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Abstract

Obtaining precise instance-level segmentations is a challenging task in machine learn-
ing. Especially for objects with complex and non-convex geometries or with partial oc-
clusions scribble, bounding boxes or user clicks are often provided to guide the segmen-
tation. In this paper, we explore the usage of a remote eye tracking system to generate
gaze data as an additional input for object segmentation models (called EyeGuide). The
gaze data is recorded during routine image inspections (i.e. without giving a particular
task) and is used as an additional input to train neural networks. Our results indicate that
the acquisition of gaze data is faster and more convenient than providing explicit user
input, less annotations are necessary to generate equal or better segmentation results and
also overall better generalisation capabilities on unseen classes compared to state-of-the-
art techniques. In summary, EyeGuide is a simple yet powerful guidance strategy that
can directly be integrated in image inspection routines and neural network architectures.

1 Introduction
Supervised deep learning techniques have become the most powerful algorithms for a variety
of computer vision tasks, including image classification, object detection and instance seg-
mentation [6, 14]. This has been achieved by training these algorithms with huge amounts
of usually manually annotated image or video data. As a consequence, a key challenge of
developing these techniques has shifted from the development of sophisticated algorithms
to providing abundant quantities of accurately curated training data, which is particularly
true for image segmentation tasks requiring complex pixel-precise and dense annotations.
For example, the recently published "segment anything model" has been developed to pro-
vide an efficient interactive data collection loop using a foundation model that has been
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pretrained on 11 million images comprising 1 billion segmentation masks [11]. While foun-
dation models such as SAM yield very good results on a variety of pre-defined image seg-
mentation tasks user input is often still required to identify the particular object of interest.
Moreover, given complex geometries, thin protrusions or partially occluded and disjoint ob-
ject appearances, additional corrections are often provided in a semi-automatic and interac-
tive fashion [26]. In addition many annotation tasks, such as segmenting particular cells in
biomedical image data, require expert knowledge so that effective data acquisition is pivotal
to enable precise image analyses at scale [3]. To avoid cumbersome and time consuming
dense user input simplified prompts such as bounding boxes [5, 10, 13, 31], scribble [15, 25]
or clicks [1, 12, 19, 23, 34] are often used to accelerate the data curation. Even though
these types of inputs can be generated much faster than dense object contours, there is still a
considerable amount of manual labour necessary to collect the annotations.

1.1 Contribution
In this paper we explore an alternative paradigm to provide an additional user generated in-
put without the need for further explicit data interaction. We achieved this by integrating
a remote eye tracking system into the regular data interaction workflow which captures the
users gaze trajectories during the image inspection. Importantly, no specific tasks or con-
straints were given to the user so that the object was inspected freely for an arbitrary amount
of time. We propose our method EyeGuide in which the resultant gaze data is converted
into a gaze map and straight-forwardly integrated as an additional input to a neural network
to guide the segmentation. To evaluate EyeGuide we generated gaze trajectories for Pas-
calVOC2012 [7] and biomedical images from the Cellpose dataset [30] resulting in 4,007
gaze annotations. Our results demonstrate that unconstrained gaze data is faster to acquire
and often yields better results compared to other prompting techniques. Especially in case
of complex highly non-convex geometries such as objects with frequent and thin protru-
sions or partially occluded objects, EyeGuide outperforms the state-of-the-art and results in
more precise segmentation masks even when trained on a fraction of the training data. We
therefore conclude that the integration of eye tracking data is a powerful and convenient al-
ternative to other user input strategies and offers great potential for a variety of applications
while reducing the needed labour time and improving the segmentation performance.

1.2 Related Work
Research on integrating gaze data into image analysis algorithms has been done for more
than 10 years [20]. Our work is mainly related to two different approaches namely the
integration of gaze data into supervised learning and instance segmentation with additional
user input.

