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Abstract

In this paper, we tackle the challenge of actively attending to visual scenes using
a foveated sensor. We introduce an end-to-end differentiable foveated active vision ar-
chitecture that leverages a graph convolutional network to process foveated images, and
a simple yet effective formulation for foveated image sampling. Our model learns to
iteratively attend to regions of the image relevant for classification. We conduct de-
tailed experiments on a variety of image datasets, comparing the performance of our
method with previous approaches to foveated vision while measuring how the impact
of different choices, such as the degree of foveation, and the number of fixations the
network performs, affect object recognition performance. We find that our model out-
performs a state-of-the-art CNN and foveated vision architectures of comparable param-
eters and a given pixel or computation budget. The source code is publicly available at
https://github.com/georgeKillick90/FovConvNeXt.

1 Introduction

Many biological vision systems sense the world with a foveated sensor, where the highest
resolution processing is limited to only a small central portion of the visual field (the fovea).
Computer vision systems have taken inspiration from this aspect of biological vision and
incorporated it into visual attention models that learn to sample and process visual scenes
actively [2, 25, 31]. The promise of foveated vision is the ability to resolve and process
fine details while simultaneously maintaining a wide field of view, which has applications to
problems where semantic information can exist over a high-dynamic range of scales. More
generally, it is well known that scaling the resolution of inputs to CNNs can reliably improve
accuracy in objection recognition problems [33]. Through sparse sampling in the periphery
of the field of view, foveated sensors can achieve this with significantly fewer pixels than a
uniform sensor, making it an appealing approach to building parsimonious vision systems.
This comes with the caveat that a visual attention mechanism must be incorporated into the
system, in order to guide high-resolution processing to areas of interest.

In practice, it has proven difficult to reconcile foveated sensors with modern computer
vision systems. Due to their space-variant resolution, foveated sensors are not naturally
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amenable to standard convolution operators which expect uniformly sampled inputs. Many
works propose sensors that can be conveniently mapped back to grids to circumvent this
problem [8, 23] but in doing so, inherently change the equivariance properties of the network.
There is evidence, such as in the case of the log-polar mapping, that these properties may
be sub-optimal for object recognition [23, 26, 35]. Other works propose approximations
of foveated sensors by rescaling multiple crops of differing fields of view (FoV) [11, 25].
These methods are again convenient, but raise questions on how features from different crops
should interact at intermediate stages of processing. Other challenges arise from training an
attention mechanism to guide the sensor. Reinforcement learning has been the method of
choice for several works [2, 7, 25], however this is accompanied by additional challenges
due to the difficulty of training systems with this method from scratch.

To this end, we propose a foveated convolutional neural network architecture that ac-
tively attends to scenes to perform image classification. Our work addresses the aforemen-
tioned challenges in the following ways. We introduce a graph convolutional approach for
processing foveated images, removing the need for any mapping to a uniform sampling ar-
rangement, in turn affording more flexible control over the equivariance properties of the
layer. Additionally, this facilitates the use of a single foveated feature map, allowing foveal
and peripheral features to interact at intermediate stages of the network. We adopt a differen-
tiable sampling mechanism based on [15] allowing end-to-end training of the entire system,
avoiding reinforcement learning. Additionally, we propose a novel foveated sensor that can
be easily configured to control the sampling resolution across the visual field. We verify the
efficacy of our model through several experiments. Crucially, we show that our model can
be applied effectively to object recognition tasks on challenging real-world image datasets.
In summary, we make the following main contributions:

* A novel end-to-end differentiable foveated vision architecture which is able to outper-
form previous foveated architectures by atleast 1% and up to 3.5% on the Imagenet100
dataset, as well as a state-of-the-art CNN at an equivalent number of input pixels and
FLOPs (Section 3.1).

* A novel graph convolution layer designed to process foveated images without requir-
ing them to be mapped to a uniform grid (Section 3.3)

* We show that foveated vision architectures are much better at recognizing objects
over a wide range of scales than uniform non-attentive vision architectures when con-
strained to the same number of input pixels (Section 4).

