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Abstract

Generating temporally consistent outputs in video semantic segmentation is critical,
especially in sensitive applications like self-driving cars. Most approaches attempt to
solve the temporal inconsistency issue by using optical flow networks or altering the
architecture of the network to extract relevant information from multiple input frames.
This paper presents Momentum Adapt, an unsupervised online method for improving
the temporal consistency in video semantic segmentation. The method uses two seman-
tic segmentation networks with identical architecture and tries to increase the model’s
confidence by taking their predictions as ground truth. The first network (AuxNet) is
updated by backpropagation, while the weights in the second network (MainNet) are the
exponential moving average of the weights from the first network. Our extensive quan-
titative evaluation shows that our approach significantly improves the performance of
the network without adaptation. It also outperforms the state-of-the-art algorithm, espe-
cially in more severe conditions, including domain shift and noise. These evaluations are
performed on three datasets, Cityscapes, KITTI, and SceneNet RGB-D, with many state-
of-the-art semantic networks used as the base network for the adaptation algorithms.

1 Introduction
Over the years, significant improvement has been made in image semantic segmentation.
However, video semantic segmentation is a more complicated task. One additional complex-
ity of video semantic segmentation is outputting consistent predictions over time. Therefore,
the typical approach of applying an image-based model to video frames leads to temporally
inconsistent predictions.

Many methods try to address the problem of temporal inconsistency in video semantic
segmentation. Several studies [16, 23] use optical flow to make more consistent predictions
in consecutive frames. However, optical flow estimation is computationally expensive and
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can be inaccurate, contributing to worse predictions over time. Other approaches attempt
to change the model design to incorporate processing multiple frames inside the architec-
ture, indirectly making more consistent predictions by including information from multiple
frames, such as studies [11, 25].

In a more recent study [30], the authors present AuxAdapt, an unsupervised test-time
adaptation technique for temporally consistent video semantic segmentation. The main idea
behind AuxAdapt is for the network to learn from its previous decisions. AuxAdapt pro-
cesses the frames one by one without additional computation of multiple frames. Further-
more, it employs an additional network to stabilize the process. During the adaptation pro-
cess, one of the networks (MainNet) is frozen, while the other network (AuxNet), usually a
smaller one, is trained via backpropagation. By keeping MainNet frozen, the performance of
the model is highly dependent on the performance of AuxNet, which could lead to instability.

We hypothesize while the frozen network in AuxAdapt is a stabilizing factor, it limits the
performance of the model. Therefore, We propose Momentum Adapt, a novel unsupervised
online adaptation for semantic segmentation models. Momentum Adapt, which is shown
in the middle of figure 1, addresses the problem of instability and limited performance by
incorporating a momentum network instead of a frozen Network. In Momentum Adapt,
the active network (AuxNet) is trained with backpropagation, while the momentum network
(MainNet) is updated in each iteration using the weights of AuxNet. More specifically, the
MainNet’s weights are the exponential moving average (EMA) of AuxNet’s weights. We
hypothesize that by having the momentum network, the model will more easily adapt to the
changes in the environment during the test time.

The momentum network concept has shown great success in other fields. For example,
Momentum Contrast (MoCo) [9] keeps a momentum encoder as a dictionary for contrastive
learning. Similarly, a momentum network is used for cross-domain object detection [28]. In
this work, we utilize a momentum network for online adaptation in video semantic segmen-
tation to generate temporally consistent segmentations.

The main contribution of this work includes:

• We present Momentum Adapt, a robust unsupervised online adaptation technique for
improving the temporal consistency of semantic segmentation models. Additionally,
Momentum Adapt employs a new loss function that works well with momentum up-
dates.

• We do comprehensive testing to compare the effectiveness and robustness of our meth-
ods compared to the best current adaptation technique. The experiments are conducted
in standard, and more severe conditions, including noise, domain shift, and lower
adaptation frequency.

• We combine our approach with AuxAdapt to take advantage of having a smaller net-
work, leading to a less expensive backward pass during adaptation for computation-
sensitive tasks.

