latent space exploration [30, 41, 47]. For instance,
Wang and Wang [47] used VAEs to learn latent representations of the DNA to classify lung
cancer subtypes. Kleesiek et al. [30] used an approach based on autoencoders and GANs
for generating synthetic abdominal CT scans and demonstrated adding and removing liver
lesions.

Several previous studies have proposed VAEs which replace the prior distribution with a
Dirichlet. However, to our knowledge, our work is the first to apply this idea within a cancer
setting. The DirVAE was originally proposed by Srivastava and Sutton [44] and was subse-
quently utilised in similar studies on topic modelling by Xiao et al. [50] and Burkhardt and
Kramer [7]. Later studies applied the model to image classification and demonstrated that
DirVAE latent vectors were very capable in clustering images from the same category and
separating them from others [14, 27]. Li et al. [34] proposed an approach which combined
graph neural networks and the DirVAE for abstract graph clustering. In the medical domain,
Kshirsagar et al. [32] used the approach to disentangle DNA sequences into different cell
types. Most recently, Harkness et al. [17] used the DirVAE for chest X-ray classification.

Using the Dirichlet distribution in a VAE requires a reparameterisation trick which can
produce a differentiable sample from the theoretical distribution. Various techniques have
been used before which include the Laplace approximation [34], approximation of the in-
verse CDF [27], rejection sampling variational inference [7] and implicit reparamterisation
gradients [12]. Instead, sampling from the Dirichlet distribution is done using the pathwise
gradient method introduced in [24] and subsequently implemented in PyTorch.

3 Methods

3.1 Dataset and Pre-Processing

The LIDC-IDRI public dataset contains 1,010 CT scans, consisting of 20,801 2D image
slices which range from 0.6 to 5.0 mm thick with expert annotations [3, 4]. The dataset
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was then limited to 875 patients with a lesion present totalling 13,916 slices. Silva et al.
[43] reported that the LIDC-IDRI contains 2,669 lesions larger than 3 mm. The lesions are
categorised as malignant, ambiguous or benign in 5,249, 5,393 and 3,274 slices respectively,
corresponding to 394, 580 and 454 patients. Note that some patients exhibit all three types.
These labels were assigned based on a score of 1-5 agreed by four experienced thoracic radi-
ologists: lesions with a score of 1 or 2 are benign, 3 is ambiguous, and 4 or 5 are malignant.
All slices have segmentation masks that indicate where the lesion is located. Lesions mea-
suring less than 3 mm in diameter and additionally any with less than 8 pixels were removed
as they correspond to much smaller lesions which are not clinically relevant [15, 52].

Image slices are 512x512 pixels covering the cross-section of the body, from this a re-
gion of interest (ROI) of size 64x64 containing the segmentation masks was selected. Sub-
sequently, 24 slices were excluded as they did not fit in the ROI and a further 64 slices as the
bounding box went over the edge of the image, leaving a total of 13,852 in the final dataset.

Pixels in the scan are dimensionless Hounsfield units (HUs) in the range
[−3000,3000] ∈ R. HUs measure the intensity of an X-ray beam, which is altered based
on the density of a structure. In this context, HU values below -1000 correspond to air,
above 400 are bone, and in between are tissues. Since this work is concerned with lesions
which are based in the tissues, upper and lower limits are set for the HU and values are scaled
to the range (0,1) as in Silva et al. [43]. This scaling will help to homogenise structures of
bone and air to reduce variation.

3.2 Model Description and Training
3.2.1 Initial VAE Training

The VAE architecture proposed in this paper is visualised in Figure 2. The architecture is
loosely adapted from [16] with additional hyperparameter training and different activation
functions. The encoder component uses blocks of 2D Convolutional (Conv) layers with a
Gaussian Error Linear Unit (GELU) activation function [20] and 2D Batch Normalisation
[23]. For the Gaussian VAE, the output of the encoder is used in two separate 2D Conv lay-
ers for mean (µ) and log variance

(
log(σ2)

)
, whereas in the DirVAE a single 2D linear layer

is used for the alpha (α) parameters. These layers form a latent space of lesion feature repre-
sentations for the respective models. The decoder takes a parameterised version of the latent
vectors, sampled from an n-dimensional Gaussian or Dirichlet distribution. The decoder is
a symmetric architecture which applies upsampling to the feature maps to reconstruct the
images. Firstly, with a 2D Convolutional Transpose layer and secondly, using a combination
of bilinear interpolation with 2D Conv layers. This second approach is less computationally
expensive and helps avoid artifacts [38]. The decoder produces a tensor of the same shape as
the input containing the reconstructed images which are then evaluated against the original
images in the loss function.

