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Abstract

Convolution kernels are the basic structural component of convolutional neural net-
works (CNNs). In the last years there has been a growing interest in fisheye cameras
for many applications. However, the radially symmetric projection model of these cam-
eras produces high distortions that affect the performance of CNNs, especially when
the field of view is very large. In this work, we tackle this problem by proposing a
method that leverages the calibration of cameras to deform the convolution kernel ac-
cordingly and adapt to the distortion. That way, the receptive field of the convolution
is similar to standard convolutions in perspective images, allowing us to take advantage
of pre-trained networks in large perspective datasets. We show how, with just a brief
fine-tuning stage in a small dataset, we improve the performance of the network for the
calibrated fisheye with respect to standard convolutions in depth estimation and seman-
tic segmentation. The code of the calibrated deformable kernels is publicly available at
https://github.com/Sbrunoberenguel/CalibratedConvolutions.

1 Introduction

Nowadays, Neural Networks are the standard and globally adopted solutions for many
machine learning approaches. Among them, Convolutional Neural Networks (CNNs) are
the state-of-the-art approaches to handle images and understand what a computer can see.
Following classical computer vision algorithms, the first CNNs worked on conventional im-
ages (i.e. perspective images). These images provide information of the environment in a
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(a) (b)

Figure 1: Overview of how a standard convolution is deformed by the Kannala-Brandt’s pro-
jection model in a fisheye image. a) Several convolutional kernels adapted to the calibrated
fisheye image. b) How the convolutional kernels are computed with the Kannala-Brandt’s
projection model.

relatively small field of view, which is usually enough for the CNNs to achieve great per-
formance in many tasks. This is possible due to the large number of labelled datasets of
perspective images, which provide an excellent foundation for these solutions.

On a new trend, unconventional cameras with wider fields of view are becoming popu-
lar in many applications and devices such as autonomous vehicles or augmented reality. In
particular, we focus on fisheye cameras, which provide several advantages in scene under-
standing problems. The wide field of view (possibly wider than 180◦) allows us to achieve
a better understanding of the device’s surrounding with fewer images. Compared to per-
spective cameras, with fisheyes it is possible to gather much more spatial information at
once, providing more context to the network predictions, especially when the task involve
a global understanding of the scene. This is particularly useful in tasks such as semantic
segmentation, depth estimation, or room layout estimation.

However, these cameras have some important drawbacks yet to be addressed, which
mainly are the reduced number of labelled datasets (mostly because of the difficulty of man-
ually label these images), and the strong distortions induced in large field of view cam-
eras. The last reason causes that existing CNN-based approaches do not transfer well to
fisheye images, since the appearance of the elements in the scene is very different to what
was learned with perspective datasets. Besides, the contextual information has drastically
changed with the much wider field of view, which consequently deteriorates the network’s
ability to understand the scene. There is definitely a domain gap between perspective and
fisheye cameras that needs to be addressed to fully exploit the potential of these devices.

In this work, we propose a method to reduce this domain gap and easily train and use
CNNs with highly distorted cameras. We take advantage of the classical perspective CNNs
trained with massive datasets, which already provide impressive performance in many dif-
ferent tasks, and adapt these networks to calibrated fisheye cameras. To do so, we propose
to substitute the standard convolution operation with deformable convolutions pre-computed
with the camera calibration. During the convolution operation, kernels are deformed to ac-
commodate to the distortion depending on the position in the image (see Fig. 1). With
minimal fine-tuning on a small set of data, we can achieve the good performance of well-
known CNNs from perspective cameras to fisheye cameras, not needing to create new large
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datasets specific to each desired camera calibration in order to help the network to learn the
distortions. The main contributions of this work are:

• We present a novel implementation of calibrated deformable convolution for fisheye
cameras under the Kannala-Brandt projection model, which could be used with any
fisheye camera (even with a field of view wider than 180◦).

• We propose a set of experiments of domain adaptation of well known CNNs for several
tasks with fisheye cameras. Particularly, we show results with different fields of view,
showing that our method allows great flexibility in the camera configurations with
minimal effort.

