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Abstract

Text-based human motion generation is challenging due to the complexity and context-
dependency of natural human motions. In recent years, an increasing number of studies
have focused on using transformer-based diffusion models to tackle this issue. How-
ever, an over-reliance on transformers has resulted in a lack of adequate detail in the
generated motions. This study proposes a novel graph network-based diffusion model
to address this challenging problem. Specifically, we use spatio-temporal graphs to cap-
ture local details for each node and an auxiliary transformer to aggregate the information
across all nodes. In addition, the transformer is also used to process conditional global
information that is difficult to handle with graph networks. Our model achieves com-
petitive results on currently the largest dataset HumanML3D and outperforms existing
diffusion models in terms of FID and diversity, demonstrating the advantages of graph
neural networks in modeling human motion data. Supplementary materials can be found
at: https://stg-md.github.io/.

1 Introduction
Human motion generation aims to generate realistic human motions for various applications,
such as video games, film production and virtual reality. For instance, in virtual reality, cre-
ating natural and believable human motions is crucial for providing an immersive experience
that mimics real-life scenarios. One important aspect is the ability to generate motions that
are conditional on various inputs, such as action labels, music, and text. Text-driven gener-
ation, in particular, has gained significant attention for its advantage of being intuitive and
easy to use, as it does not require users to master preliminary knowledge or operate complex
software. In this approach, the input to the motion generation system is a natural language
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description of the desired motion, and the output is a sequence of human motions that corre-
sponds to the description.

Recently, there have been promising results in human motion generation using diffusion
models based on transformers [34, 40, 42]. Nevertheless, several studies [21, 37, 38] have
shown that while transformers excel at capturing long-range correlations, they may not be as
efficient at capturing fine-grained local details. This is particularly evident in human motion
generation, as even a minor change in the joint angles, timing, or phasing can significantly
compromise the quality of the generated motion.

On the other hand, graph neural networks (GNNs) [23, 30] have demonstrated good per-
formance in modeling human motion but struggle to capture global context. This issue arises
because graph neural networks rely on a message-passing mechanism to obtain information
from neighboring nodes. To capture a broader context, increasing the number of GNN lay-
ers is often necessary [20], which leads to the GNN repeatedly aggregating information from
neighboring nodes. Consequently, nodes become progressively more similar, leading to what
is known as the over-smoothing problem [3]. Also, handling conditional global information
such as text description and action labels in GNN remains challenging. This is because this
information belong to all nodes, and the structure of the graph does not provide a natural
way to efficiently broadcast this information to all nodes. Therefore, previous GNN-based
approaches [7] rarely focus on conditional generation. Finally, graph-based diffusion models
have received relatively less attention compared to other types of diffusion models such as
UNet or transformer based models. Nonetheless, they have shown great success in various
fields, most notably in traffic flow forecasting [25, 32, 36], where they have been able to
capture the complex relationships between different traffic nodes and predict traffic patterns
more accurately. In the field of human motion generation, as far as we know there have not
been studies using graph-based diffusion models.

To tackle the aforementioned challenges, we propose Spatio-Temporal Graph Motion
Diffusion (STGMD), a human motion generation framework that can generate diverse mo-
tions from natural language descriptions. To incorporate both local and global context, we
employ a two-stage approach in our model. First, we utilize a GNN to capture the local inter-
actions between human body joints. Then, an auxiliary transformer is employed to aggregate
the information from each joint and capture the global context. The combination of GNN
and transformer allows our model to effectively process both local and global context. Fur-
thermore, the auxiliary transformer enables our graph network-based model to easily handle
conditional global information, such as text descriptions.

In summary, the main contributions of this paper are as follows.

• Our proposed STGMD model leverages the advantages of both GNN and Transformer,
and this combination enables our model to effectively process both fine-grain and
coarse-grain information, resulting in more realistic human motion generation.

• By incorporating an auxiliary transformer, our proposed graph network-based model is
capable of effortlessly processing conditional global information (i.e., text description)
without the need to broadcast this information to every node.