The loss function is a weighted combination of three terms: the L1 Loss, the Kullback-
Leibler Divergence (KLD) [33] and the Structural Similarity Index Measure (SSIM) [48] or
the Multi-Scale SSIM (MS-SSIM) [46] for each image i as follows,

1
batch_size ·base

n

∑
i=1

λ ·ψ ·L1 Lossi +(1−λ ) · γ ·SSIMi +a ·βnorm ·KLDi. (1)

The scale factor (batch_size ·base)−1 is applied so that the values are consistent across dif-
ferent hyperparameters; ‘base’ is a scalar parameter controlling the number of feature maps
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Figure 2: Proposed Model Architecture: VAE with MLP classifier. The feature map size is in
the format ‘n x n’ and these sizes follow left to right. The decoder architecture is symmetric
to the encoder. Note that the final layers for the VAE and MLP have Sigmoid activation
instead of GELU and do not have Batch Normalisation (BN) or Dropout.

in the VAE model. The first two components, L1 Loss and either SSIM or MS-SSIM,
measure image reconstruction quality and the KLD is the standard measure of latent space
smoothness [29]. The reconstruction metrics are balanced using the hyperparameter constant
λ ∈ [0,1]. Two other hyperparameters are used to weight theses components, ψ ∈ {1,2,3}
and γ ∈ {0,1,batch_size} which is used to either exclude or include the mean or the sum
of the SSIM. Finally, the KLD is scaled by the hyperparameter βnorm = β · latent_size

image_size , as dis-
cussed in Higgins et al. [21], this formulation with β > 1 leads to better disentanglement of
the latent space, here β values are in the range [1,50]. An annealing function a was also
included which linearly decreases the KLD by a maximum of 1 across the training epochs.
The loss function was altered based on the above hyperparameters to find a combination
which balanced the adversarial objectives of image quality and latent space smoothness.

In total, the VAE models have 12 trainable hyperparameters which were explored using
a random search strategy, including upper and lower bound for the HU, number of feature
maps in VAE layers (base), size of the latent vector, the 4 parameters in the loss function in
equation 1, whether to use the SSIM or MS-SSIM, whether or not annealing was applied to
the KLD, the learning rate and batch size.1 The DirVAE had an additional hyperparameter
for the target alpha parameters which the KLD compares against tries to move towards. The
values are in the range αi ∈ [0.5,0.99], ranging from a sparse and disentangled distribution
to almost a uniform distribution at higher values (c.f. Figure 1 (a) and (b)).

The dataset of 875 patients was randomly split 70/30 into train and test sets with approx-
imately 613 and 262 patients. The VAE reconstructions were evaluated qualitatively, and
quantitatively with the average SSIM, Mean Squared Error (MSE) and Mean Absolute Error
(MAE) which are conventionally used in the literature.

3.2.2 Fine-Tuning and Classification

After initial training, the loss function (1) is updated to add a new term ‘BCEi’ which is
the binary cross entropy loss [6] of the MLP malignancy classifier [18] shown in the model
architecture (Figure 2). The aim is to enable the VAE to be simultaneously useful for recon-
struction and classification.

1Code for this paper including hyperparameters used during the random search are available from the GitHub
page: https://github.com/benkeel/VAE_lung_lesion_BMVC
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We employ a greedy optimisation strategy similar to Expectation-Maximimisation (EM)
optimisation as described in the following pseudocode.

1. Train the VAE model using loss function (1) and extract the latent vectors.

2. Using these latent vectors, find optimal hyperparameters for the MLP classifier using
BCE loss.

3. Repeat steps 1 and 2 until convergence, adding the BCE loss of the current optimal
MLP to the loss function.

The MLP hidden layers include GELU activation, dropout and batch normalisation, with
a sigmoid activation on the output layer to return probabilities, with a parameter τ control-
ling the threshold beyond which a example is predicted as positive. The key hyperparame-
ters which were trained using a random search strategy include τ with a value in the range
[0.4,0.6], learning rate, batch size, number of nodes in each layer, whether there are 4 or 5
layers and a dropout probability. The 13,852 slices were split into 5 sets with train, validation
and test sets in ratio 3 : 1 : 1 for 5-fold cross-validation; evaluation metrics are reported as
the mean of these runs with standard deviations given for AUC and accuracy. Classification
performance will be evaluated using the AUC primarily, though we also report the accuracy,
precision, recall, specificity, and F1-score. The VAE and MLP models were built in Python
3.9 using PyTorch 1.12 and trained using the Adam optimiser [28].