2 Related work
In recent years, there has been a surge of using fisheye and 360◦ cameras since they intro-
duce more information within a single image, which is advantageous when tackling different
computer vision tasks such as: scene understanding [11], depth estimation [4, 19, 20], se-
mantic segmentation [4, 7], object [12] and pedestrian detection [13], or autonomous driving
[29], among others [3, 22, 23]. There is also an increasing presence of wide-angle cameras
such as fisheyes in mobile devices such as phones, or VR headsets and stereo cameras, due
to the improved robustness in localization and mapping from the larger field of view.

However, when it comes to deep learning methods applied to wide angle images, one
of the most common operations, the convolution, is flawed. The space-varying distortion
caused by the image projection models for omnidirectional and wide-angle cameras makes
the translational weight sharing ineffective [5]. Objects appear differently distorted depend-
ing on where they are in the image, which makes more difficult for the network to learn
each plausible configuration, especially considering different camera calibrations. There-
fore, there is still an open challenge about how to use and train traditional CNN architectures
with these kinds of images, also considering the lack of large datasets compared to perspec-
tive images. Some researchers have focused on adapting CNNs to the spherical domain. For
instance, Cohen et al. [5] proposed Spherical CNNs, studying convolutions on the sphere
using spectral analysis. Jian et al. [16] replace conventional convolution kernels with lin-
ear combinations of differential operators weighted by learnable parameters on unstructured
grids. Su and Grauman [27] aims to adapt a CNN trained on perspective images to the
equirectangular domain adjusting the sizes of the rectangular kernels depending on the ele-
vation angle. UniFuse [17] proposed to fuse features from Cubemap projection with regular
convolutions on equirectangular images on the decoding stage for depth estimation. In an
attempt to make more efficient the computation, [33] use spherical attention masks to make
the model aware of its spherical nature.

On the other hand, different approaches have been proposed to enable CNNs to be more
dynamic, improving the performance for specific tasks, as well as extending their applica-
bility to new domains [6, 15, 31]. For example, [15] and [6] focus on convolution units with
no fixed shape and learned offsets for the convolution kernel. Jeon and Kim [15] use these
convolutions to obtain better receptive field for object classification, whereas [6] incorpo-
rates spatial deformations into the convolutional operation to be able to handle objects with
significant variations in shape or appearance. The deformable convolutions [6] were used in
[10] for layout estimation, with not learned but fixed offsets, pre-computed to account for
the image distortion that occurs in equirectangular projections. Thus, the receptive field of
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the convolution filter is undistorted. The idea of making the convolution “on the sphere”
and project the convolution kernel with the equirectangular projection model was also pro-
posed by [28] with their distortion-aware convolutions, introducing a pipeline of transfer
learning from learned convolution filters in perspective images applied for depth estimation
in equirectangular panoramic images. Strategies like transfer learning or domain adapta-
tion have been successfully used in the past [8, 26], and we believe it could alleviate the
absence of datasets for our task. This approach was recently explored for distortion-aware
convolutions in [2].

However, most works disregard the specific calibration parameters, mostly because they
use very simple image projections such as equirectangular projection, that directly map az-
imuth and elevation angles in pixel locations. Thus, the research on these distortion-aware
convolutions for other configurations such as fisheyes is scarce and very specific to the cam-
era pose [21]. Only a few works directly deal with the camera calibration parameters into
the convolutions, like CAMConvs [9]. In this work, we aim to breach that gap, introducing
novel convolutions for radial-distortion models, like the Kannala-Brandt’s projection model
[18], that adapts to the specific calibration of the camera and is apt for any fisheye camera.
Drawing inspiration from [10], our approach uses deformable convolutions [6] to adapt the
convolution filters to the distortion caused by the projection. Up to our knowledge, this is
the first work that explicitly deals with calibrated convolutions for radially distorted cameras.
We show how, with just a little fine-tuning in a relatively small dataset, classical CNN meth-
ods can be adapted to any calibrated camera. Our approach with calibration specific kernel
offsets could also be extended to other calibration models and account for their distortion.