• Extensive experiments have evinced that the proposed method STGMD exhibits a 30%
improvement in the Frechet Inception Distance (FID) metric when compared to the
prior state-of-the-art diffusion approaches. Our visualization results highlight the effi-
cacy of our model in generating more realistic human motions.
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(a) (b)

(c) (d)
Figure 1: The proposed model is a graph neural based diffusion model for text-driven motion
generation method, capable of generating diverse human motion from the same natural text
description. (a) and (b): A person twists her body to avoid bumping into someone while
walking down a crowded street. (c) and (d): A person crawls on her hands and knees to
search for a lost object on the floor.

2 Related Work

Text-Driven Human Motion Generation Human motion generation can be categorized by
the type of input signals, including music-driven, speech-driven, text-driven, and others.
Among these, text-driven human motion generation has received the most attention because
it is highly user-friendly and accessible without the need for specialized equipment or ex-
pertise. Text-driven human motion generation involves interpreting text descriptions and
converting them into corresponding motion sequences. Ahuja and Morency [1] employ a
curriculum learning approach to learn a joint embedding of text and human motion. Tevet
et al. [33] present a motion auto-encoder based on the transformer architecture, and designed
to reconstruct motion sequences while aligned to its text label in the CLIP space. Petrovich
et al. [27] propose a transformer-based VAE to learn an action-aware latent representation for
human motions. Guo et al. [12] also consider the inverse motion-to-text task by leveraging a
discrete and compact motion representation.

Graph Neural Network Graph Neural Networks (GNNs) have been applied in various
fields such as natural language processing, social network analysis, and recommendation
systems. In human motion modeling, multi-scale spatio-temporal maps are typically em-
ployed because it is difficult to predict the fine details of human motions, while the human
model tends to be more stable at a coarser scale. The key for multiple scales is to build a
suitable graph structure for each scale. [5] and [17] are examples of methods that manually
select nodes for different scales. Another branch of methods of creating different scales is
through node drop pooling. The node drop pooling is achieved by removing relatively unim-
portant nodes, and the importance is usually computed by a node score calculation function.
Graph-UNet [8] employs a simple linear layer to estimate the node score. By using graph
convolution in self-attention, Lee et al. [16] are able to take into account both the features of
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the nodes and the topology of the graph. Zhang et al. [41] propose hierarchical graph pooling
with structure learning, a method that integrates graph pooling and structure learning into a
single module to create hierarchical graph representations. Due to the inherent limitations of
graph networks in processing conditional global information (i.e., text description), most pre-
vious works that utilize GNN focus on prediction or recognition task [18, 19, 24], and there
has been limited research using graph network for conditional human motion generation.
Our proposed STGMD narrows this gap by providing an easy way to process conditional
global information.

Diffusion Model The diffusion model belongs to a class of score-based generative mod-
els that use denoising score matching through annealed Langevin dynamic sampling. It was
first introduced by Sohl-Dickstein et al. [31], and later on, Ho et al. [14] demonstrated its abil-
ity to generate high-quality samples. Dhariwal and Nichol [6] proposed classifier guidance
for conditional generation, which involves using an auxiliary classifier to enable conditional
sampling in diffusion models. However, Ho and Salimans [13] demonstrated that classifier
guidance is not necessary. They introduced a new approach called classifier-free guidance,
which is a technique for guiding diffusion models that does not require a separate classifier
model. Their results demonstrate that guidance can be performed by a pure generative model
without a classifier.

Recently, diffusion models have gained significant attention in human motion research
due to their ability to produce high-quality and diverse samples. Zhang et al. [40] propose
MotionDiffuse, the first diffusion model-based text-driven motion generation framework that
surpasses existing methods in diversity and quality. Tevet et al. [34] introduce Motion Diffu-
sion Model, a carefully adapted classifier-free diffusion-based generative model for human
motion generation. To better capture the representations of various human motion sequences
while reducing computational costs, Chen et al. [4] design a variational autoencoder (VAE)
to extract representative and low-dimensional latent embedding for human motion sequences
and perform diffusion processes in the latent space. While these studies all benefit from the
attention mechanism, they may not perform as well on local spatial temporal relationships
among skeleton joints. Our STGMD approach leverages a spatio-temporal graph network to
address this limitation and enhance performance by better capturing local details.

3 Method
The overview of the proposed STGMD is shown in Figure 2. In particular, the design of the
spatio-temporal graph UNet (STG-UNet) is elaborated in Section 3.1, and the details of the
diffusion process is explained in Section 3.2.