2 Related Work
For many years, semantic segmentation networks based on convolutional networks were the
standard methods for single-image semantic segmentation, e.g., PSPNet[32], HRNet[26],
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Figure 1: Conceptual Comparison of three adaptation algorithms for improving temporal
consistency: Here, we show how each algorithm processes video frames individually to
improve temporal consistency. AuxAdapt: It employs two pre-trained networks, one frozen
network (MainNet), and one active network, AuxNet, shown by two borders, representing the
possibility of different sizes. AuxNet is trained using the outputs from MainNet and AuxNet
to increase the confidence of the model. Momentum Adapt: we adopt a similar approach
to AuxAdapt. However, a momentum network (MainNet) with identical architecture is used
instead of a frozen network. Additionally, Momentum Adapt utilizes a new weighted loss
function for training AuxNet, before using momentum updates for Auxnet with the initial
weights of the pre-trained network. Aux-Momentum Adapt: We merge AuxAdapt and
Momentum Adapt to take advantage of the lower computation of a smaller active network.

DeepLab[3], and U-NET[21]. However, transformers have entirely changed the field in
terms of performance and efficiency, e.g., ViT-Adapter[4], SegFormer[27], and SwinV2[14].

Despite significant advances in single-image semantic segmentation, video semantic seg-
mentation remains to be a less explored task. Using image-based methods for videos is the
most convenient approach to video semantic segmentation. However, in safety-sensitive
tasks, the stability and reliability of the prediction are essential. Therefore, many studies
propose approaches that directly or indirectly address the temporal inconsistency issue.

The problem of temporal inconsistency is not limited to semantic segmentation. Many
studies try to improve temporal consistency in different tasks, e.g., depth estimation [12, 29],
object tracking [5], and style transfer [2]. However, the approaches used for these tasks
are very similar to video semantic segmentation methods. These methods often modify an
image-based model to have more consistent outputs and can be categorized into two sets of
approaches: modifications to model design and post-training modifications.

2.1 Modifications to Model Design

Most of these approaches try to make structural changes in the architecture of the network
to improve temporal consistency. This can be done by sophisticatedly extracting relevant
information from multiple frames [11, 25], incorporating an optical flow network in the
architecture[16, 23], incorporating recurrent neural networks (RNN) [19, 20], or a combina-
tion of these methods[18]. The loss function is the other component of the model that can be
modified. For example, [24] defines a loss function using optical flow to enforce temporal
consistency between consecutive frames during training.
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2.2 Post-Training Modifications
Some of the methods in this category involve fine-tuning the model using regularization loss
functions based on the optical flow [13] or cross-correlation of consecutive frames [31]. Oth-
ers attempt to improve the temporal consistency during test time. For example, Deep Video
Prio (DVP) [10] improves the temporal consistency of a single video for lower-level pro-
cesses, including image colorization and style transfer. DVP passes through a single video
multiple times, making it unsuitable for online implementation. AuxAdapt [30] addresses
some of the limitations of DVP and is shown to be compatible with other methods of im-
proving temporal consistency.

3 Method
Let Xt be a RGB frame, Xt ∈ [0,1]H×W×3, from a video , {Xt}T

t=1 where T is the number
of frames. Given a pre-trained semantic segmentation network, f main, the prediction map
for each frame, Y main

t ∈ RH×W×K), K denoting number of classes, is obtained by passing
Xt through f Main, Y Main

t = f Main(Xt). For a given location in the image (i, j) and class k,
Y Main

t (i, j,k) represents the likelihood of pixel (i, j) belonging to class k. In the case of no
adaptation, for the final decision of semantic segmentation, argmax is applied to the last
dimension of Y Main

t to get Y Seg
t . This will lead to inconsistencies in the predictions of video

frames over time [30].

3.1 Momentum Adapt
In Momentum Adapt, we propose a new algorithm for improving temporal consistency. Mo-
mentum Adapt has two networks with identical architecture, f Aux and f Main. Similar to Aux-
Adapt, the final decision for semantic segmentation of the frame Xt is obtained by adding the
output of both networks and passing it through an argmax operation as shown by equation 1:

Y seg
t (i, j) = argmax( f Aux(Xt(i, j))+ f Main(Xt(i, j))). (1)

θ Aux and θ Main denote the parameters of f Aux and f Main, respectively. We update θ Main

at time t as follow:
θ

Main
t = α.θ Main

t−1 +(1−α).θ Aux
t−1 (2)

where α ∈ [0,1] is a a momentum coefficient for MainNet. The parameters of f Aux, θ Aux are
updated by gradient descent as follows:

θ
Aux
t = θ

Aux
t−1 − γ.∇θAuxLtotal (3)

where γ denotes the learning rate. Ltotal is the weighted sum of two cross-entropy [1] losses
.

