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Abstract

Improving the safety of traffic participants and reducing the severity of injuries as
well as the number of fatalities in the event of accidents is becoming ever more impor-
tant in the development of vehicles and transportation infrastructure. The most vulner-
able group of road users is unquestionably pedestrians, of which people with mobility
impairments are especially at risk due to reduced reaction speed or reduced visibility due
to smaller silhouettes or unusual postures. Successful strategies for increasing safety by
reducing the likelihood of accidents include architectural improvements in planning of
pedestrian crossings, as well as advancements in their operation. These strategies can
benefit from camera based pedestrian detection systems, yet pedestrians using mobility
aids are highly underrepresented in common datasets for object detection and classi-
fication, if present at all. To fill this gap and enable researchers to develop methods
considering pedestrians in their mobility, we present a novel dataset of pedestrians using
mobility aids, together with evaluations of state-of-the-art methods for classification and
detection.

1 Introduction
In the effort to reduce the number of traffic accidents as well as their impact, traffic safety
research puts particular emphasis on safety improvements for pedestrians, since they usually
suffer the most serious injuries in traffic accidents [25, 39]. Among this already vulnerable
group of road users, however, pedestrians requiring mobility aids are even more at danger.
For example, pedestrians using wheelchairs report a 36% higher mortality rate than standing
pedestrians in car-to-pedestrian collisions [9, 16]. Potential reasons for such higher risks
can be partially attributed to longer reaction times due to impaired mobility, or their unusual
posture, leading to potentially reduced visibility.

Strategies to improve pedestrian safety range from wider integration of Pedestrian Pro-
tection Systems (PPS) into Advanced Driver Assistance Systems (ADAS), which are already
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becoming mandatory in some areas [5], to increasing safety of traffic interactions by specific
measures in planning and operation of pedestrian crossings [36]. These road safety strategies
can benefit from camera-based pedestrian detection systems, which enable visual perception
of the environment as a crucial component in ADAS, or allow us to perform detailed analy-
sis of traffic scenarios in order to optimize crossing layouts and traffic flow in general. Both
approaches to improved road safety require a detailed understanding of which road users
are present. Knowledge about the presence of pedestrians using mobility aids may help to
further improve these approaches in several ways, for instance by avoiding bias in detection
systems towards upright walking and standing pedestrians, by helping city planners to de-
velop roads according to specific needs and to incorporate this knowledge into active traffic
management. For instance, through the use of traffic lights enabled for on-demand and on-
line scheduling of light cycles, the presence of pedestrians requiring mobility aids can be
taken into account by increasing the duration of their green phase, allowing for a possibly
longer time required to safely clear a crossing.

While there has been significant progress regarding the robustness and reliability of
pedestrian detection models, the consideration of pedestrians reliant on mobility aids is lack-
ing behind. Incorporating them is a difficult task currently, since most of the recent progress
is driven by deep learning approaches and therefore depends on the availablibility of ade-
quate training data, yet the representation of pedestrians using mobility aids is lacking in
public datasets, being underrepresented at best or not represented at all at worst. However,
such data would be needed to foster research on detecting the presence of mobility aids and
to further improve the safety of these especially vulnerable road users.

To help fill this gap and to enable researchers to consider the presence of mobility aids in
the development of pedestrian detectors, in this work we present a dataset for the detection
and classification of pedestrians using four different types of mobility aids (wheelchairs, rol-
lators, crutches and walking canes) in images taken from standard traffic monitoring view-
points, i.e. cameras mounted on traffic lights or poles. Furthermore, we provide detailed
evaluations demonstrating the performance of state-of-the-art models for both, classification
and detection and consider robust classification and detection, formulating a hierarchical
class-dependency among all pedestrian classes, thereby allowing an explicit safe fall-back
for the classification in case of uncertainty.

2 Related Work
In object detection, approaches can be classified roughly into two different categories. The
first, traditional category treats object detection and object classification as two separate
and independent steps, i.e. performing classification of the object proposals as a second
step on the result of the object detector. Well-known members of this category are the R-
CNN variants [7, 8], depending on object proposals as input, and methods like Faster R-
CNN [28] and MSC-MultiBox [32], which integrate the generation of object proposals into
their pipeline. The more recent class of so called one-shot detectors like SSD [23] and
YOLO (You Only Look Once) [35] treat object detection and classification as a compound
task, solved by a single forward pass through a deep neural network. Since these methods
yield object proposals jointly with classification scores in a single forward pass of a deep
neural network, their speed is vastly increased while simultaneously reducing computational
needs compared to traditional two-stage detectors. Recent YOLO variants [15] comprise the
state-of-the-art among the one-shot detectors, due to their favorable performance, ease of use
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and readily available pre-trained model weights.
Alternatively, pedestrian attribute recognition approaches can also be used to identify