3.1 Spatio-Temporal Graph UNet
As shown in Figure 3, the STG-UNet consists of multiple Spatio-Temporal Graph Blocks
(STG-Block), as well as pooling and unpooling operations.

3.1.1 Spatio-Temporal Graph Block

Before delving into the complete spatio-temporal graph block (STG-Block), let us first ex-
plore the functioning of graph convolutional networks at each time point. By representing
the human body as a graph, with each joint as a node and the body segments as edges, the
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Figure 2: (Left) STGMD Overview. The input to the diffusion model consists of a spatio-
temporal graph Xt , the noising time step t, and the corresponding text description c. The
STG-UNet (Section 3.1) extracts the fine-grained local details of human motion, while the
frozen CLIP extracts text embeddings. In addition to aggregating local details, the trans-
former processes text embeddings and time t. (Right) Sampling Process. Starting with
random Gaussian noise, a text description c and diffusion step T , STGMD gradually anneals
the noise to a sample X0. At each time step t, our model predicts the sample’s initial state
x̂0 and then diffuses it back to Xt−1. By repeating these operations T times, the diffusion
process finally yields the sample X0. The figure only shows one frame of the graph.

purpose of the spatial graph convolutional network is to capture the complex interactions be-
tween different body parts and learn to recognize the inherent patterns, such as the position
of the knee is dependent on the position of the hip and ankle.

The underlying structure of human motion sequence X is represented by a graph X =
(V,A). V ∈ RD×N×J is the vertex matrix, where D is the dimension of motion feature, N is
number of frames and J is number of joints. A ∈ RJ×J is the symmetric adjacency matrix
with self connection where ai,k denotes the edge weight between nodes vi and vk. Dii =∑ j Ai j

is the degrees matrix of A. W (l) is the layer-specific trainable weight matrix parameters. H(l)

is the input feature map of layer l, and H(0) = V . Following [15, 26], the spatial graph
convolution in layer l is defined as

H̃(l) = σ

(
D− 1

2 AD− 1
2 H(l)W (l)

)
,

where σ is the ReLU activation function.
Spatio-temporal GNN extends the idea of GNN by incorporating temporal information,

which is particularly important in human motion tasks, as human motion is inherently dy-
namic and changes over time. The construction of the spatio-temporal graph is based on the
spatial graph, where the same joints across consecutive frames are treated as adjacent nodes.
To model the temporal information, we design a 1-D temporal convolution module, which
is inspired by the work of Yu et al. [39] and Cao et al. [2]. Specifically, we perform such
temporal convolution independently to each human joint. Formally, let H̃(l) be the feature
map after the spatial graph convolution, the temporal graph convolution is defined as

H(l+1) = σ(CONVΩ(H̃(l))),

where CONVΩ denotes the 1-D convolutional operation with trainable parameter Ω.
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Figure 3: STG-UNet Overview. The input is a spatio-temporal graph X = (V,A), which
consists of a vertex matrix V and an adjacency matrix A. The STG-Block processes the
vertex matrix and transforms it into a graph representation. The pooling operation is then
applied to select nodes for the coarser scale. This process is repeated for a coarser scale. In
reverse, the unpooling operation refills the previously excluded nodes with empty nodes for
finer scales. Additionally, skip connections are employed to connect graph representations
on the same scale.

3.1.2 Multiple Scale Graph

In human motion, the information from different scales (i.e., the coarse scale and the fine
scale) usually represents different properties. Coarse scales describe the classes of human
motion and are more stable [5], making them useful for generating representative features.
Fine scales, on the other hand, complement the details of human motion on top of the coarse
scales. Therefore, the relationship within and between the coarse and fine scales are essential
to understand the human motion. To enhance the capacity of our graph network in capturing
fine and coarse scales, we design a multi-scale UNet structure, as shown in Figure 3.

On each scale, we choose a different number of nodes to represent the human skele-
ton through pooling operation adapted from [8]. Let p be the trainable projection vec-
tor, the indices for the selected nodes in layer l are computed via a top-k operation idx =

topk(σ(H(l)p(l)

∥p(l)∥ )). The unpooling operation is the reverse operation of pooling that refills the
previously excluded nodes with empty nodes.

