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Abstract

For SLAM to be safely deployed in unstructured real world environments, it must
possess several key properties that are not encompassed by conventional benchmarks. In
this paper we show that SLAM commutativity, that is, consistency in trajectory estimates
on forward and reverse traverses of the same route, is a significant issue for the state of
the art. Current pipelines show a significant bias between forward and reverse directions
of travel, that is in addition inconsistent regarding which direction of travel exhibits bet-
ter performance. In this paper we propose several contributions to feature-based SLAM
pipelines that remedies the motion bias problem. In a comprehensive evaluation across
four datasets, we show that our contributions implemented in ORB-SLAM2 substantially
reduce the bias between forward and backward motion and additionally improve the ag-
gregated trajectory error. Removing the SLAM motion bias has significant relevance for
the wide range of robotics and computer vision applications where performance consis-
tency is important.

1 Introduction
Simultaneous Localization and Mapping (SLAM) refers to the concurrent estimation of
a mobile robot state and a model of the environment, known as the map, from its onboard
sensor readings. Visual SLAM utilizes video as the main input to build a 3D map of an
unknown environment, which is then used in another processing thread to determine the
camera pose within the environment in real-time [6].

The progress in this field has been remarkable over the past three decades, leading to
the extensive adoption of SLAM in real-world applications across various industries (e.g.,
robotics, autonomous driving or augmented and virtual reality). Starting from the intro-
duction of probabilistic formulations for Simultaneous Localization and Mapping (SLAM)
[2, 11, 13, 22], researchers have investigated the fundamental properties of SLAM, such
as observability, convergence, and consistency [8, 9, 12, 21, 29, 33]. Current pipelines
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(a) KITTI Dataset (10 sequences)
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(b) TUM Mono VO Dataset (50 sequences)

Figure 1: Motion bias and errors in KITTI [20] (a) and TUM Mono VO [15] (b) datasets.
Top row displays the motion bias as the arithmetic error difference between forward (f)
and backward (b) passes. Bigger ± values represent higher motion errors. Note in the box-
and-whiskers plots the substantial biases in the Vanilla ORB-SLAM2 version, and how our
implementation is able to remove them. Bottom row shows forward (green), backward
(blue) and total (black) errors for Vanilla ORB-SLAM2 and our version. Note that our
errors are similar for forward and backward passes, in contrast to substantial differences in
Vanilla ORB-SLAM2. Moreover, observe the opposite bias sign in KITTI and TUM Mono
VO, indicating data dependency.

[14, 16, 19, 27, 28, 32, 35] show an impressive performance in terms of accuracy and ro-
bustness. However, although successful implementations in certain domains might rise the
question “is fundamental research in SLAM still necessary?”, challenges still remain, par-
ticularly in complex and dynamic environments [3, 4, 36]. Achieving truly robust perfor-
mance is critical for a wide range of applications. To ensure that SLAM can provide reliable
perception and navigation for long-lived autonomous robots, fundamental aspects such as
self-tuning, resource awareness, and task-driven perception are yet to be addressed [6].

In this paper we address motion bias, a particular problem that mainly affects feature-
based visual SLAM. Several works [15, 16, 37] and our own results show that variations
in the direction of the camera motion (i.e., playing the same image sequence forwards and
backwards) lead to significant differences in the performance of SLAM methods. Figure 1
contains experimental results showing this bias in KITTI [20] and TUM Mono VO [15].

The existence of this motion bias in SLAM pipelines is relevant and should be addressed.
On the one hand, motion bias should not appear from an optimization perspective, as the ge-
ometric configuration and scene appearance do not change when playing an image sequence
forwards or backwards. This reveals flaws in current feature-based pipelines, and lack of ex-
plainability of their inner working modes. It may also indicate that they are tuned to overfit
benchmarks and reported results do not generalize in more general setups.

On the other hand, bias-free forward and backward estimates are desirable for SLAM
to generalize across a wide range of use cases. We can cite several application domains
in which agents perform varied motions, such as robots equipped with a front-facing and a
rear-facing camera [1, 25, 26], highly maneuverable robots such as vacuum cleaners, drones
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or robotic arms, and systems operating in environments with strong motion constraints, such
as mine exploration or endoscopic surgery [30].