Gaze Data in Supervised Learning In the past gaze data has been integrated into super-
vised machine learning to extract attention heatmaps from human image inspections or to
obtain auxiliary information for improving the machine learning tasks directly. To provide
computer-aided diagnosis gaze data has been used to guide the attention of neural networks
based on visual attention of a medical expert [32]. This has been achieved by integrating an
attention consistency module which is used as a regularizer during training. Bhattacharya
et al. also utilize the gaze data to improve the networks attention by suggesting a novel
student-teacher architecture in combination with a visual attention loss [2]. Furthermore, Yu
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et al. suggest to supervise neural attention models by human gaze in order to improve video
captioning [36]. The authors introduce a gaze encoding network which provides spatial and
temporal attention for sentence generations. Instead of generating attention maps from gaze,
eye tracking data can also be used as auxiliary information directly. For example, Saab et al.
used gaze data to improve medical image classifications and to estimate weak classification
labels based on statistically derived gaze features [27]. Similarly, Wang et al. integrated
gaze data to guide the region selection towards local information in a weakly supervised
image classification framework [33]. Gaze trajectories have also been used as auxiliary in-
formation by converting it into gaze histograms, grid-based gaze features and sequential
gaze-data which are subsequently used to enable zero-shot classification [9]. Beyond im-
age classifications and to further simplify expert interactions Stember et al. integrated gaze
data with speech recognition to add annotated 2D points of brain lesion locations in MRI
scans [29]. The resultant dataset was used to train a neural network to predict single point
locations with associated classes in a proof of principle study. Gaze data has also been used
as auxiliary information to improve the learning of semantic visual attributes such as "open"
or "pointy" [21]. To the best of our knowledge there exists only one work on eye track-
ing for deep learning-based segmentation that uses the gaze to generate segmentation masks
which are subsequently used for weakly supervised learning [28]. Since the annotator was
instructed to trace the objects contour a convex hull algorithm was sufficient to extract the
masks directly from the eye movement.

Instance Segmentation with Additional User-Inputs In recent years additional inputs,
such as bounding boxes and scribble, has been frequently used to improve performances.
For example bounding boxes are used as noisy labels to improve boundary refinement [13]
or as an additional input to provide soft constraints for a convolutional encoder-decoder
network [35]. Scribble annotations, which provide dense point trajectories, are often used
to improve semantic segmentation. For example one could use a scribbled initial contour
surrounding the object which is then deformed to match the real boundary using a neural
network [25]. In contrast to these two methods, individually set sparse clicks are one of the
most commonly used additional inputs for instance segmentation. For example, Bearman
et al. incorporated point supervision in combination with a novel objectness potential to a
neural network [1]. Koohbanani uses either single clicks or scribbles to enable interactive
segmentation for microscopy images [12]. Others have incorporated single clicks in the cen-
ter of an imaginary bounding boxes into multiple instance learning techniques for weakly
supervised object localization [23]. Alternatively, the same authors propose to provide four
points on the object (top-, bottom-, left- and right-most point) followed by a GrabCut like
segmentation algorithm [24]. The usage of extreme points for instance segmentation has
been further explored by Maninis et al. [19]. In an approach called Deep Extreme Cut
(DEXTR), the authors demonstrate that the segmentation accuracy strongly benefits from
this additional input.

2 Method
An overview of our method is given in Figure 1. Using a remote eye tracking system, gaze
trajectories are recorded and stored (see Figure 1a). Importantly, the gaze data is gathered
indirectly, meaning that no particular task is given to the user (such as inspecting the object’s
boundary) and no additional explicit user input is required (such as drawing a bounding
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box). Since the overall aim of our study is to explore the usage of gaze data as an additional
input we evaluated different processing and gaze-specific augmentation and regularisation
techniques. In a pre-processing step, the raw gaze information is filtered and aggregated
(see Figure 1b) and the resulting points are merged to a map. Subsequently this map is
concatenated with the RGB image to form a 4-channel input for the neural network (see
Figure 1c). In contrast to click-based annotations, eye tracking results in densely sampled,
yet noisy, gaze trajectories. To address these differences we studied the impact of blurred
gaze maps, "gaze data jitter" and "gaze point dropout" on the segmentation performance and
also evaluated the different performances using raw gaze data or fixation points.

(a)

(b) (c)
Figure 1: EyeGuide overview. a) Gaze information of a human annotator is recorded for in-
dividual object instances. b) Raw gaze information is filtered using an I-VT filter to generate
fixation points. c) The raw gaze or fixation point map is concatenated with the RGB image
and serves as the input for a neural network to predict instance segmentations.

Data Recording For the annotation and generation of our dataset, we implemented and
used a simple annotation tool. We used the Tobii Pro Fusion eye tracking system, which is a
screen-based remote eye tracker at 120 Hz.