2 Related Work

Visual hard attention models employ a dynamic sensor and learn an attention policy to guide
the sensor to informative regions of a scene for downstream tasks. Mnih et al.’s seminal work
[25] uses reinforcement learning to train a recurrent neural network that guides a foveated
sensor (approximated by crops of increasing FoV) to classify MNIST digits in cluttered
backgrounds. Ba et al. [2] and Sermanet et al. [31] extend this work to multiple object
recognition and fine-grained classification of natural images respectively. Li et al. [20] in-
troduce a dynamic stopping condition to a visual attention model, allowing it to terminate
computation early if the model is significantly confident in its prediction, in turn reducing
computational costs. This work foregoes a foveated sensor in favour of an adaptive zoomable
sampling grid. Elsayed et al. [7] learn an attention policy over the output of a BagNet [4] and
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propose a pretraining routine that can alleviate the difficulty of training visual attention mod-
els with reinforcement learning. In a similar approach Rangrej et al. [27] train a transformer
to sequentially select its input patches. Unlike [7], their approach does not require the full
image to be processed by the network. They additionally introduce a student-teacher training
paradigm, where the teacher model has access to the whole image. These works have been
primarily concerned with how to train hard-attention models and their applications to differ-
ent visual perception tasks but provide relatively few insights into the design of the foveated
sensor and feature extractor. We instead, provide greater focus on the underlying feature
extraction process and leverage a comparitively simpler end-to-end differentiable approach.

Differentiable image sampling techniques [10, 15] offer a method to train visual atten-
tion models without reinforcement learning. Spatial Transformer Networks (STNs) [1, 15]
train a neural network to predict affine transformations of the input image to a classifier.
Recasens et al. [28] and Thavamani et al. [34] propose similar extensions to STNs for ob-
ject recognition and detection respectively. They use adaptive sampling grids that sample
an input image at higher resolution based on a saliency map computed by a CNN. Foveated
variants of spatial transformers have been proposed. Harris et al. [11] use multiple crops,
similar to [25], to improve object localization. Polar Transformer Networks [8] use the log-
polar mapping to achieve rotation and scale equivariance. Cheung et al. [5] train a recurrent
neural network to attend to and classify MNIST digits. They introduce a learnable sam-
pling lattice and show the emergence of a foveated structure. Many works avoid explicitly
learning an attention mechanism for a particular task. For instance,[17, 19] uses a multi-fov
crop to reduce the number of input pixels to a video classification CNN. Ozimek et al. [26]
use a biologically plausible foveated sensor based on [30] to perform image classification,
exploiting camera bias in the dataset to circumvent the need for an attention mechanism.
Lukanov et al. [23] adopt the foveated sensor proposed in [24] and compute consecutive fix-
ations through argmax over class activation maps. Jonnalagadda et al. [16] apply foveated
pooling to a small ResNet [ 12] feature extractor before passing the pooled representations to
a vision transformer; subsequent fixations are determined by the maximal activation in the
final self-attention layer.

These works encompass a broad range of foveated and adaptive downsampling tech-
niques however relatively few comparisons between different methods has been made. Ad-
ditionally, many methods report results on simple datasets such as MNIST which may not
represent their efficacy on harder natural image datasets. We conduct comparisons across a
variety of different approaches on the Imagenet100 dataset. Furthermore, we identify possi-
ble aspects of previous approaches to incorporating foveated vision into CNNs, specifically
with regard to equivariance properties and the interaction between foveal and peripheral fea-
tures, that may inhibit their performance. We address this with a novel graph convolution
layer for foveated images and show improvements in object recognition performance as a
result.

3 Method
3.1 Architecture

We introduce a foveated graph convolutional architecture that learns to attend to salient areas
of images to perform object recognition. We consider two variants of this architecture, a
sequential model (Figure 1) that can repeatedly attend to the image for many time-steps, and
a spatial transformer variant which uses a separate localization network to provide a single
location (fixation) for the foveated classifier to attend to.
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Figure 1: Our pipeline for iterative foveated image classification. The input image is sampled
by our foveated sensor and processed by a novel graph convolutional network, which predicts
class logits, and optionally a fixation position to which the sensor should attend next

These architectures share in common four core components, a differentiable foveated
sensor, a graph convolutional feature extractor, an attention module and a classifier head.
The foveated sensor samples a uniform input image centred on a given fixation coordinate.
This foveated image is subsequently processed by a graph convolutional feature extractor to
produce a multi-channel feature map. A conventional classifier head consisting of a global
average pooling layer and linear layer produces a class prediction. The attention module is
similar to that proposed in Polar Transformer Networks [8]. It takes as input a d-dimensional
featuremap and applies a 1 x 1 convolution to produce a single channel saliency map. We
apply softmax activation to the saliency map and multiply each element by its corresponding
(x,y) coordinate. Finally we sum these values to arrive at a final fixation coordinate. This
is equivalent to finding the expected coordinate using the probability of a given location
containing salient information.