It is true that there might be applications with dominant motion patterns, such as au-
tonomous driving. However, it should be remarked that the motion bias in current SLAM
pipelines is neither consistent nor predictable, impacting in their reliability and trustworthi-
ness in critical applications. Figure 1 shows how ORB-SLAM2 presents opposite biases in
KITTI and TUM Mono VO: forward motion estimates are more accurate in KITTI, whereas
backward ones are more accurate in TUM Mono VO.

In this paper we make the following contributions: (1) we extend previous evaluations
[15, 16, 37] that characterized the bias present in feature-based SLAM for forward and
backward camera motion, (2) we identify potential sources that may cause such bias and
provide theoretical insights and empirical analysis for a better design of new methods, (3)
we implement several novel contributions for motion bias removal on the state-of-the-art
ORB-SLAM2 [27], specifically in a deterministic version1 to facilitate ablation studies and
analyses, and (4) we evaluate our proposals in 4 different and complementary datasets. Our
results show that we are able to reduce drastically the motion bias in feature-based SLAM,
while keeping the general accuracy.

2 Related Work

Motion Bias was unveiled by Engel et al. [16], that showed the difference in accuracy
of feature-based monocular ORB-SLAM2 [27] between forward and backward runs in the
TUM Mono VO Dataset [15]. They arrived at three significant outcomes: 1) They showed
that ORB-SLAM2 performed significantly better for backwards motion, 2) that, contrary to
ORB-SLAM2, their direct sparse odometry (DSO) was largely unaffected by motion bias,
and 3) that image resolution was a relevant factor for ORB-SLAM2, while DSO was only
marginally affected due to subpixel accuracy. From these outcomes they also concluded that
benchmarking on large datasets, covering a diverse range of environments and motion pat-
terns, was of high importance. While Engel et al. raised these issues, no analysis, conclusion,
or possible remedies were given in their work.

Yang et al. [37] performed systematic and quantitative evaluations of motion bias on
the three most popular SLAM formulations, namely direct, feature-based and semi-direct
methods. Their initial findings agreed with those of Engel et al. [16]. They claim that the
performance degradation of feature-based SLAM come from implementation details, and
proposed that future work should take into consideration the following issues: depth rep-
resentation, point sampling strategy, point management and discretization artifacts. They
implemented a version of ORB-SLAM2 with sub-pixel matching accuracy that reduced the
errors of the forward passes but maintained a substantial gap between forward and backward
motions. Motion bias remained hence unsolved, and Yang et al.’s final conclusion high-
lighted the importance of the problem, stating that more efforts should be taken to address
such problem for the adoption of feature-based SLAM in safety-critical applications like au-
tonomous driving. In this paper we continue their work by formulating and evaluating six
novel contributions that realistically minimize motion bias with minimal impact in SLAM
general accuracy.

1Our deterministic implementation of ORB-SLAM2 [27] described in Section 4 can be found in
https://github.com/alejandrofontan/ORB_SLAM2_Deterministic.
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3 Motion-Bias-Free Feature-Based SLAM
In this section, we formulate the contribution of visual covariances to motion bias and in-
troduce an alternative robust cost function for outliers. We also address the sources of the
motion bias by providing theoretical insights and proposing motion-bias-free models for five
components within feature-based SLAM, specifically related to point representation, opti-
mization and data association.

3.1 Point Representation
Feature-based SLAM estimates a sparse map of 3D points {p ∈ P | p ∈ R3} and keyframes
k ∈ K. Keyframes are composed by a grayscale image Ik and its 6DOF camera pose, rep-
resented by a rotation matrix Rk ∈ SO(3) and translation vector tk ∈ R3. Each point p is
associated with a set of 2D keypoints U ≡ {uk1,uk2, . . . ,ukn},uki ∈ Ωki with correspond-
ing feature descriptors B ≡ {bk1,bk2, . . . ,bkn},bki ∈ Rd . The keypoints correspond to the
projections of p in the keyframes K in which it is visible, and Ωki are their image domains.