3.1.3 Auxiliary Transformer for Global Context and Information

Although GNNs are useful for capturing fine-grained local details in human motion, they
are less effective in extracting long-range dependencies. This would leads to an sub-optimal
problem when handling the global context. In addition, since it is struggle for GNNs to
model the conditional global information (i.e., the text descriptions), we propose to apply an
auxiliary transformer encoder in the network to address these challenges.

As shown in Figure 2, given the graph X = (H,A) with H is the graph embedding gener-
ated by STG-UNet, we concatenate the diffusion time step t and the text embeddings with H
first. Afterward, with the help of the standard transformer encoder proposed in [35], the local
details, the diffusion time step, as well as the text embeddings can be aggregated together,
effectively.
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3.2 Diffusion Process
The diffusion process starts with a Gaussian noise, and gradually anneals it into a realistic
output by applying a series of diffusion steps. The diffusion model has been successfully
applied in several fields, such as image synthesis, data augmentation, and human motion
synthesis.

Given samples from a data distribution q(X0), The diffusion model on a graph is modeled
as a Markov nosing process using:

q(X1:T | X0) =
T

∏
t=1

q(Xt | Xt−1) ,

where q(Xt |Xt−1) is a Gaussian distribution as

q(Xt |Xt−1) =N (Xt ;
√

αtXt−1,(1−αt)I),

Xt stands for the temporal graph at t-step diffusion process, and the αt ∈ (0,1) is a constant
hyper-parameters for sampling. The goal of our model is to approximate the reverse process
that recovers XT from X0 recurrently:

pθ (X0:T ) = p(XT )
1

∏
t=T

pθ (Xt−1 | Xt) .

Then, the transition between two adjacent time stamps is denoted by

pθ (Xt−1 | Xt) =N (Xt−1; µθ (Xt , t) ,σθ (Xt , t)) ,

with shared parameters θ . We follow the objective suggested by Ramesh et al. [29], and in
text-driven motion generation, the goal is to learn a network D that fits Dθ (Xt , t,c) with the
simple mean squared loss:

min
θ

L(θ) = min
θ

EX0∼q(X0,c),t∼[1,T ] ∥X0 −Dθ (Xt , t,c))∥2
2 .

4 Experiments
This section presents the experimental results of our proposed method for text-conditional
human motion generation. We first describe the dataset used and implementation details.
Section 4.1 then compares the performance of our method to state-of-the-art approaches.
Section 4.2 provides the ablation studies.
Dataset HumanML3D [11] is currently the largest 3D human motion dataset that com-
bines two publicly available large-scale 3D human motion datasets, HumanAct12 [10] and
AMASS [22]. The two datasets contain a variety of human actions, such as daily activities,
sports, acrobatics, and artistry. Each motion sequence is annotated by three native English
speakers with at least five words, and a manual post-processing step filters away abnor-
mal text descriptions. As a result, the HumanML3D dataset comprises 14,616 motions and
44,970 descriptions, and the average motion length is 7.1 seconds.
Implementation Details The number of human motion frames is set to 196, which is the
maximum frame length for HumanML3D. The depth of STG-UNet is set to three, and we
select 21,10, and 5 nodes for each scale, and the ablation study is provided in Section 4.2.
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We use AdamW optimizer with a fixed learning rate of 10−4, and the batch size is set to
64. The number of diffusion steps is 1K. For runtime, training takes about 36 hours on RTX
A6000 GPU.

Figure 4: We present qualitative results on the HumanML3D dataset, where we compare
our approach with MDM Tevet et al. [34] and visualize the outcomes for given prompts.
Distorted motions are highlighted in red.

Evaluation metrics To evaluate our proposed model, objective metrics are necessary to as-
sess the generation quality, generation diversity, and text conditional matching [11]. We
follow the experimental settings outlined by [11], utilizing a pre-trained network to extract
motion and text representations and evaluating the results based on these extracted represen-
tations.

Generation quality is evaluated using the Frechet Inception Distance (FID) metric, which
measures the distributional similarity between the generated and real motion sequences.
Lower FID scores indicate the better similarity.