Ltotal = λ1.LCE( f Aux(Xt),Y seg)+λ2.LCE( f Aux(Xt),argmax( f Main(xt))) (4)

where λ1 and λ2 representing the importance of each loss. The second loss term is introduced
to increase the stability of the algorithm since it has f Aux(Xt) only in its input. In each
iteration, after training f Aux by backpropagation, the weight of f Aux, θ Aux

t are updated by
momentum rule, similar to equation 2, with the weights from the original network at timestep
zero. The update is as follows:

θ
Aux
t = β .θ Aux

t−1 +(1−β ).θ Aux
0 (5)
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where β represents the momentum coefficient for AuxNet, and θ Aux
0 is the original weights

of Auxnet before the adaptation.

3.2 Aux-Momentum Adapt
AuxAdapt utilizes a smaller network for backpropagation training. However, in Momentum
Adapt, both networks must have the same architecture, which means more relative compu-
tation. We combine our approach with AuxAdapt to benefit from the lower computations of
a smaller network. More specifically, Aux-Momentum Adapt, illustrated on the right side
of figure 1, uses three networks for the adaptation process, one frozen network (MainNet1),
and two identical smaller networks, MainNet2 and AuxNet. The final output of the model
is generated by adding the output of all three networks and passing it through an argmax
operation as follows:

Y seg
t (i, j) = argmax( f Main1(Xt(i, j))+ f Main2(Xt(i, j))+ f Aux(Xt(i, j)). (6)

The wights of MainNet2, θ Main2, are updated according to equation 2. Similarly, AuxNet is
trained by backpropagation according to equation 3. However, Ltotal is computed differently
since three networks are involved. Ltotal is the total loss function:

Ltotal = λ1.LCE( f Aux(Xt),Y seg)+λ2.LCE( f Aux(Xt),argmax( f Main1(xt)+ f Main2(xt))) (7)

where λ1 and λ2 refer to the weight of the loss terms. After the backpropagation, similar to
Momentum Adapt, AuxNet’s weights, θ Aux are updated according to equation 5.

4 Experiments
In this section, we describe the evaluation metrics that we used for comparing our method to
AuxAdapt. Furthermore, We discuss the datasets and the networks that were used in different
experiments and dive share the result of our experiments. These experiments include results
showing the effect of noise, lower adaptation frequency, and domain shift.

4.1 Evaluation Metrics
For evaluating the accuracy of the semantic segmentation, Jaccard index [7], otherwise
known as mean intersection-over-union (mIoU).

For measuring the consistency of prediction of the network for two consecutive frames,
we used Temporal consistency (TC) metric introduced by [22]. While the two metrics, TC
and mIoU, as shown by [22] are correlated, both are needed for a holistic evaluation of
each method’s performance. For example, in some of the instances in the result section 4.3,
although two models have very close mIoUs, they have different TCs.

4.2 Setup
Similar to AuxAdapt, Cityscapes [6] and KITTI [8] datasets were used. For the Cityscapes
dataset, the validation set, which includes 500 videos each with 30 frames of the size 1024
×2048 is used. The KITTI dataset is used for the domain shift experiments. For this exper-
iment, 61 raw KITTI videos from city, residential, and road categories are selected. Each
video is cropped at 300 frames and resized to 384×1280.
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The number of frames with ground truth labels for the Cityscapes and KITTI datasets is
limited, each only having 500 and 200 frames with annotations, respectively. For addressing
the limited labels issue, we used an additional simulated dataset, SceneNet RGB-D [17]. In
our experiments, 60 videos from the validation split of the SceneNet RGB-D dataset were
randomly sampled, each video with 300 frames of the size 320x240.

The networks used for the experiments are the state-of-the-art image-based models,
such as FCN [15], HRNetV2 [26], DeepLabV3Plus [3], PSPNet [32], ANN [33], Seg-
Former [27]. For HRNetV2, three different versions, HRNetV2-W18-Small, HRNetV2-
W18, and HRNetV2-48, are utilized in the experiments. The networks used for Cityscapes
and SceneNet RGB-D experiments are trained for 40,000 and 80,000 iterations, respectively.
Then, these trained networks are employed in the adaptation algorithms. Since the networks
in Momentum Adapt must have the same architecture, identical networks are also used in
AuxAdapt to keep the relative computation comparable. Although, this is not the case for
Aux-Momentum Adapt experiments, and a smaller network, similar to the original Aux-
Adapt design, is utilized for AuxNet in AuxAdapt and Aux-Momentum.

There are some very important hyperparameters in our algorithms that can completely
change the results of our methods. We use the typical learning rate in the fine-tuning task,
0.0001. For momentum coefficients, α is set to 0.0001 and β is set to 0.1. For weights of
the loss terms, λ1 and λ2 are set to 15 and 1, respectively.