Reference Descriptor Selection. To enhance the matching process and acquire more
observations with new keypoints, a common technique is to choose a distinctive reference
descriptor br and match subsequent keypoints against it [7, 27, 28]. Traditionally, the ref-
erence descriptor is selected based on image appearance. For instance, one approach is
to choose the descriptor with the least median Hamming distance dH to the remaining de-
scriptors: br = argminbki

median(dH(bki,B))) [27]. In contrast, we propose to leverage 3D
geometry by selecting the descriptor with the smallest Euclidean distance dE between the
translation vectors of its holding keyframe tk and the keyframe ti containing the keypoint be-
ing matched: br = argminbk

dE(tk, ti)). With this policy, we aim to enhance matching quality
by utilizing the descriptor that exhibits closest geometric proximity.

Point Appearance Invariance. In order to reduce the number of incorrect observations
resulting from the matching process, we apply a geometric constraint that is robust to motion
bias to filter the query keypoints uq. The image keypoints U are detected at different octaves
l ∈ (0, lmax ∈ Z) corresponding to scaled images, where w(l) = sl ·w0 and h(l) = sl · h0.
Here, s represents the scaling factor, and w0 and h0 are the widths and heights at the highest
resolution. To establish the appearance invariance interval for the depth zq of the query
keypoints uq, we set a maximum change in the octave of the keypoints denoted by ∆l:

zq ∈ [maxk(zk · s−∆l−0.5), mink(zk · s∆l+0.5)], (1)

where zk is the depth of the point p with respect to the keyframe k (see Figure 2(a)).

3.2 Optimization
Visual Covariances contribution to motion bias. The camera pose optimization in feature-
based SLAM is based on minimizing a weighted residual rσ−2

r r⊤, in which r and σ2
r are

respectively the reprojection error and its covariance. In this section we formulate the con-
tribution to motion bias of the standard approximation of visual covariances and propose a
new cost function that is robust to motion bias.

We identify an observation as the projection of a 3D point p in two different keyframes
{i, j} ∈ K. We label with subscript j the reference frame, and with i any other frame from
which the point is visible. The image coordinates of the projection of p in reference frame j
and its depth are denoted as u∈Ω and z∈R respectively (we drop subindex j for simplicity).

Citation
Citation
{Campos, Elvira, Rodr{í}guez, Montiel, and Tard{ó}s} 2021

Citation
Citation
{Mur-Artal and Tard{ó}s} 2017

Citation
Citation
{Mur-Artal, Montiel, and Tardos} 2015

Citation
Citation
{Mur-Artal and Tard{ó}s} 2017



FONTAN, CIVERA, MILFORD: MOTION-BIAS-FREE FEATURE-BASED SLAM 5

The function ϕ(u) projects a point p from its camera coordinates u in the reference frame
j into the frame i,

ϕ(u) = Π(RΠ
−1(u,z)+ t), (2)

where Π(p) (determined by the intrinsic camera parameters) projects p in the image; and
Π−1(u,z) back-projects the image point with coordinates u at depth z. R∈ SO(3) and t∈R3

stand here for the relative rotation and translation between keyframes j and i.
Feature-based errors are usually defined as variations of the following expression:

r = ui−ϕ(u), σ
2
r = σ

2
ui
+ϕ(σ2

u), (3)

where ui {ui ∈ U | ui ∈ R2} stands for the feature point in image i and ϕ(u) for the
corresponding point in the frame j reprojected in the frame i. Hence the residual covariance
is expressed as the sum of the projection covariance and the feature subpixel noise σ2

ui
.

We approximate the residual function (3) by its first-order Taylor approximation

ϕ(u+du)≈ ϕ(u)+∇uϕdu, σ
2
r ≈ σ

2
ui
+∇uϕσ

2
u∇uϕ

T , (4)

with the perspective deformation gradient tensor ∇uϕ [17] being the Jacobian of the pro-
jection function (2).