In the sequential variant, at time step 0, the network receives an initial fixation at the
center of the image. A class prediction is computed via the method described above. The
feature maps computed by the graph convolutional network are fed into the attention module
to compute a fixation for the next time step. This allows the network to leverage rich features
already computed by the feature-extractor for classification to inform the next fixation with
minimal overhead. The number of fixations the network is allowed to perform is given by
the hyperparameter 7. After predictions for each time step have been computed, a final
prediction is made by averaging predictions over all time steps. In the spatial transformer
variant, an initial fixation is computed by applying our attention module to the output of a
separate localization network that operates on a uniformly downsampled input image. This
fixation is then fed into the foveated classifier and produces a class prediction. Both methods
are trained end-to-end via gradient descent through the backpropagation of a standard cross-
entropy classification loss.

3.2 Foveated Sensor

We define a foveated arrangement of bilinear sampling kernels over the image plane to per-
form foveated sampling. We adopt Vogel’s model of seed arrangement in a sunflower capit-
ulum [37] to provide an easy way to pack points approximately uniformly in a circle (Fig.
2). Vogel’s model is simple and computed at initialisation; it also has the property that the
distribution of pixels in a small patch (i.e. the size of a convolutional filter) is approximately
isotropic. We adapt this model to a foveated arrangement of points with the highest sam-
pling density in the centre and smoothly decaying resolution as eccentricity increases. We
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Figure 2: Left to Right: Vogel’s model of a sunflower capitulum [37], our foveated adaptation
(eq. 1) where fovea sampling density is well parameterised, and our adaptation where the
fovea sampling density is poorly parameterised.

achieve this by logarithmically spacing points outside a given radius of the fovea. Formally
the position of the i sampling kernel in polar coordinates (p,0) is given by:

r/4, ifi<d—1.

6, = 2mip, A =rA, p,-:{ (1)

rA=4  otherwise.

where ¢ is the golden ratio, N is the total number of sampling kernels, d is the number of
sampling kernels in the fovea, and r is the radius of the fovea. The sampling density of
the fovea can be controlled independently from the size of the fovea; however, setting the
number of sampling kernels in the fovea too low will result in an excessively sparse fovea.
This is undesirable as the sampling resolution will not be able to resolve details in the fovea.
(Figure 2). We explore different values for r in Section 4.3.

In order to translate the sensor over the input image, we apply an (x,y) offset to all sam-

pling kernels. Backpropagation with respect to this offset is then possible by accumulating
the gradients of each individual sampling kernel output with respect to its position [8, 15].
For cases where sampling kernels extend beyond the image boundary, we use border padding
to fill in missing pixels. We found that zero padding causes the network to collapse to predict
the same fixation for all images (Supplementary 3).
Alternative Foveated Sensors. We consider two alternative methods for producing foveated
images in our experiments. Firstly, a sensor comprised of multiple crops of increasing field
of view, sampled at the resolution of the smallest crop [2, 11, 25]. For models processing
this type of image, we process each crop independently and average class predictions over
crops at the end. We experimented with stacking each crop in the channel dimension before
being processed by the CNN but found the former to work better. We also test the log-polar
transform as a foveation method [8, 36]. In this case, convolutions use circular padding in
the angular dimension of the image to address the discontinuity introduced in the log-polar
transform [8, 18].

3.3 Graph Convolutions

The arrangement of foveated sampling kernels does not follow a regular grid and, as such, it
poses a challenge for downstream processing since typical 2D convolution operators cannot
be applied here. Unlike standard images, local patches of pixels on a foveated image may not
have a canonical ordering or spatial arrangement of points. This necessitates a convolution
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Figure 3: Our novel graph CNN for processing foveated images. Pixels are sampled non-
uniformly (a) and for each, its nearest neighbours are found and their relative displacements
0; are calculated (b). Gaussian Derivative basis functions are evaluated using the J; offsets
to obtain basis filter weights for the current patch (c). A weighted sum between basis filter
weights and features is computed to obtain a vector of responses to the basis functions (d).
A learned linear combination of basis function responses computes final feature vectors for
a given patch (e).

operator that can produce filter responses that are largerly invariant to changes in these prop-
erties. We overcome this by leveraging a graph convolution operator (Fig. 3) that is invariant
to the permutation of pixels in the receptive field, and computes filter weights based on their
relative position to the receptive field’s center.