3 Fisheye convolution
Convolutions are the keystone of CNNs and current computer vision algorithms. The work
[6] presents a learned deformable kernel to improve the performance of several CNNs. In this
work, we propose to use calibration-based deformable kernels. We use the camera calibration
of fisheye cameras to compute the offsets of the kernel positions and adapt the convolution
to the distortion of these images. In this section we summarize the projection model used
and how we apply the distortion to the kernels.

3.1 Fisheye projection model
In the literature of non-conventional cameras we find many works that propose mathematical
models of several projections. Considering fisheye cameras, we can also find several mod-
els such as the equidistance, stereographic, orthogonal or equisolid angle. Each of these
models propose a different non-linear function to fit the distortion of the projecting rays of
different lens configurations and geometries. In our case, we aim to cover a wider set of pro-
jection models, so we use empirical models, which are more flexible to different or unknown
projection models.

In the field of empirical models for camera calibration, two rise above the others: Scara-
muzza’s [25] and Kannala-Brandt’s [18]. Both models propose a high-order polynomial
function to model the camera distortion. In this work, we use the second one, Kannala-
Brandt’s [18], since it is the most extended in the calibration of commercial devices.

The full Kannala-Brandt model is explained in [18], where they present a radially sym-
metric model and a full model were the radial asymmetry of lenses is taken into account. For
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this work we use the first one, assuming that the radial asymmetry error is much lower than
the pixel precision that can be obtained from an image. So, assuming a radially symmetric
model, [18] define the forward projection model as:(

u
v

)
= d(θ)

(
fx cosϕ

fy sinϕ

)
+

(
cx
cy

)
(1)

where (u,v) are the pixel coordinates in the image, (cx,cy) are the pixel coordinates of the
optical center, ( fx, fy) is the focal length on each axis, (θ ,ϕ) are the spherical coordinates
(see Fig. 1 (b)) of the incoming ray, d(θ) = k1θ + k2θ 3 + k3θ 5 + k4θ 9 is the high order
polynomial function and [k1,k2,k3,k4] the Kannala-Brandt calibration parameters.

The back projection model is computed as:

ϕ = arctan
my

mx
; θ = d−1

(√
m2

x +m2
y

)
, (2)

where mx = (u− cx)/ fx, my = (v− cy)/ fy and d−1 is computed iteratively.

3.2 Fisheye calibrated kernel
Deformable convolutions were presented in [6], where the authors propose a method to learn
offsets in the kernels for a better adaptation of the CNN to the task at hand. On the other
hand, using the calibration of perspective cameras on CNNs has also been addressed by [9],
obtaining improvements in the performance of the network. In this section, we present our
implementation of a camera-calibrated kernel for non-linear projection models, adapting the
kernel to the fisheye distortion of the Kannala-Brandt projection model.

Let K be a (ki × k j) rectangular kernel where (ki,k j)≥ 1 are an odd number and (u0,v0)
is the anchor pixel around which we will apply the convolution kernel. We define the coordi-
nates of each element of K as: p̂i j = (i, j,d)T where i is in range

[
− ki−1

2 , ki−1
2

]
; j is in range[

− k j−1
2 ,

k j−1
2

]
; and d is the focal distance of K. We assume that the standard kernel has the

same behaviour as in a perspective camera, so we compute the focal distance as a function
of the field of view of the kernel, α , which we linearly map from the fisheye camera field of
view, Φ, as: d = ki

2tan α
2

where α = ki
W Φ where W is the size of the feature map.

We project each kernel point into the unit sphere surface by normalizing the vectors.
Then, we want to go back to the pixel domain using the forward projection model of the
camera, Eq. 1. However, the resolution of the feature maps of a network (almost) always
differs from the input image of the network, which is the resolution of the calibration pa-
rameters of the camera. Besides, we have to align the anchor of the kernel with the pixel we
want to apply the kernel.