Assuming pure forward/backward movement, R = I3, t = (0,0, t)T , the feature subpixel
noise, the gradient tensor and the residual covariances can be modeled as isotropic Gaussians,

σ
2
r = σ

2
r I2 = (σ2

ui
+ ε

2
i jσ

2
u j
)I2 ,with σ

2
ui
= σ

2
ui

I2 ,σ2
u j
= σ

2
u j

I2 ,and ∇uϕ = εi jI2. (5)

The standard approach for visual covariance is to approximate the residual covariance
of the keypoint as σ2

r |appr = 2σ2
ui

[28]. Compared against the value from the linearization

α =
σ2

r |appr

σ2
r

=
2σ2

ui

(σ2
ui
+ ε2

i jσ
2
u j
)
=

2
(1+ ε2

i j)


> 1 if ε2

i j < 1 , over-estimation

< 1 if ε2
i j > 1 , under-estimation.

(6)

this leads to over- and under-estimation effects that result in different outlier rejection criteria
at forward and backward motions. To address this issue, we compute the reprojection error in
both the projection and reference keyframes (assuming constant depth) and normalize them
with the covariance of the keypoints in their respective views

ri = (ui−ϕ(u))2, r j = (u−ϕ(ui))
2, σ

2
ri
= 2σ

2
ui
, σ

2
r j
= 2σ

2
u j
. (7)

Figure 2(b) compares the robustness of the standard approach and our reprojection func-
tion against motion bias

α =
σ2

r |appr

σ2
r

=
2σ2

ui
+2σ2

u j

(1+ ε2
i j)σ

2
u j
+(1+ ε2

ji)σ
2
ui

σ 2
ui
=σ 2

u j
=

4
2+ ε2

i j + ε2
ji
. (8)

Outlier Rejection. ORB-SLAM2 [27] and DSO [16], representative pipelines for feature-
based and photometric SLAM, implement two strategies to reject outliers. Firstly, they min-
imize a Huber cost function [10] of the geometric and photometric errors respectively in
order to downweight their influence. And secondly, both approaches remove point observa-
tions that have a Mahalanobis residual above a certain threshold after optimization. Although
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Figure 2: Left: We show the depth invariance interval (1) for every octave of a point found
at z = 2(m). Right: Relative error in the estimation of visual covariances (6), (8).

this second strategy may have benefits, it may have a negative effect if removal is done too
early. For instance, for a frame with a large number of noisy observations (due to dynamic
objects, motion blur or lighting changes), accurate matches can suffer from early removal
due to inaccurate initial estimates.

Early removal of potential outliers may not have a significant influence for photometric
methods, as observations are abundant and very efficiently computed by simply retrieving
the intensity values of the image points [18]. However, it can degrade the performance of
feature-based methods. As features have a high extraction footprint, their re-detection after
removal comes with certain delay. In order to avoid this effect, we do not remove potential
outliers and keep all observations in the optimization.

3.3 Data Association

Symmetric Data Association. The implementation of data association varies depending on
its specific function within the SLAM pipeline. The left part of Figure 3 provides pseudo-
code for the tracking and mapping threads of ORB-SLAM2 [27]. Design choices differ based
on whether the association aims to create new map points (i.e., Search For Triangulation),
search for new observations (i.e., Search By Projection), or fuse map points (i.e., Fuse).

The ray from a point observation ui ∈ R3 on an image I ∈ {i, j} is ri = Rwc
i (K−1ui),

where K−1 ∈ R3×3 contains the camera intrinsics and Rwc
i the rotation matrix of the corre-

sponding camera pose. The parallax angle between two rays is cos(α) = (ri · r j)/(|ri||r j|).
Figure 3 shows the angle between point observations. Despite the angle at the end of both
forward and backward passes being the same, it varies throughout the trajectory. Conse-
quently, if a threshold for the angle is set during point initialization, the number of past and
future observations may differ between the forward and backward passes. This discrepancy
becomes more prominent when matching functions utilize distinct parameters or heuristics.
These variations can result in a different number of observations during forward and back-
ward motion, ultimately leading to differences in performance.

In our modification of ORB-SLAM2, we have changed the implementation of association
functions to ensure the utilization of consistent geometry and appearance constraints.