Graph Construction. Our convolution layer takes as input a set of feature vectors, each
associated with a vertex u € U of a 2D planar graph and a position (x,y) that defines the
feature’s spatial position within the feature map. Similarly, we define a set of vertices V
pertaining to output features with an (x,y) coordinate and a feature vector f that we aim
to compute. For each output vertex v; € V, we define its receptive field R; as its K nearest
spatial neighbours in U and connect them to form a bipartite graph G = (U,V,E). We label
each edge in the graph with the spatial offset between the two vertices it connects. For
example, the edge e;; connecting an input vertex u; € U to output vertex v; € V is labelled
as &; = (x; —xj,y; — ;). We additionally normalize the 6 offsets by the mean 0 offset for
a given patch. This scales filters as sampling density becomes more sparse in the periphery.
Scaling filters exponentially with eccentricity produces feature maps that are equivariant to
global scale transformations of the input. This is seen in applying convolutions to log-polar
images [8]. However, our method differs in that our convolution maintains a consistent filter
orientation with respect to the cartesian axes.

Edge Conditioned Filter Weights. In order to allow our model to learn filters that are
as expressive as ordinary convolutions, our convolution layer produces filter weights as a
function of edge labels (8 offsets). This allows the relative spatial positions of features
to be considered, permitting the learning of filters such as oriented edge detectors. Graph
convolution operators of this form, often termed edge-conditioned graph convolutions [32],
use a parameterised differentiable function approximator to map edge labels to filter weights
[3, 13, 39]. We instead decompose the filter weights into a parameterised linear combination
of Gaussian derivative basis functions (Figure 1 in supplementary material), which has been
shown to work well for learning convolution filters [14, 21] uniform images. This has two
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major benefits for our approach. Firstly, we can explicitly control the maximum frequency
of our filters by changing the ¢ of the Gaussian derivatives or truncating the higher-order
derivatives. Secondly, the basis is known a priori and fixed, meaning we can precompute all
basis filters at network initialisation. The convolution operation for a single-channel input
and single-channel output is defined in the supplementary material (Section 2).

4 Experiments

We conduct our main experiments on ImageNet-100, a 100-class subset of the ImageNet-
1K dataset [6], to test the efficacy of our method against alternative and similar methods in
the literature (Section 4.1). We conduct additional experiments on an augmented MNIST
dataset, to evaluate our model’s ability to classify very large and very small objects under a
highly constrained number of pixels (Section 4.2). Finally, we perform ablation studies (Sec-
tion 4.3) on our model using the Imagewoof dataset [9], a 10-class fine-grained classification
subset of ImageNet-1K comprising different breeds of dogs.

4.1 Effectiveness of foveation on image classification tasks

We perform experiments on the ImageNet-100 dataset, comprised of 130,000 images across
100 categories. We constrain the number of input pixels to the feature extractors to be 1122
for all models. The reduced sampling resolution requires the models to adapt their sampling
grid to salient regions of the input image that would ordinarily be lost through uniform
downsampling. Additionally, the feature extractors must be able to extract rich features from
the images in order to perform the classification task effectively.

Baselines. For all baseline methods, we use the atto variant of ConvNeXt as our feature
extraction backbone [22, 38]. Models that receive an input of fewer than 224 pixels have
their final downsampling layer in the convolution stages removed to maintain approximately
7? pixels in the final feature maps. We consider three non-attentive baselines, the default
ConvNeXt at 224 x 224 input resolution, a downsampled input variant at 112 x 112 input
resolution, and a foveated variant using our sensor and graph convolution layers. We consider
6 variants of Spatial Transformer Networks (STN). For the localisation networks, we use
a truncated ConvNeXt atto, which has all layers after the penultimate convolution stage
removed. All localization networks operate on a downsampled 112 x 112 input image. For
the full affine spatial transformer, we append a 2 hidden layer MLP, with 128 neurons in
each layer, batch normalization and ReLLU activation, that regresses the affine transformation
matrix. For the foveated variants, we consider the Polar Transformer Network [8] (PTN), a
multi-fov crop STN [11], an STN with the FCG sensor [24] and our foveated sensor with our
graph convolution operator. In these variants, we append our attention module (Section 3.1)
to compute fixations. Finally, we compare against the Learning to Zoom model. This method
remains largely unchanged from its original proposal except from updating the localization
network and feature extractor from ResNet [12] to ConvNeXt [38].

Results and discussion.