Preliminary Study To study the impact of gaze annotations on instance segmentation,
we first analyzed different image inspection strategies, namely task-based versus task-free
object inspection. For the task-based object inspection the annotator was asked to trace the
boundary of an object, whereas for task-free inspection the user was only asked to look at
the whole object of interest. In total, 564 objects of the COCO dataset [16] of the class dog
were annotated by six human annotators (5 self-identified as male, 1 as female, mean age
µCP = 25.83, σCP = 1.47, 1 wore glasses) using the above mentioned strategies.

Task-free Annotation Dataset Generation Based on the results of our preliminary study,
task-free object inspection results in faster and more comfortable user interactions while not
compromising the segmentation performance of the neural network (see section 3). There-
fore, the task-free inspection paradigm was used to generate our training dataset based on
the following strategy: To inform the user about the object of interest the bounding box and
the ground truth polygon mask were presented for 0.5 seconds. For very small objects initial
zooms were applied and no time-limit was given for the observation. For evaluations and
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processing, the user was asked to signal the object inspection start and end by pressing a
button. Our tool also provides the possibility to repeat the observation and to move freely
in the presented image by using standard mouse interactions (dragging, scrolling and zoom-
ing). This strategy was used to annotate PascalVOC2012 (train) and an additional biomedical
dataset, namely a subset of the Cellpose dataset. PascalVOC2012 (train) contains 1,645 im-
ages with 3,507 individual instances, which are divided into 20 classes. These 20 classes can
be grouped into four super-classes (person, animal, vehicle and indoor), while the number of
images per class is nearly evenly distributed. The Cellpose dataset consists of a total of 608
labeled images, which show multiple types of cells and were acquired using various imaging
methods. For our purposes we annotated 500 cell instances of the same type to also include
highly non-convex objects as often found in biomedical applications. In total 4,007 object
instances were annotated by three different human annotators (2 self-identified as male, 1 as
female, mean age µPVOC = 26.33, σPVOC = 2.08, 1 wore glasses).

Gaze and Fixation Point Map Generation A raw gaze point consists of a (x,y) coordinate
per eye and a timestamp. For gaze point map generation the coordinates of the right and left
eye are combined into a map with a resolution equal to the input image. During fixations
eyes essentially stop scanning and keep central foveal vision in place, enabling the visual
system to perceive detailed information. In eye tracking data, fixation points are a union of
multiple raw gaze points and consist of a (x,y) position and a start and end timestamp (i.e.
duration). The most common technique to extract fixation points from gaze data is by using
the I-VT filter [22]. This filter removes saccades (rapid eye fovea movements) and noise by
thresholding the velocity of consecutive gaze points and aggregating the resultant locations
into sparse fixations.

Gaze Data Augmentation To counteract overfitting and to study the impact of our weak
and noisy annotations, we implemented two straight-forward augmentation methods for the
gaze input. For the first method, called "gaze data jitter", normally distributed noise with
µ = 0 and σ = 1.5 in the range of −5 px to 5 px is added to the x- and y-coordinate of
each raw gaze point. As a second variant "gaze data dropout" was implemented, where a
percentage of the gaze points is randomly dropped.

(a) (b) (c) (d)

Figure 2: Comparison between task-based (contour tracing) and task-free image inspection.
(a) Ground truth mask. (b) Gaze point map with explicit task. (c) Gaze point map with
task-free inspection. (d) Training and test loss for task-based vs. task-free inspection.

Neural Network Architectures We test our algorithm using two different neural network
backbones (ResNet-50, ResNet-101 [8]) and segmentation architectures (Fully-Convolutional
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Network (FCN) [17] and DeepLabv3 [4]). All experiments for EyeGuide (with the excep-
tion of the preliminary study) were trained for 75 epochs each with a batch size of eight
on a Nvidia RTX3090. AdamW [18] was used as the optimizer with the default parameter
values and Binary Cross Entropy as the loss function. For evaluation purposes we compare
our algorithm with DEXTR using the parameters as described by Maninis et al. [19].