Generation diversity is evaluated using two metrics: Diversity and Multimodality. Diver-
sity is measured by the variety of generated motions, and the closer it is to the real distri-
bution, the better. Multimodality measures the ability to generate diverse motions given the
same text description, with higher scores indicating greater diversity.

Text conditional matching is evaluated using two metrics, i.e., R-Precision and Multi-
modal Distance (MM-Dist). R-Precision measures the accuracy of the generated motion se-
quences in matching text descriptions, with higher scores indicating better alignment. MM-
Dist measures the distance between the text description and the generated motion, with lower
scores indicating better similarity.
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Figure 5: We show our model can generate diverse samples given the same prompt.

Methods FID ↓ R Precision ↑ Diversity → Multimodal Multimodality ↑Top 3 Dist ↓

Real 0.002±.000 0.797±.002 9.503±.065 2.974±.008 -

Hier [9] 6.532±.024 0.552±.004 8.332±.042 5.012±.018 -
TEMOS [28] 3.734±.028 0.722±.002 8.973±.071 3.703±.008 0.368±.018

MotionDiffuse [40] 0.630±.001 0.782±.001 9.410±.049 3.113±.001 1.553±.042

T2M [11] 1.067±.002 0.740±.003 9.188±.002 3.340±.008 2.090±.083

MDM [34] 0.544±.044 0.611±.007 9.559±.086 5.566±.027 2.799±.072

MLD [4] 0.473±.013 0.772±.002 9.724±.082 3.196±.010 2.413±.079

STGMD(Ours) 0.329±.034 0.612±.006 9.480±.105 5.527±.028 2.917±.106

Table 1: Quantitative results on the HumanML3D test set.

4.1 State-of-the-Art Comparisons

We compare proposed STGMD to existing state-of-the-art methods [4, 9, 11, 28, 34, 40] on
the test set of HumanML3D, and the results are shown in Table 1. The results indicate that
the STGMD outperforms existing methods in terms of FID, diversity, and multimodality.
Specifically, the proposed method attains the lowest FID score, indicating superior quality
of generated motions compared to other methods, as also shown in Figure 4. Moreover,
the proposed method can generate more diverse results, as evidenced by higher multimodal-
ity scores and a similar Diversity to the ground truth (visual examples shown in Figure 5).
Although STGMD does not achieve the best performance in terms of R precision and multi-
modal distance, it is worth noting that the proposed method still delivers competitive perfor-
mance in both metrics while surpassing other methods in other metrics.
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Methods FID ↓ R Precision ↑ Diversity → Multimodal
Top 3 Dist ↓

With STG-UNet 0.329±.034 0.612±.006 9.480±.105 5.527±.028

Without STG-UNet 0.564±.034 0.607±.017 9.334±.085 5.617±.028

Table 2: Ablation study: Impact of excluding STG-UNet on FID.

4.2 Ablation Studies
In this part, we firstly analyze the effectiveness of the STG-UNet, then we investigate the
impact of various depths and the number of nodes in each scale on the model’s performance.

The results of experiments with and without STG-UNet are presented in Table 2. The
findings demonstrate that removing STG-UNet results in a performance drop across all met-
rics, especially, a significant degradation in FID. These results show that utilizing graph
neural networks to capture fine-grained local details can benefit the quality of generated
samples.

The next question we are interested in is the most efficient STG-UNet architecture. There
are two important hyper-parameters in the proposed STG-UNet: the depth and the number
of nodes used at each scale. Table 3 presents the performance of STGMD across several
variants. Among them, the depth has a more significant impact on the results, and STGMD
achieves optimal performance when the depth is set to 3. While the number of the nodes at
different scales has a relatively small impact.

Depths # nodes in each scale FID ↓
4 21, 16, 11, 6 0.608
4 21, 16, 8, 4 0.553

3 21, 16, 8 0.367
3 21, 10, 5 0.329

2 21, 10 0.536

1 21 0.427

Table 3: Ablation study: Impact of different depths and number of nodes in each scale on
FID.

5 Conclusion
In this work, we investigate the graph neural network based diffusion model in text-driven
human motion generation. Compared to existing diffusion-based methods, STGMD can
generate more realistic and diverse human motion sequences, highlighting the continued
importance of graph network models in human modelling. Moreover, STGMD provides a
potential research direction for enabling graph neural networks to handle multimodal data.
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