We report top-1 accuracy on the Imagenet-100 test set in Table 1, along with the num-
ber of parameters and GFLOPs. Even without attention, we find that our foveated graph
ConvNeXt outperforms a uniform ConvNeXt by 2.5%. We posit that this performance im-
provement is possible due to the tendency of relevant objects to be centred in the frame.
Notably, despite not having attention, this model also outperforms all alternative foveated
spatial transformer methods by atleast 0.7% and up to 1.8% in the case of the log-polar
sensor. When incorporating attention into our method, further increase over other foveated
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Method Operator Sensor # Input Pixels # Fixations Params (M) GFLOPs Accuracy (%)
ConvNeXt Conv Uniform 50176 - 3.7 0.55 78.4
ConvNeXt Conv Uniform 12544 - 3.7 0.20 70.0
Ours (non-attentive)  Graph Conv ~ Our Sensor 12544 - 3.7 0.20 72.5
STN Conv Uniform 12544 1 4.8 0.32 72.7
PTN Conv Log-Polar 12800 1 4.8 0.33 70.7
FCG-STN Conv FCG 12544 1 4.8 0.33 71.0
Fov STN Conv Multi-FoV Crops 12800 1 4.8 0.33 71.8
Fov STN (ours) Graph Conv ~ Our Sensor 12544 1 4.8 0.32 742
Learning to Zoom Conv Deformable Grid 12544 1 4.8 0.32 75.8
Sequential Conv FCG 12800 2 3.7 0.41 70.2
Sequential Conv Log-Polar 12800 2 3.7 0.41 70.4
Sequential Conv Multi-FoV Crops 12800 2 3.7 0.41 72.8
Sequential (Ours) Graph Conv  Our Sensor 12544 2 3.7 0.41 73.8
Sequential (Ours) Graph Conv ~ Our Sensor 12544 3 3.7 0.61 76.5

Table 1: Top-1 Accuracy on the Imagenet100 test set. We split the table into three sections.
Top: non-attentive models. Middle: Spatial Transformer like models. Bottom: Sequential
Models.

architectures is observed. Our sequential and spatial transformer variants perform atleast
1.0% and 2.4% better than their next best foveated counterparts. In both cases, the next best
method is the Multi-FoV crop method which shares similarities with our method in that fil-
ters are only translated and scaled over the visual field, however, unlike our method, foveal
and peripheral features are maintained in separate featuremaps. We find that performance of
our model trails slightly behind the learning to zoom method and *full” resolution ConvNeXt.
By allowing the sequential model to perform more fixations we can achieve higher accuracy
than Learning-to-Zoom (76.5% vs 75.8%) albeit at an increased number of FLOPs. Simi-
larly, given the performance improvement of foveated sampling over uniform downsampling
for non-attentive models, we speculate that a similar increase in accuracy could be obtained
for a foveated sensor with 2247 pixels.

4.2 Performance with Diverse Object Scales

A key benefit of foveated sampling is the ability to resolve fine details yet also reason about
a wide field of view, with fewer pixels than uniform sampling. We analyse this claim by
performing experiments using two augmented variants of the MNIST dataset, where we
closely control the scale distribution of digits and avoid any bias regarding the positions
of objects. This property is not common in image classification datasets (e.g. Imagenet
[6]), which typically exhibit camera bias — a tendency for objects of interest to be centred
in the frame and relatively large in proportion to the full image. Our 2 MNIST variants,
namely S-MNIST and ST-MNIST (scaled and scaled-translated, respectively), consist of
randomly scaled MNIST digits between 1 and 8 times their original size. In S-MNIST, we
place the scaled digits at the centre of a 224 x 224 pixel canvas, whereas in ST-MNIST,
we also randomly translate the digit. Crucially, while the images for this task are 224 x
224 in size, we enforce a constraint that all networks aggressively downsample the input to
approximately 282 pixels to significantly reduce the computational overhead of the system.
In such a scenario, small-scaled digits will have a large portion of salient information about
their class destroyed, and attentive methods must learn to adapt their sensors to resolve and
classify small digits. Full details of network architectures and implementation details are
given in the supplementary material.