To solve the multi-scale/multi-resolution problem, we compute an scaling factor for each
resolution that relates the calibration resolutions with the current feature map. The scaling
factor is defined as s = Wc+pw

WFM
, where Wc is the camera resolution width, WFM is the feature

map width and pw is the width of an additional padding to the input image. We use this
padding to set a fixed input resolution to our network in case of different image resolutions.
With the scaling factor, we re-compute the calibration parameters for the kernel as:(

cxk
cyk

)
=

(
cx

WFM−pw/s
Wc

cy
HFM−ph/s

Hc

)
;
(

f xk
f yk

)
=

(
fx

WFM−pw/s
Wc

fy
HFM−ph/s

Hc

)
, (3)

Citation
Citation
{Kannala and Brandt} 2006

Citation
Citation
{Dai, Qi, Xiong, Li, Zhang, Hu, and Wei} 2017

Citation
Citation
{Facil, Ummenhofer, Zhou, Montesano, Brox, and Civera} 2019



6 BERENGUEL-BAETA*, SANTOS-VILLAFRANCA* ET. AL: FISHEYE CONVOLUTION

where (cxk,cyk),( f xk, f yk),(WFM,HFM) are the coordinates of the optical center, focal lengths
and resolution of the feature map and (Wc,Hc) the resolution of the fisheye camera.

Once the calibration parameters are adjusted to the feature map resolution, we compute
the projecting ray of the anchor pixel (u0,v0) using Eq.2 and rotate the projecting rays of K
to meet the orientation. With the K in the correct position, we project again each element
of the kernel into the fisheye plane with Eq.1, obtaining the new locations of the kernel
in the fisheye image (or feature map). From this implementation, we obtain a convolution
kernel that adapts its shape with the distortion of the camera following the radially symmetric
projection model (see Fig. 1).

4 Experiments

For the experimental part, we evaluate the calibrated convolutions against the standard con-
volutions on fisheye cameras. For that purpose, we use a well known CNN, U-Net [24],
on two different tasks to evaluate the performance of the proposed kernels. We want to
avoid current architectures where convolutions are mixed with other components as recur-
rent blocks [14] or attention mechanisms [30] to evaluate only the impact of the convolutions
in the overall performance. For a fair comparison between convolutions, we propose the fol-
lowing set-up for the experiments: 1) We train the CNN, with standard convolutions, on
perspective images of the Stanford dataset [1] and use these weights as baseline; 2) We eval-
uate the network with standard convolutions and calibrated convolutions on fisheye images
obtained from the Stanford dataset [1]; 3) With the baseline as pretrained weights, we fine
tune the network with fisheye images in two different situations: one fine tune is made with
standard convolutions and other with the proposed calibrated convolutions; 4) After fine tun-
ing, we evaluate again both networks on the fisheye images. To extend our comparison, we
also fine tune and evaluate the network with standard convolutions on rectified images (from
fisheye to perspective), an alternative approach only applicable when field of view is <180º.
More details of the rectification process and full experiment is available in the supplementary
material.

Training and fine tuning is made in the Stanford dataset following the #1 folder split,
taking the Area 5 only for evaluation and the others as training and validation sets. Perspec-
tive images are taken from the original dataset, where we find around 70k images with depth
and semantic information. For simplicity, we define this dataset as Pers in the experiments.
Fisheye images are randomly synthesized from the panoramic dataset in different orienta-
tions and with known calibration. We have generated 11.2k images for two different fisheye
calibrations (i.e. 5.6k images of each calibration). For simplicity, we define these datasets
by the field of view of the camera, such as: F165 defines the dataset of fisheye images with
a field of view of 165◦ and F195 with a field of view of 195◦.

4.1 Monocular depth estimation

The first task we evaluate is monocular depth estimation from single images. The convo-
lutional network has been trained for 50 epochs on the Stanford dataset with perspective
images, which has taken around 100 hours to complete. This network is our baseline (BL)
for the experiment. Then, the fine tuning (FT) has been made on top of this training for
less than 10% of the training time. The network has been fine tuned for 20 epochs in the
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Dataset Kernel MRE ↓ MAE ↓ RMSE ↓ RMSElog ↓ δ 1 ↑ δ 2 ↑ δ 3 ↑