4.3 Results

In the following section, we show that both of our methods significantly improve the per-
formance of the model compared to the base model with no adaptation. Furthermore, the
effectiveness of our algorithms is analyzed by comparing our results to AuxAdapt’s. We
use many state-of-the-art single-frame semantic networks [3, 15, 26, 27, 32, 33] in different
situations to illustrate the superiority of our methods.

SceneNet RGB-D and Cityscapes Evaluation: In this set of experiments, the perfor-
mance of our method are compared to AuxAdapt and the base network. In Addition to
TC and mIoU, the estimated number of floating-point operations per second (GFLOPS) and
Memory used in one iteration are also available in Table 1 and Table 2

For Momentum Adapt experiments on both datasets, as shown by Table 1, the method
makes a notable difference in both performance metrics compared to the base network.
For example, on SceneNet RGB-D dataset, Momentum Adapt increases TC and mIoU for
HRNetV2-w18s network by 6% and 3.7%, respectively. Furthermore, Momentum Adapt
supersedes the performance of AuxAdapt in most experiments, except for the case of the
SegFormer network on the SceneNet RGB-D dataset, where it has around 1% lower perfor-
mance in both metrics.

More stability is the other advantage of Momentum Adapt. As shown by the red numbers
in Table 1, AuxAdapt has collapsed to a single class, outputting constant predictions of
only one class, thus having a very low mIoU. This failure of AuxAdapt can be due to the
unchanging scenery, for example, the camera pointing to a wall in the SceneNet RGB-D
dataset for many frames.

As shown by Table 2, similar to Momentum Adapt experiments, Aux-Momentum Adapt
significantly improves both metrics compare to the case of no adaptation and AuxAdapt.
In this set of experiments, as shown by the red figures in Table 2 on the SceneNet RGB-D
dataset, AuxAdapt fails two times out of three experiments.
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Adaptation Base Network TC mIoU GFLOPs Memory(MB)
SceneNet RGB-D Dataset

No Adaptation
HRNetV2-w18s [26]

53.44 44.32 2.8 1341
AuxAdapt [30] 57.45 45.00 9.8 1997

Momentum Adapt (ours) 59.47 48.03 10 2017
No Adaptation

HRNetV2-w18 [26]
56.88 45.75 5.4 1363

AuxAdapt [30] 61.98 48.48 18.9 2655
Momentum Adapt (ours) 65.20 51.15 19.3 2697

No Adaptation
HRNetV2-w48 [26]

59.17 54.47 27.6 1841
AuxAdapt [30] 45.97 2.32 96.6 5053

Momentum Adapt (ours) 65.87 60.3 97 5321
No Adaptation

SegFormer-b5 [27]
60.61 56.46 15.2 1795

AuxAdapt [30] 64.15 58.80 53.2 9057
Momentum Adapt (ours) 63.87 57.19 53.7 9421

Cityscapes Dataset
No Adaptation

Unet-s5-d16 [21]
64.02 66.98 405.7 7099

AuxAdapt [30] 65.74 67.16 1420 23066
Momentum Adapt (ours) 67.85 67.52 1421 23173

No Adaptation
HRNetV2-w18s [26]

73.08 72.20 19.3 2037
AuxAdapt [30] 77.07 72.80 67.6 4537

Momentum Adapt (ours) 77.70 74.09 68 4595
No Adaptation

HRNetV2-w18 [26]
75.35 75.84 37 2059

AuxAdapt [30] 78.82 75.85 129.5 6897
Momentum Adapt (ours) 79.27 76.74 130 6977

No Adaptation
HRNetV2-w48 [26]

76.31 77.12 187.2 3149
AuxAdapt [30] 78.95 77.46 655.2 13105

Momentum Adapt (ours) 79.13 78.19 655.7 13381
No Adaptation

DeepLabV3-r50-d8 [3]
75.64 76.91 539.4 3229

AuxAdapt [30] 78.92 76.67 1888 13339
Momentum Adapt (ours) 79.16 77.67 1889 13659

Table 1: Comparison between AuxAdapt and Momentum Adapt evaluated on SceneNet
RGB-D and Cityscapes dataset.