Results and discussion. Our results show that adaptive sampling methods can accurately
solve the classification task and significantly improve over the uniform downsampling ap-
proach (Table 2). In particular, our active approach achieves an 11% performance improve-
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Method Sensor Separate Localisation Network Accuracy (%)
S-MNIST ST-MNIST

CNN Uniform X 86.6 86.9
STN Uniform v 93.7 90.1
PTN Log-Polar v 98.4 97.5
Fov-STN Multi-FoV Crops v 98.2 96.9
Fov-STN (Ours) Our Sensor v 98.4 97.6
Sequential (Ours)  Our Sensor X 98.4 97.9
Graph-CNN (Ours ~ Our Sensor X 98.3 79.2

Table 2: Accuracy on our MNIST variants with high-scale variation. We show that adaptive
and foveated sampling methods significantly improve the models ability to recognize objects
over a wide range of scales compared to static uniform methods (CNN)

ment over the uniform downsampling baseline on ST-MNIST and does so with only 66 ad-
ditional parameters. We show that the adaptive methods can nearly match their ST-MNIST
performance showing they accurately learn to locate and attend to small objects in the scene.
For additional context, we evaluate our approach while only fixating on the image centre.
This model achieves only 79.2% accuracy, showing that attention is indeed needed to solve
this task. The full affine spatial transformer performs worse than other adaptive methods by
~ 7% on ST-MNIST and ~ 5% on S-MNIST. We observed that training would frequently
collapse for spatial transformers, we include results for runs that did not collapse. Notably,
the full affine spatial transformer is the only method that adapts its sampling grid by regress-
ing transformation parameters through an MLP. This suggests that a principled computation
of transformation parameters performed in the other models is significantly easier to opti-
mise. All the adaptive methods are approximately on par with each other.

4.3 Ablation Experiments

We conduct additional experiments on Imagewoof, a 10-class subset of Imagenet, to probe
various aspects of our model. This dataset contains 10 different species of dogs with ap-
proximately 900 images per class in training and 400 per class for testing. We take 10% of
the training set to create a validation set which we used to tune hyperparameters and select
the best checkpoint. The fine-grained nature of this dataset means it remains challenging,
while its small size allows us to rapidly perform experiments in a variety of settings. We
examine three different aspects of our model — how the radius of the fovea, the number of
fixations and different policies for attention affect classification accuracy. We maintain the
same experimental set-up and training routine as the Imagenet-100 experiments, except we
change the learning rate from 0.004 to 0.0025.

Effect of Fovea Radius. In order to ascertain whether performance increase over a uniform
baseline is due to foveation, we sweep over a range of fovea radii. All models are trained
with three fixations. We consider 3 variants of our model for this experiment, a 112> pixel
input variant, a 567 pixel variant, and a narrow 56> pixel variant with half the number of
filters in each layer. We find optimal fovea radius values of 60%, except in the case of the
narrow model which is 40%. The benefit of foveation is more pronounced for the scaled
down models. Sandler et al. [29] observe that, due to the common architectural design
choices of CNNss, resolution and width scaling are approximately the same. This can explain
why foveation becomes a more important factor when scaling the model down with respect
to these dimensions and suggests foveation can provide an increasingly beneficial role in
more lightweight CNN architectures.
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Figure 4: Left: Performance of our model with varying radius of fovea (100 corresponds to
negligible foveation). Right: Performance with varying numbers of fixations; we see that
performance increases with more fixations when the attention policy is learned

Effect of Number of Fixations. We investigate how our model scales as the number of
fixations increases (Figure 4, right). We consider two different attention policies, our learned
attention, and random attention. We show that under a learned attention policy our network
continues to result in improved classification accuracy as the number of fixations increases.
Noticeably there is an approximately 4% accuracy boost from 1 to 10 fixations. By contrast,
the network does not derive significant benefits from extra fixations under a random policy,
and even degrades when the number of fixations is low. Given the intuition that object
recognition improves when the foveated sensor is centered on the object of interest, we
should expect it to decrease when it is not. This can explain the drop in performance with a
random policy as our model simply averages predictions across timesteps.

5 Conclusion

In this work, we have presented an end-to-end differentiable active vision model. Our model
actively attends to visual scenes and aggregates information over multiple timesteps through
a space-variant foveated sensor. We show that our model can outperform a non-attentive
CNN at classifying natural images by ~ 2% with 1 fixation using a 112> pixel input and
performs better than alternative foveated CNNs. We further show that foveated architec-
tures have particular application to recognizing objects over a high dynamic range of scales.
Ablation experiments show that foveation becomes increasingly beneficial for smaller ar-
chitectures suggesting they can fulfil a useful role in lightweight computer vision systems.
There are many avenues for future work with regard to this architecture. More powerful
methods for integrating information from multiple fixations could prove beneficial (e.g. self-
attention). Additionally, allowing the network to remember previously attended locations
and prevent returning to them may help in maximizing the information the system gains
when fixating over many time steps.
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