Robust Data Association. A common approach to expedite data association is to em-
ploy greedy strategies, where the matching of keypoints is performed strictly in sequential
order. This sequential ordering can lead to biased matching results, as keypoints may be
ordered based on their position in the image or their resolution octave. We have modified
the matching strategy in the ORB-SLAM2 code to avoid its potential bias. We prioritize
matches based on the lowest Hamming distance instead of relying on sequential ordering.
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1: function TRACKING (I)
2: ▷ I = RGB image
3: if Not Initialized then
4: Try to initialize (I)
5: end if
6: Track With Motion Model ()

Search By Projection v1 (c1)
7: Track Local Map ()

Search By Projection v2 (c2)
8: if Need New KeyFrame () then
9: Kn ← Create New KeyFrame ()

10: end if
11: end function

1: function MAPPING (Kn)
2: ▷Kn = new keyframe
3: P ←Map Point Culling (P)
4: Pn ← Create New Pts (Kn,K)

Search For Triangulation (c3)
5: Search In Neighbors ()

Fuse (Pn,K,c4)
Fuse (P ,Kn,c4)

6: P ←P ∪Pn , K←K∪Kn
7: Local Bundle Adjustment (P ,K)

Erase Outliers ()
8: K← KeyFrame Culling (K)
9: end function

j

j

i

i

cos (⍺)

cos (⍺)

d -d

p

-10 -5 0 5 10

0.98

0.99

1

Figure 3: Left: Tracking and mapping threads of [27] illustrating the distribution of data
association functions throughout a standard pipeline (underlined in the pseudo-code). c1,2,3,4
represents variations in the chosen descriptor distance thresholds used for feature matching.
Right: Asymmetry in the angle between observations of a point under fwd/bwd motion.

4 Ablation Study
In this section, we evaluate quantitatively how the methods proposed in Section 3 contribute
to the reduction of motion bias. Specifically, we examine the effects of descriptor selection,
point appearance invariance, visual covariances, outlier rejection, symmetric data associa-
tion, and robust data association. Following [37], we evaluate the accuracy of the trajectories
by calculating an alignment error, denoted as er. This error is estimated as the translational
root-mean-squared-error (RMSE) between the estimated trajectory, after it is aligned to the
start and end segments of the ground truth trajectory. For further details, please refer to [15].
To quantify the motion bias, we define it as the difference between the alignment error of
the forward pass and the alignment error of the backward pass: er( f )− er(b).

4.1 Implementation Details
Deterministic ORB-SLAM2. SLAM systems are susceptible to non-deterministic effects
that can significantly impede their performance and hinder our ability to perform ablation
studies on specific processes or variables. In this study, we introduce a modified version of
ORB-SLAM2 [27] that has been specifically designed to guarantee full determinism, ren-
dering it highly suitable for conducting ablation studies2. Specifically, 1) we have altered
both the tracking and mapping threads to ensure that they operate sequentially, thereby elim-
inating online non-deterministic behavior resulting from the real-time implementation. 2)
In addition, we have addressed implicit non-deterministic behavior that arose from dynamic
memory allocation and random sample consensus (RANSAC).

Keyframe management. Selecting a subset of representative keyframes in order to en-
able real-time global bundle adjustment and relocalization is an open problem in SLAM
[18, 23, 24, 31, 33, 38]. State-of-the-art approaches often rely on policies that are designed
to maximize performance on specific benchmarks, and may degrade when they are tested on
out-of-distribution sequences. To ensure homogeneous executions in our forward/backward

2Our deterministic implementation of ORB-SLAM2 [27] maintained all capabilities of the original baseline.
However, similar to [15, 37], we deactivated loop closure to maximize the impact of motion bias in our experiments.