BL

Pers Standard 0.1538 0.2462 0.4908 0.1146 0.6391 0.8678 0.9407

F195 Standard 0.2726 0.3914 0.4943 0.2408 0.4186 0.7027 0.8517
Calibrated 0.2922 0.4133 0.5262 0.2604 0.3839 0.6745 0.8371

F165
Standard 0.2670 0.3790 0.5005 0.2324 0.4377 0.7198 0.8579

Calibrated 0.2798 0.3971 0.5216 0.2441 0.4019 0.6998 0.8500
Rectified 0.8595 0.6412 0.9714 0.4178 0.3000 0.5509 0.7305

FT

F195 Standard 0.2432 0.3729 0.4023 0.2022 0.4241 0.7277 0.8827
Calibrated 0.2017 0.3159 0.3418 0.1575 0.5450 0.7972 0.9075

F165
Standard 0.2508 0.3582 0.4040 0.1899 0.4962 0.7628 0.8879

Calibrated 0.2505 0.3561 0.3875 0.1865 0.4992 0.7648 0.8884
Rectified 0.7758 0.5999 0.8933 0.3661 0.3016 0.5710 0.7618

Table 1: Monocular depth estimation with standard and calibrated convolutions for U-Net
neural network. BL: Base Line; FT: Fine Tuned. Best metric for each fisheye calibration is
in bold.

(a) F165 RMSE (b) F165 δ 1 (c) F195 RMSE (d) F195 δ 1

Figure 2: Comparison and results of depth estimation with U-Net neural network with stan-
dard (red) and calibrated (blue) convolutions. The x-axis defines the distance of the pixels
to the optical center and the y-axis the computed error, defined as mean and one standard
deviation.

fisheye dataset, taking between 2-4 hours. Fine-tuning time changes with the resolution of
the fisheye images, being different for each field of view.

Results of this experiment are shown in Tab. 1. We use the standard metrics for depth
estimation presented in [32]. We also compute the metrics with respect the distance of each
pixel to the principal point of the camera (i.e. d(θ) from equation 1) to observe the behaviour
of each convolution with the increasing distortion of the image. These results are presented
in Fig. 2 for both fisheye datasets. Additionally, we present qualitative results of monocular
depth estimation in Fig. 3 and a 3D reconstruction on Fig. 4.

4.2 Semantic Segmentation

The second task that we evaluate with U-Net [24] is semantic segmentation. We use the
same set-up and dataset than in the previous experiment. We train the network for 50 epochs,
taking 75 hours to train, and then fine tune it 20 more epochs, taking between 5-7 more hours.

Results of this experiment are shown in Tab. 2. The metrics used are the mean Inter-
section over Union (mIoU) and the mean Accuracy (mAcc) over all the classes, except the
unknown class. We also compute the metrics with respect the distance of each pixel to the
principal point of the camera to evaluate the behaviour of the network with the increasing dis-
tortion of the image. These results are presented in Fig. 5 and qualitative results of semantic
segmentation are presented in Fig. 6.
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(a) F165 RGB (b) F165 Standard (c) F165 Calibrated (d) F165 GT

(e) F195 RGB (f) F195 Standard (g) F195 Calibrated (h) F195 GT

Figure 3: Qualitative results of monocular depth estimation on different fisheye calibrations.
Distance is in a color scale, from colder colors (closer distances) to warmer colors (farther
distances).

5 Discussion

The experiments and results presented show that the transfer learning problem is still an
open topic and difficult to achieve in the conversion from perspective to omnidirectional
images. Both monocular depth estimation and semantic segmentation results present a great
decrease of performance with the baseline weights of the network, being in some cases more
accentuated when we use calibrated convolutions. However, after a short fine tune of the
network, these results improve significantly, particularly with calibrated convolutions.