3 Results

Preliminary Study We first evaluated the two visual object inspection strategies with re-
spect to overall data acquisition efficiency, user-experience and segmentation performance.
A comparison of the two resulting gaze trajectory visualisations between the contour tracing
(see Figure 2b) and the task-free strategy (see Figure 2c) shows on the one hand that for the
former significantly more data must be sampled and stored and on the other hand that this
method takes more than twice as much time (13.3 seconds vs. 5.5 seconds). Furthermore all
six annotators reported a more convenient user-experience in the task-free inspection, which
was perceived as more natural and less exhausting and tiring. We next evaluated the seg-
mentation performance when both inspection strategies are used as an additional input for
instance segmentation. As can be seen in Figure 2d the difference between the two object
inspection tasks is negligible. Based on these preliminary evaluations we therefore focused
on the task-free annotation strategy in all our following experiments.

Annotation Efficiency The average annotation time was 6.19 seconds for PascalVOC2012
and 5.13 seconds for Cellpose. For comparison, drawing a polygon mask takes an average
of 79 seconds, adding a bounding box takes 35 seconds and clicking extreme points takes
7.5 seconds respectively [19, 24]. Figure 3a shows some examples of our generated datasets
together with visualizations for the gaze and fixation point maps. From the gaze point maps
(second row) it can be seen that the entire object has been scanned. It should be noted that
even parts of objects were considered which were not included in the ground truth mask but
belong to the object of interest (Figure 3a, column four, tail of the aeroplane). Additionally,
with the help of the I-VT filter the noise level is reduced so that the focus and localisation is
limited to the object (third row).

Gaze Accuracy A certain inaccuracy cannot be excluded when using eye tracking, despite
user specific calibration, which can also be caused by e.g. the distraction of the annotator.
We analysed our datasets by calculating the accumulated frequency in percentage of raw
gaze data points (see Figure 3b) and fixations (see Figure 3c) grouped by their distance to
the ground truth mask. Here one can see that the differences between the two variants are
only marginal. It can be seen that the majority of the collected gaze information lies within
or very close to the ground truth mask (black line; mean of all PascalVOC2012 classes).
Only for objects with complex geometries and fine structures, such as bicycles, fixations
scatter strongly around the object while still being located very close to the ground truth
mask (e.g. bicycle class). For comparison we included the "undefined region" threshold of
PascalVOC2012 as a vertical dashed line in Figure 4b, which is defined by a 5 pixel boundary
around the contour reflecting the inter-user variability (called "void pixel" [7]).
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(a)

(b) (c)

Figure 3: (a) Dataset examples for PascalVOC2012 and Cellpose. First row: Images with
ground truth mask. Second row: Images with gaze point map visualization. Third row:
Images with fixation point map visualization. (b) Raw Gaze Data (c) Fixations grouped by
their distance to the ground truth mask of PascalVOC2012 (mean of all classes and four
selected classes) and Cellpose dataset.

Instance Segmentation Performance For the development of EyeGuide we trained and
evaluated different neural network architectures and model configurations. An overview of
these experiments is listed in Table 4a. For the initial tests we used a Fully-Convolutional
Network (FCN) with ResNet-50 as backbone. We explicitly excluded pretraining in our ex-
periments to investigate the performance of EyeGuide without any prior knowledge. More-
over and in contrast to several other instance segmentation evaluations (e.g. [19]), we did not
exclude the "undefined region" pixel at the object boundaries to better evaluate the perfor-
mance for non-convex and thin objects, resulting in a more conservative error estimation.

In our first experiment we used the concatenated RGB image and gaze point map with-
out any further processing as the input for the neural network. Since the object of interest
can be localised on the basis of the filtered fixation points, automatically extracted bounding
boxes (with an optional margin; we used 50 pixel in our experiments) can be used to crop
the instances. Cropping improved the mean Intersection over Union (mIoU) by 22% so all
further experiments were performed with cropping. Next we evaluated the impact of over-
sampling by using the fixation point map instead of the gaze map as an additional input. A
decrease in performance could be observed indicating that the neural network benefits from
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Architecture
fixation

filter blurred
gaze data

jitter
gaze data
dropout

mIoU
PascalVOC2012

mIoU
Cellpose

FCN+ResNet-50
(without cropping) 53.2 -

FCN+ResNet-50 75.4 82.9
FCN+ResNet-50 x 74.6 82.7
FCN+ResNet-50 x 75.8 83.3
FCN+ResNet-50 x 75.9 81.8
FCN+ResNet-50 x x (30%) 75.7 -
FCN+ResNet-50 x (30%) 76.3 83.4