Method TC mIoU GFLOPs Memory(MB)
SceneNet RGB-D Dataset

HRNet-w18s [26] (AuxNet) w/o Adaptation 53.44 44.32 2.8 1341
HRNet-w18 [26] (MainNet) w/o Adaptation 56.88 45.75 5.4 1363

w/ AuxAdapt [30] 25.60 1.88 12.4 2019
w/ Aux-Momentum Adapt (ours) 62.10 51.20 15,4 2055

HRNet-w18 [26] (AuxNet) w/o Adaptation 56.88 45.75 5.4 1363
HRNet-w48 [26] (MainNet) w/o Adaptation 59.17 54.47 27.6 1841

w/ AuxAdapt [30] 63.64 55.42 41.1 2917
w/ Aux-Momentum Adapt (ours) 64.74 56.51 46,9 2999

HRNet-w18 [26] (AuxNet) w/o Adaptation 56.88 45.75 5.4 1363
SegFormer-b5 [27] (MainNet) w/o Adaptation 60.61 56.46 15.2 1795

w/ AuxAdapt [30] 23.65 0.63 28.7 3063
w/ Aux-Momentum Adapt (ours) 66.44 58.39 34 3063

Cityscapes Dataset
HRNet-W18s [26] (AuxNet) w/o Adaptation 73.08 72.20 19.3 2037
HRNet-W18 [26] (MainNet) w/o Adaptation 75.35 75.84 37 2059

w/ AuxAdapt [30] 78.99 75.36 85.2 4559
w/ Aux-Momentum Adapt (ours) 79.27 76.31 104.5 4683

HRNet-W18 [26] (AuxNet) w/o Adaptation 75.35 75.84 37 2059
HRNet-W48 [26] (MainNet) w/o Adaptation 76.31 77.12 187.2 3149

w/ AuxAdapt [30] 79.55 77.01 279.7 7283
w/ Aux-Momentum Adapt (ours) 79.86 78.20 316.7 7433

HRNet-W18 [26] (AuxNet) w/o Adaptation 75.35 75.84 37 2059
DeepLabV3Plus-R50-D8 [3] (MainNet) w/o Adaptation 75.16 77.67 352.7 3961

w/ AuxAdapt [30] 80.03 77.57 445.2 6973
w/ Aux-Momentum Adapt (ours) 80.22 79.30 482.2 7127

Table 2: Comparison between AuxAdapt and Aux-Momentum Adapt on SceneNet RGB-D
and Cityscapes dataset.

Domain Shift Evaluation (from KITTI to Cityscapes): For many datasets, The ground
truth labels of every frame are unavailable. In this case, the model is usually trained on a
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Method TC mIoU
FCN-r101-d8 (AuxNet and MainNet) [15] w/o Adaptation 62.17 55.37

w/ AuxAdapt [30] 67.65 58.86
w/ Momentum Adapt (ours) 69.64 59.47

HRNetV2-W18 [26] (AuxNet and MainNet) w/o Adaptation 64.42 60.15
w/ AuxAdapt [30] 70.32 62.74

w/ Momentum Adapt (ours) 71.57 64.21
DeepLabV3Plus-r50-d8 [3] (AuxNet and MainNet) w/o Adaptation 64.03 59.66

w/ AuxAdapt 71.31 63.97
w/ Momentum Adapt (ours) 72.15 65.76

PSPNet-r101-d8 [32] (Auxnet and MainNet) w/o Adaptation 66.94 61.20
w/ AuxAdapt 72.00 63.46

w/ Momentum Adapt (ours) 72.78 65.97
Table 3: Comparison between AuxAdapt and Momentum Adapt from Cityscapes to KITTI
Dataset.

Method TC mIoU
HRNetV2-w18 [26] (auxnet) w/o Adaptation 64.42 60.15

HRNetV2-w48 [26] (mainnet) w/o Adaptation 65.07 58.75
w/ AuxAdapt [30] 72.06 60.37

w/ Aux-Momentum Adapt (ours) 71.37 66.30
HRNetV2-w18 [26] (auxnet) w/o Adaptation 64.42 60.15
ANN-r50-d8 [33] (mainnet) w/o Adaptation 62.87 58.36

w/ AuxAdapt [30] 71.68 63.34
w/ Aux-Momentum Adapt (ours) 73.08 66.05

HRNetV2-w18 [26] (auxnet) w/o Adaptation 64.42 60.15
DeepLabV3Plus-r50-d8 [3] (mainnet) w/o Adaptation 64.03 59.66

w/ AuxAdapt [30] 72.88 66.62
w/ Aux-Momentum Adapt (ours) 73.14 67.65

HRNetV2-w18 [26] (auxnet) w/o Adaptation 64.42 60.15
PSPNet-r101-d8 [32] (mainnet) w/o Adaptation 66.94 61.20

w/ AuxAdapt [30] 72.94 66.42
w/ Aux-Momentum Adapt (ours) 73.37 67.95

Table 4: Comparison between AuxAdapt and Aux-Momentum Adapt from Cityscapes to
KITTI Dataset

similar dataset, and then fine-tuned for the target dataset. By improving the confidence of
the model, the model will have more consistent output in the new domain, improving its
performance. Therefore, we use our adaptation methods and their counterpart algorithm,
AuxAdapt, to show the effectiveness of temporal consistency adaptation for a different do-
main.