Citation
Citation
{Mur-Artal and Tard{ó}s} 2017

Citation
Citation
{Yang, Wang, Gao, and Cremers} 2018

Citation
Citation
{Engel, Usenko, and Cremers} 2016

Citation
Citation
{Mur-Artal and Tard{ó}s} 2017

Citation
Citation
{Fontan, Giubilato, Oliva, Civera, and Triebel} 2023

Citation
Citation
{Konolige and Agrawal} 2008

Citation
Citation
{Leutenegger, Furgale, Rabaud, Chli, Konolige, and Siegwart} 2013

Citation
Citation
{Schmuck and Chli} 2019

Citation
Citation
{Strasdat, Montiel, and Davison} 2010

Citation
Citation
{Younes, Asmar, Shammas, and Zelek} 2017

Citation
Citation
{Mur-Artal and Tard{ó}s} 2017

Citation
Citation
{Engel, Usenko, and Cremers} 2016

Citation
Citation
{Yang, Wang, Gao, and Cremers} 2018



8 FONTAN, CIVERA, MILFORD: MOTION-BIAS-FREE FEATURE-BASED SLAM

Kitti Dataset [20]
er( f ) er(b) er( f )− er(b)

rmse mean/std rmse mean/std rmse mean/std

Ours (full) 72.7 58.3/45.7 71.4 56.8/45.4 6.9 1.4/ 7.1
wo. Descriptor Sel. 74.4 59.4/47.2 79.0 63.4/49.6 15.1 -3.9/15.3
wo. Point App. Inv. 64.7 52.7/39.5 71.9 56.7/46.5 9.4 -4.0/8.9
wo. Robust Assoc. 72.4 57.0/47.1 69.3 57.6/40.6 17.8 -0.6/18.7
wo. Sym. Assoc. 90.6 72.4/57.3 71.8 59.1/43.0 24.9 13.3/22.2
wo. Visual Cov. 74.4 59.4/47.1 72.2 59.4/43.5 13.2 3.0/14.1
wo. Outlier Reject. 59.8 50.7/33.4 88.9 69.7/58.2 31.2 -19.0/26.1

TUM Mono VO Dataset [15]
er( f ) er(b) er( f )− er(b)

rmse mean/std rmse mean/std rmse mean/std

6.7 4.8/4.7 6.8 5.3/4.3 3.9 -1.3/3.7
13.0 5.9/11.7 5.3 4.3/3.2 5.4 -0.5/5.5
6.7 5.0/4.5 6.2 4.9/3.7 2.8 -0.1/2.9
5.8 4.5/3.8 8.3 5.8/6.0 4.3 -0.5/4.3
7.6 4.4/6.2 4.7 4.1/2.4 4.1 -1.3/3.9
8.0 5.0/6.2 7.0 5.3/4.6 6.2 0.3/6.3

15.2 7.3/13.5 3.3 2.4/ 2.4 6.3 3.3/5.4

Table 1: Ablation Study in KITTI [20] and TUM Mono VO [15]. We report the root-
mean-squared-error (RMSE), mean and standard deviation (std) of the trajectory alignment
error (er) in meters (all better if closer to zero). We show results for the forward (f ) and
backward (b) passes, and underline in red/green the worst/best result for each metric. Values
in the last columns evaluate the motion bias effect (smaller with errors closer to zero).
Every row evaluates a configuration where all contributions except one are implemented.

Vanilla Ours

-1000

-500

0

(a) # Map Points

Vanilla Ours

-10

-5

0

(b) # Local Keyframes

Vanilla Ours

-10000

-5000

0

(c) # Observation Inliers

Figure 4: Other motion bias metrics. We show the differences on the total number [#] of
map points (Pt), local keyframes (Key), and observation inliers (Inl.) between forward (f )
and backward (b) passes. As before, our contributions effectively minimize the differences
across the three indicators, providing evidence of reduced motion bias.

experiments across four different datasets, we process every new frame as a keyframe but
keep only one out of every five together with the latest five keyframes. These numbers are
a reasonable compromise in our experiments between computational efficiency and perfor-
mance.

4.2 Ablation Results

Table 1 illustrates the impact of each proposed method on accuracy and motion bias. We
assess the relative contribution of each method by implementing all of them and then con-
ducting separate evaluations by deactivating each method one at a time.

The main factor contributing to motion bias is the outlier rejection, which creates a
significant gap between forward and backward runs by artificially improving one pass while
degrading the other. Our contributions effectively balance the forward and reverse passes in
both datasets, thereby eliminating motion bias.