FCN+ResNet-101 76.2 -
DeepLabv3+ResNet-50 75.9 -

FCN+ResNet-101 x (30%) 76.4 -
FCN+ResNet-50 x x (30%) 76.2 83.6

DEXTR 70.3 78.9
DEXTR (pretrained) 75.9 82.7

(a) (b)

Figure 4: Experiments overview. a) Evaluation of different architectures and model config-
urations for PascalVOC2012 and Cellpose. b) Evaluation of the amount of training data on
the performance and learning progress of EyeGuide vs. DEXTR.

the more densely sampled raw gaze data. Therefore, further experiments were done on the
gaze point maps only. The impact of noise was studied by applying a 5× 5 2D Gaussian
kernel on the gaze data which improved the mIoU by 0.4% for both datasets. As expected,
similar improvements could be achieved by using the above mentioned gaze data jitter, how-
ever, no substantial performance gains could be reached using this augmentation technique.
Considering slightly more consistent performance improvements using gaze dropout (in our
experiments best performances were achieved with a 30% dropout rate) we chose this aug-
mentation technique to also counteract potential overfitting effects. As further architectures,
we tested ResNet-101 as backbone for the FCN and DeepLabv3 with backbone ResNet-50.
Our analyses revealed that the best performance was achieved using a FCN with ResNet-101.

Figure 5: Prediction examples for PascalVOC2012 and Cellpose. First row: Image with
gaze points. Second row: Predicted mask. Third row: Ground truth mask.

Furthermore, we evaluated the influence of the amount of training data on the perfor-
mance for EyeGuide and DEXTR (see Figure 4b). Our method achieves significantly better
results than DEXTR with a considerably smaller amount of data. In comparison, DEXTR
achieves a similar mIoU only with 80% of the training data, which EyeGuide accomplishes
with 20% of the data. A qualitative evaluation of EyeGuide can be found in Figure 5. The
first five images are taken from the PascalVOC2012 test dataset and were only used for test-
ing. The fourth column shows an example of how our predicted masks are often even better
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than the ground truth mask, since the human annotator omitted the saddle when looking at the
horse, the neural network also excluded it for the segmentation mask prediction. This archi-
tecture was further used and compared with Deep Extreme Cuts (DEXTR), being the current
state-of-the-art for weakly annotated instance segmentation in both, annotation efficiency
and segmentation performance [19]. We trained and evaluated DEXTR on PascalVOC2012
and Cellpose with the same 20/80 train/test split. No pretraining was used for the ResNet
backbone to allow better comparability between the methods. As can be seen in Table 4a
EyeGuide outperforms DEXTR by +6.1% on the PascalVOC2012 and +4.4% on the Cell-
pose dataset. Interestingly, even when comparing our non-pretrained segmentation algorithm
with DEXTR using a pretrained backbone our method still generates slightly better results
(+0.5% on PascalVOC2012 and +0.6% on Cellpose). In another experiment, we evaluated
the generalisability (see Table 1) of our methodology compared to DEXTR by training one
network per super-class of PascalVOC2012 and evaluating on the unseen classes. The train-
ing dataset for the super-classes ranged from 680 to 752 images. On the test dataset of the
seen classes, we reached a mIoU improvement between +5.1% and +11.9% compared to
DEXTR, where EyeGuide is particularly superior in learning the super-class person. Also in
the evaluation of the unseen super-classes, our method shows significantly better results for
each test, averaging +10.3% for person, +3.3% for vehicle, +11.6% for animal and +5.1%
for indoor.