In the following experiments, the models are trained on the Cityscapes dataset and eval-
uated on KITTI. Figure 3 illustrates the performance of both methods, AuxAdapt and Mo-
mentum Adapt. Compared to the base network, both methods significantly improve TC and
mIoU. However, Momentum Adapt outperforms AuxAdapt in every experiment.

For Aux-Momentum, as illustrated by Table 4, similar improvements to Momentum
Adapt experiments can be observed. However, in one of the models, where HRNetV2-w48
is the MainNet and HRNetV2-w18 is the AuxNet, TC in Aux-Momentum is lower by 0.69%
compared to the AuxAdapt model. At the same time, its mIoU is significantly higher than
that of AuxAdapt.

Lower Update Frequency Evaluation: Adapting the model less frequently can save
a lot of computation. Therefore, it is important to see how much lower rates of update im-
pact each algorithm. In other words, the model in not updated for some frames, despite being
evaluated for those frames. For Momentum Adapt experiments, similar to noise experiments,
HRNetV2-w18 is used for both networks in both algorithms. Figure 5 shows lowering the
update rate has a similar effect on both algorithms and decreases both measures, TC and
mIoU, by a small amount. The widest performance gap is between skipping no frame (up-
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dating every frame) and skipping four frames (updating every fifth frame), which is around
1.5% for both metrics.

Method # Skipped Frames TC mIoU
AuxAdapt [30] 0 78.82 75.85

Momentum Adapt (ours) 79.27 76.74
AuxAdapt [30] 1 78.17 75.56

Momentum Adapt (ours) 78.86 76.97
AuxAdapt [30] 2 77.85 75.89

Momentum Adapt (ours) 78.52 76.57
AuxAdapt [30] 4 77.53 75.56

Momentum Adapt (ours) 78.16 76.34
Table 5: Comparison between AuxAdapt and Momentum Adapt with different Adaptation
Frequency, when both AuxNet and MainNet are HRNetV2-W18.

For Aux-Momentum Adapt, similar to noise experiments, HRNetV2-w48 and HRNetV2-
w18 are employed as MainNet and AuxNet, respectively, to compare the performance for
various update rates. Figure 6 depicts an even better picture for Aux-Momentum Adapt
compared to Momentum Adapt. mIoU measure for Aux-Momentum Adapt almost stay con-
stant, despite the lowered adaptation frequency. Temporal Consistency also remains almost
unchanged, the widest gap being around 0.6%. Similarly, the performance loss in AuxAdapt
is also minimal but more significant than Aux-Momentum Adapt.

Method # Skipped Frames TC mIoU
AuxAdapt [30] 0 79.55 77.01

Aux-Momentum Adapt (ours) 79.86 78.20
AuxAdapt [30] 1 79.01 76.62

Aux-Momentum Adapt (ours) 79.58 78.27
AuxAdapt [30] 2 78.89 77.05

Aux-Momentum Adapt (ours) 79.47 78.16
AuxAdapt [30] 4 78.63 76.74

Aux-Momentum Adapt (ours) 79.17 78.10
Table 6: Comparison between AuxAdapt and Aux-Momentum Adapt with different Adap-
tation Frequency, when the MainNet is HRNetV2-w48 and the AuxNet is HRNetV2-w18.

More results, including noise experiments and qualitative measures, are included in sup-
plementary materials.

5 Conclusion
This paper presents a novel unsupervised online adaptation method, Momentum Adapt, for
improving the temporal consistency of the output in video semantic segmentation tasks.
Comprehensive testing shows that our method, in most cases, significantly outperforms its
counterpart algorithm, AuxAdapt. Additionally, we introduce a second algorithm, which
combines our approach and AuxAdapt, to take advantage of utilizing a smaller network for
training. By conducting more experiments in the presence of noise, domain shift, and lower
update frequency, while our methods have more computation, they have superior perfor-
mance and are more stable.

For Future work, the concepts used in this paper can be applied to other tasks, such as
depth estimation and object tracking.
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