From the results of depth estimation, we observe that the fine-tuned networks have
slightly worse performance than the baseline with perspective images. The main difference

(a) Standard Conv (b) Calibrated Conv (c) Ground Truth

Figure 4: Qualitative results of depth estimation for FOV of 195º, top view of a 3D point
cloud generated from depth data.
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Dataset Kernel mIoU mAcc

BL

Pers Standard 33.32 42.35

F195 Standard 15.05 24.41
Calibrated 13.73 22.55

F165
Standard 15.12 24.36

Calibrated 13.23 21.46
Rectified 11.81 19.82

FT

F195 Standard 29.48 43.40
Calibrated 30.90 46.90

F165
Standard 27.70 36.51

Calibrated 27.89 36.71
Rectified 21.99 29.61

Table 2: Semantic segmentation with standard and calibrated convolutions for U-Net neural
network. BL: Base Line; FT: Fine Tuned. Best metric for each fisheye calibration is in bold.

(a) F165 mIoU (b) F165 mAcc (c) F195 mIoU (d) F195 mAcc

Figure 5: Comparison and results of semantic segmentation with the U-Net like network
with standard (red) and calibrated (blue) convolutions. The x-axis defines the distance of
the pixels to the optical center and the y-axis the computed error, defined as mean and one
standard deviation.

is that with the fisheye images we cover a wider field of view, obtaining more informa-
tion of the scene with the same number of images. In the comparison of convolutions, we
observe that with wider fields of view, the calibrated convolutional kernels provide better
performance, while with the smaller field of view, the performance is quite similar. How-
ever, when we make a deeper analysis of these results, in the Figure 2 we observe the error
distribution of the standard and calibrated convolutions. These results show that the estima-
tion of the calibrated convolutions is more precise, with less dispersed error than the results
of standard convolutions. Even if they are also affected by the increasing distortion of the
fisheye images, the prediction is closer to the average error.

Regarding semantic segmentation experiments, the quantitative results from Tab. 2 show
that the performance with fisheye images decreases significantly from the perspective image
case. This is to be expected, since the segmentation problem difficulty increases with the
field of view, including more objects to segment in the same image, and distortion, changing
the appearance of the same object in different locations in the image. However we miti-
gate the second problem with the calibrated convolutions, obtaining better results with our
proposal than with standard convolutions consistently along the radius in most metrics, par-
ticularly in larger radius (see Fig. 5). In addition, the qualitative results from Fig. 6 show
significant differences in the performance between standard and calibrated convolutions. We
can observe how the boundaries of objects and some details are better obtained with the
calibrated convolutions than with the standard ones.

These results and conclusions led us to believe that calibrated convolutions provide a
faster domain adaptation of CNNs, that means, in the same training conditions with limited
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(a) F165 RGB (b) F165 Standard (c) F165 Calibrated (d) F165 GT

(e) F195 RGB (f) F195 Standard (g) F195 Calibrated (h) F195 GT

Figure 6: Qualitative results of semantic segmentation on different fisheye calibrations. Each
color represent a different class from the dataset.

data, the calibrated convolutions provide better performance that the standard ones. The
adaptation of networks trained on perspective images can be done with small datasets of
fisheye images, achieving similar performance.

6 Conclusion

In this article we have presented a novel implementation of deformable convolutional kernels
taking into account the intrinsic calibration of fisheye cameras. Integrating the Kannala-
Brandt projection model for revolution symmetry cameras in the kernel of convolutional
neural networks, we obtain a domain adaptation mechanism to take advantage of previous
works on perspective images and adapt these networks to work with fisheye cameras. On a
similar approach, this work could also be extended to other projection models that take into
account the calibration of omnidirectional cameras, such as the Scaramuzza’s model [25].

Results of the performed experiments show that the calibrated convolutions perform bet-
ter than standard convolutions for domain adaptation. Besides, the impossibility of rectify-
ing omnidirectional images of more than 180 degrees of field of view and the poor results
obtained on the rectified ones increases the interest in studying how to adapt current deep
learning methods to omnidirectional devices as the fisheye cameras.

A comparison with other methods, as CAM-Convs [9], is not trivial. These works should
be extended to other projection models, since currently only work on the pin-hole camera
model. With a naive approach, including directly the Kannala-Brandt model to the CAM-
Convs proposal, we observe abrupt changes in the feature maps, which make us believe that
further research is needed. This new approach, the extension of methods as CAM-Convs to
omnidirectional images, remains as future work.
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