seen classes unseen classes
train test person vehicle animal indoor

# img
mIoU
Ours

mIoU
DEXTR # img

mIoU
Ours

mIoU
DEXTR # img

mIoU
Ours

mIoU
DEXTR # img

mIoU
Ours

mIoU
DEXTR # img

mIoU
Ours

mIoU
DEXTR # img

mIoU
Ours

mIoU
DEXTR

person_net 696 77.8 68.3 174 75.1 63.2 - - - 852 65.6 60.7 847 78.2 64.5 938 65.2 59.2
vehicle_net 685 76.5 70.4 167 71.3 64.8 870 67.8 56.8 - - - 847 73.8 64.1 938 63.2 58.4
animal_net 680 85.2 78.9 167 81.1 74.3 870 71.3 61.2 852 64.1 62.0 - - - 938 63.7 59.2
indoor_net 752 72.1 66.1 186 66.6 61.5 870 69.0 58.6 852 63.2 60.1 847 73.9 62.5 - - -

all_net 2,813 79.6 74.6 694 76.4 70.3 - - - - - - - - - - - -

Table 1: Evaluation of the generalisation capabilities of EyeGuide vs. DEXTR to unseen
classes. mIoU results for training on a subset of classes and testing on the left out subsets.

Segmentation Performance Objects with Low Convexity The qualitative and quantita-
tive evaluations indicated a potential correlation between the shape of the objects and the
EyeGuide performance. Since human annotators gaze over the entire object, additional
gaze information is available for (almost) all regions. This observation is particularly in-
teresting when comparing our annotation strategy with other user inputs. Especially given
complex geometries with frequent and thin protrusions, providing (extreme) points, scrib-
ble or accurately placed bounding boxes can be a cumbersome and time consuming task.
To further investigate this relationship between shape complexity and segmentation accu-
racy we computed the convexity for each class of PascalVOC2012, which we defined as
c = area of gt mask

convex hull area of gt mask , c ∈ [0,1].
The results are summarized in Figure 6. As can be seen, the convexity varies strongly

between the different classes. It is noticeable that EyeGuide shows a huge performance
improvement of up to +13.6% for all classes that have a convexity < 0.88. Especially for
classes with very fine, irregular shapes (e.g. bicycle and chair) our method is superior. Only
for very quadrangular structures, e.g., busses and trains, the mIoU of DEXTR is 0.1% to
0.8% higher than the mIoU of our method. It should be noted that a non-pretrained EyeGuide
still outperforms a pretrained DEXTR on highly convex classes indicating that our approach
can be beneficial in situations with no or only a few existing annotations (as is for example
often the case in medical applications).
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(a) (b) (c)
bicycle aeroplane chair

potted
plant motorbike horse bird

dining
table person cow dog cat sheep boat sofa car bottle

tv/
monitor bus train mIoU

Convexity c 0.33 0.52 0.52 0.64 0.66 0.66 0.67 0.68 0.70 0.73 0.76 0.76 0.77 0.77 0.78 0.81 0.88 0.91 0.92 0.92
EyeGuide 38.4 75.6 60.1 64.6 79.2 80.1 79.6 67.7 75.6 81.9 89.9 86.9 84.0 79.9 83.2 78.3 80.9 87.2 85.5 83.8 77.1
DEXTR 24.8 69.1 49.6 60.8 67.9 73.2 75.8 66.5 68.2 76.7 82.5 82.3 81.7 78.1 75.6 74.4 81.7 85.9 86.2 83.9 72.2
DEXTR

(pretrained) 32.6 80.0 55.6 62.8 76.8 79.3 81.5 67.0 74.4 79.4 89.7 86.5 86.9 82.7 82.5 79.8 82.4 88.7 88.9 86.6 77.2

(d)

Figure 6: Class-wise evaluation on PascalVOC2012 dataset. (a) Bicycle ground truth mask
(c = 0.25). (b) Bus ground truth mask (c = 0.95). (c) Convexity mIoU plot for every class.
(d) Detailed table including comparison with DEXTR (pretrained) for every class.

4 Conclusion
In this paper we propose a novel guiding strategy called EyeGuide which integrates remote
eye tracking data as additional input for neural networks to guide the training of instance
segmentation. Compared to other weakly guided methods our approach offers the advantage
of generating these inputs indirectly during regular image inspections (e.g. in the medical
field) without the need for additional and explicit user input. EyeGuide shows significantly
better performance compared to the state-of-the-art, especially for objects that have fine or
irregular geometries. Moreover, we show that less training data is required to achieve good
segmentation results and the generalisability of the neural network model is significantly
improved, making our methodology suitable for annotating new and complex datasets.

Data availability: The gaze data for the PascalVOC2012 train dataset and the 500 cells of
Cellpose dataset can be found at https://doi.org/10.17879/29928498088.
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