3.2.3 Clustering and Latent Space Exploration

Two clustering methods, K-Means [36] and CLASSIX [8], were used to partition the latent
vectors into distinct groups. An optimal range of values for parameter k, the number of
clusters in K-Means, was investigated with an elbow graph of the sum of squared distances
within each cluster to find a good balance in the number of clusters and their density. The
density parameter in CLASSIX is chosen using a grid search to maximise separation by
malignancy class. K-Means is non-deterministic and so results are averaged over 50 runs.

Directions in the latent space corresponding to feature changes were found by collecting
two groups of latent vectors, with and without a desired feature and taking the average direc-
tion vector between the groups. Latent traversal figures were produced by applying multiples
of the direction vector to a new image and plotting the decoded images.

4 Results

4.1 VAE Lung Lesion Reconstructions
Here a random sample of 16 images and the reconstructions by the GVAE are qualitatively
reviewed in Figure 3. Firstly, observe that the overall macrostructure is captured well and
so are most of the microstructures, however, some heterogeneity is lost. The most obvious
missing information is that some of the lung parenchyma which could be alveoli are not fully
captured in the reconstructed versions. Clinical collaborators specialising in oncology, AQ
and DJ, confirmed the reconstructions captured the important clinical features considered in
diagnosis. Based on a hyperparameter search of around 120 GVAE and 40 DirVAE can-
didates, overall the DirVAE had a poorer image reconstruction. The best GVAE achieved
SSIM of 0.89, MSE of 0.0032 and MAE of 0.027, whereas the best DirVAE achieved SSIM
0.65, MSE of 0.017 and MAE of 0.055.
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(a) (b)
Figure 3: Demonstration of VAE reconstruction quality with original images (a) and the
corresponding VAE reconstructions (b).

4.2 Classification Performance
Results are generated from a mean of 5-fold cross-validation of MLP classifiers and are
summarised in Table 1. Separate results are given for 1: malignant vs non-malignant and
2: malignancy vs benign with ambiguous excluded. This method achieves state-of-the-art
results exceeding the maximum AUC of 0.967 from Jassim and Jaber [25] (c.f. Section 2).
For a direct comparison with similar methodology, Silva et al. [43] achieved AUC 0.936 after
retraining the encoder. For a comparison to clinical radiologist performance, Al Mohammad
et al. [1] conducted a study based on 60 CT scans evaluated by 4 expert radiologists and
compared to pathologically confirmed cases. The radiologists had a mean AUC of 0.846,
recall of 0.749, specificity of 0.81. Results provided give performance metrics after initial
training and after Expectation-Maximisation optimisation with the classifier loss (‘XEM’).
Clearly, the fine-tuning improves the performance of the classifiers but also the VAE per-
formance metrics for image reconstruction and the KLD do not significantly change and in
most cases improve. The best individual model performance outside of cross-validation is
a malignant vs benign classifier using GVAE latent vectors which achieved AUC 0.99 and
95.9% accuracy. Overall the EM-optimised VAEs had a virtually idenitcal performance, the
GVAE had the highest AUC of 0.98 and DirVAE had the highest accuracy of 93.9%.

4.3 Clustering and Latent Space Exploration
In Figure 4 visual similarities can be observed, for instance in (a) there is a large circular
mass in the centre, whereas in (b) more bone is concentrated in the top left corner.

Clustering statistics for the GVAE (G) and DirVAE (D) models with 131 clusters are
given in Table 2; these show that the latent space is capable of separating the lesions based
on clinically relevant features such as tumour size and malignancy class, and furthermore
attempts to group multiple images of the same patient together. It is worth noting that this
clustering is post EM optimisation, which increased the separation by malignancy class. This
indicates that the VAE was encouraged to encode features related to class in the latent space.
Although, the clusters already had a high separation before using the classifier loss which
indicates the latent space naturally encodes these meaningful attributes.
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Table 1: Latent vector malignancy classifier results before and after Expectation Maximisa-
tion (EM) optimisation. 1: malignant vs non-malignant, 2: malignant vs benign for Gaussian
(G) and Dirichlet (D) variants. Results given as µ ±σ (mean ± std dev) across 5 runs.

Model AUC Accuracy Precision Recall Specificity F1 Score

G1EM 0.975 ±0.004 0.934 ±0.014 0.90 0.92 0.94 0.91
D1EM 0.974 ±0.001 0.933 ±0.001 0.90 0.92 0.94 0.91
G1 0.850 ±0.017 0.793 ±0.018 0.69 0.74 0.82 0.71
D1 0.831 ±0.020 0.782 ±0.030 0.65 0.74 0.80 0.69

G2EM 0.980 ±0.008 0.931 ±0.017 0.93 0.96 0.89 0.94
D2EM 0.978 ±0.007 0.939 ±0.020 0.93 0.96 0.90 0.95
G2 0.894 ±0.021 0.819 ±0.027 0.81 0.88 0.74 0.84
D2 0.841 ±0.013 0.770 ±0.017 0.81 0.81 0.70 0.81

(a) (b)
Figure 4: Latent vectors clustered by visual features: sample of 16 images from a cluster
with 100% malignant lesions (a) and a cluster with 97% non-malignant lesions (b).