An alternative approach to evaluate motion bias without relying on camera trajectory
ground truth is by comparing key statistics of the SLAM graph. Figure 4 illustrates how our
proposed approaches effectively reduce the differences across three indicators, providing
evidence of reduced motion bias.
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er (f) er (b) er (f) - er (b)
Dataset Hz Fwd/Bwd Van. Ours Van. Ours Van. Ours
TUM Mono VO [15] Indoor Walk 40 Medium 6.10 6.74 1.89 6.86 4.51 3.93
RGB-D SLAM [34] Indoor Walk 30 Soft 0.07 0.06 0.03 0.05 0.02 0.01
EuRoC [5] Indoor Drone 20 Soft 0.07 0.16 0.09 0.07 0.04 0.01
KITTI [20] Outdoor Car 10 Strong 76.42 72.72 132.24 71.40 65.67 6.94

Table 2: Final Evaluation. Our approach eliminates motion bias in the four datasets (third
column in orange) while keeping global accuracy constant. As expected the reduction of mo-
tion bias is stronger in Kitti and TUM Mono VO datasets where the motion occurs mainly in
the forward/backward direction of the camera. Values are the medians after outlier removal.

Sequence 00 02 03 04 05 06 07 08 09 10
er( f ) Van. 128.3 38.0 9.8 4.1 65.1 93.2 40.1 123.1 100.4 23.4
er(b) Van. 254.9 179.3 6.9 0.9 115.3 111.7 53.3 183.2 120.3 29.9

er( f )− er(b) Van. -126.6 -141.3 2.9 3.2 -50.1 -18.4 -13.1 -60.0 -19.9 -6.5
er( f ) Ours 140.1 27.1 4.1 4.8 72.0 96.0 43.6 102.6 71.6 21.0
er(b) Ours 136.6 41.8 2.0 0.7 66.2 100.7 38.9 102.9 59.4 19.3

er( f )− er(b) Ours 3.5 -14.7 2.0 4.1 5.7 -4.6 4.7 -0.2 12.2 1.68

Table 3: Per-sequence results in KITTI. Our motion-bias-free implementation removes the
bias (er( f )− er(b)) between forward and backward passes in most sequences.

5 Results
We selected four publicly available datasets, encompassing a wide range of potential sources
for motion bias, including indoor/outdoor environments, walking/driving scenarios, high/low
video frequencies, and strong/soft forward/backward motion.

Table 2 provides an overview of these dataset characteristics and shows the errors and
motion bias metrics obtained by our deterministic implementation of ORB-SLAM2. Note
first how motion bias appear in the four datasets, evidencing that it is a general problem in
SLAM. With our contributions, we successfully eliminate motion bias across all datasets,
effectively balancing the accuracy between forward and backward passes. Notably, in the
KITTI dataset, motion bias is completely eradicated, leading to a significant improvement in
the accuracy of the backward pass. For detailed results per sequence, refer to Table 3.

6 Conclusion & Future Work
In this paper, we are motivated by the significant impact of motion bias on state-of-the-
art feature-based SLAM systems. Our findings reveal substantial inconsistencies in perfor-
mance, not only between forward and reverse directions of travel but also in terms of which
direction exhibits better performance.

Our study reveals that the primary factor contributing to the observed inconsistencies is
the outlier rejection process. To address this issue, we propose an alternative policy and
introduce a new model for visual covariances that effectively removes motion bias. By
implementing this and other contributions in ORB-SLAM2, we demonstrate a substantial
enhancement in the consistency between forward and backward motion, along with improved
average trajectory error in both directions, across four diverse datasets. This novel approach
yields more trustable and generalizable performance, which is of great significance in critical
applications where consistency of performance is crucial for usability and practicality.

Future work should focus on investigating how outlier management techniques can ef-
fectively eliminate motion bias while maintaining the highest level of trajectory accuracy
(Section 4.2). Additionally, we will further explore the impact of image resolution (Section
2) and keyframe management strategies (Section 4.1) on inducing motion bias.
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