Table 2: CLASSIX (C) and K-Means (KM) clustering statistics. Patient abbreviated as Pt.

Statistic GC DC GKM DKM

Pt in a single cluster 13% 25% 15% 19%
50% Pt slices in one cluster 33% 51% 35% 42%
25% Pt slices in one cluster 81% 91% 80% 84%
Clusters with above 75% of one class 66% 77% 75% 63%
Clusters with above 66.67% of one class 82% 88% 86% 78%

Finally, to demonstrate the capabilities of VAE models in this domain, in Figure 5 there are
two examples of latent space traversals (c.f. Section 3.2.3). These directions were applied
to a new lesion not used in finding the direction and it appears to generalise well includ-
ing maintaining the surrounding bone structure and generating realistic images at each step.
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Animations of latent traversals were generated by this analysis showing smooth transitions
with more samples. Traversals are constructed by sampling from the latent space, either by
using a start and end image and interpolating, or choosing a start point and moving in the
direction of the desired feature as in Figure 5. Note that all images other than the start point
are synthetic. Further examples are provided on the GitHub page.

(a) (b)
Figure 5: Capability for clinically meaningful traversals in the latent space related to lung
tumour growth (a) and increased parenchyma/irregular tumour border (b) (c.f. Section 3.2.3).

5 Discussion
The most significant contribution of this work is the novel use of DirVAEs in the cancer imag-
ing domain. This work has also shown that a VAE and MLP combination can achieve state-
of-the-art classification performance for lung lesion diagnosis with AUC 0.98 which com-
pares to radiologist performance of 0.846 and is on par with the best AI-based approaches.
Overall the results suggest that both approaches produce good classification models, the key
difference is that the DirVAE demonstrates greater disentanglement and separation by clini-
cally meaningful characteristics, whilst GVAE produces better reconstructions. In practice,
the best model will likely depend upon the context, dataset and specific task.

This approach for encoding the images with a VAE lends robustness and an element of
explainability as we can observe that lesions with similar characteristics have representations
that are close together in the latent space as demonstrated by the clustering results. This
aspect of the work may be valuable for generating pseudo-labels in tasks without a ground
truth. Although this paper demonstrates accurate classification models, it is important to
discuss some of the limitations of the proposed method. Firstly, the labels are generated by
expert radiologists rather than the gold standard of pathological confirmation. Secondly, the
data uses a non-standardised slice thickness, while some may argue it is better to standardise,
this approach may be more generalisable to the real world. One further limitation of the 2D
approach is that slices from the same patient are not independent both in structure and the
likelihood of malignancy. While extending this analysis to 3D may produce a more robust
model, data samples would reduce from 13,852 to 875 and model complexity would increase.

Some of the lung parenchyma were not fully captured by the latent vectors as demon-
strated in Figure 3. However, the lung naturally has more connective tissue septa than other
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parts of the body and these hold little relevance to malignancy diagnosis, meaning that failure
to capture the parenchyma could actually increase the signal-to-noise ratio. Further experi-
mentation is needed to determine whether they are important for the overall classification.

6 Conclusion and Future Work
Overall, (1) VAEs with Gaussian and Dirichlet priors were trained to produce a latent space
which was capable of capturing macro details to a very high standard and micro details to
a satisfactory standard. (2) Clustering algorithms were implemented, with results showing
that latent vectors were clustered by patient and lesion type and that the Dirichlet prior was
better at separating the data in this way. (3) MLP classifiers for malignant or benign lesions
were trained using latent vectors from the VAEs, the best model achieved state-of-the-art
performance with an AUC of 0.98 and 93.1% accuracy.

Future work could include combining 2D slice level prediction into higher level predic-
tions such as at the 3D lesion or patient level. This would mitigate the limitations associated
with a 2D approach including slice thickness and independence of samples. Further improve-
ments to the VAE methodology could include segmenting bone and fat to remove this impact
from the latent space. Additionally, extending the latent space exploration to see how differ-
ent features affect classifications. For instance, using the tumour growth direction or other
feature changes such as adding/removing parenchyma to see the impact on the probability of
malignancy. Applying methods for latent direction discovery by selecting the best traversals
based on metrics such as largest change in prediction score. Finally, to look at implementing
DirVAE latent traversals along single dimensions to demonstrate its disentanglement and to
add value for model interpretation.
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