mobility aid use in a top-down approach, i.e. performing classification after detection of a
generic person/pedestrian class. Such approaches typically leverage the strong representa-
tional capabilities of convolutional neural networks to extract image features and apply a
classification head to estimate the attribute categories. The underlying feature extractor sig-
nificantly contributes towards the accuracy and inference speed and ranges from AlexNet
backbones, in [17, 31], to more accurate VGG or Inception backbones, e.g. in [19, 21]. This
approach is highly effective for fine-grained category recognition and has lead to a variety of
applications, including Human Attribute Recognition (HAR), e.g. [14], [17], [21], or [41],
and Person Re-identification (Re-ID), e.g. [10], [18], [30], [38], or [42]. To improve accu-
racy even further, recent approaches such as [29, 40] adopt deeper backbones (ResNet and
DenseNet) or try to learn feature representations tailored to pedestrian attributes, e.g. [2, 34].
We demonstrate the capabilities of classifiying mobility aids with a typical pedestrian at-
tribute recognition pipeline using a wide variety of state-of-the-art feature extraction back-
bones.

As previously discussed, representation of mobility aids in existing datasets is sparse
to non-existent. Of datasets geared towards autonomous driving, nuScenes [1] is the only
one providing annotations for wheelchairs, yet still offers only very little annotations (35
instances in nuImages). In the common object detection and semantic segmentation datasets
publicly available, mobility aids usually are not present at all. To our knowledge, the only
dataset specifically targeted at people using mobility aids is the MobilityAids dataset [37],
which is focused at the application of autonomous robots in hospitals, featuring a low view
point and detection and classification of 3D data from depth cameras. In contrast to these our
focus is on providing a dataset captured from a standard traffic monitoring viewpoint. This
can facilitate research on detection and classification models that will help city and traffic
planners to properly consider the needs of mobility aid users when designing crossroads or
optimizing traffic light schedules.

3 Dataset
The aim of this work is to facilitate research into detection and classification of especially
vulnerable traffic participants, specifically pedestrians with mobility impairments. To this
end and to complement the little already available data [37], we chose a standard traffic
monitoring viewpoint for recording, as can be found in CCTV cameras or when monitor-
ing pedestrian crossings. Figure 1 shows examples of the recording setup and annotations.
Besides persons not using any aids (class pedestrian), the dataset contains people using
wheelchairs, rollators, one or two crutches and walking canes, covering a wide spectrum of
the most common mobility aids. The dataset is available online at [24].

A major concern in the creation of datasets containing people is the protection of privacy
and the non-infringement of personal rights, especially so when dealing with impairments or
medical conditions. Image alterations such as blurring or cropping regions which could lead
to identification would thwart the purpose of the dataset creation, since any alterations may
give hints to object detection algorithms, disclosing information on object position or class.
These constraints increase the difficulty of creating publicly available datasets focused on
detection and classification of pedestrians using mobility aids, placing additional obstacles
to data acquistion at rehabilitation centers where a high number of people using mobility
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Figure 1: Exemplary dataset images with annotations. In the top row, the two camera view-
points (image resolution is 1280×960) can be seen. The bottom row shows sample crops of
the available mobility aids.

aids can be encountered. To reconcile privacy concerns on one hand with the need for a
large dataset with many individuals and sufficient variability on the other hand, we chose to
conduct data acquisition with able-bodied volunteers using a calibrated camera setup at an
intersection on the university campus. This constraint of course means that although video
streams were captured, analysis and classification based on more high-level cues like move-
ment patterns or trajectories is not possible in a meaningful way, since these cues will not
be similar to those encountered in the wild. Furthermore, at this stage it was not possible to
close off the road section where data capture was performed, meaning that during capture
also people not participating in the dataset recording were present at some times. All such
samples were removed during annotation. Since for these reasons the source data does not
lend itself to processing as a time series, annotation was done for frames at equidistant inter-
vals of 4 seconds on a basis of pure visibility, meaning that especially for the thin mobility
aids cane and crutch, annotations were only labeled as such if they were discernible for the
human eye, and as pedestrian otherwise. Data was aqcuired on three days in summer and
early autumn of 2022, resulting in a total of 17 hours of raw video. In total, 34 different peo-
ple participated in data recording, some of them at several days. The data was divided into
splits for training, validation and testing along full intervals to minimize subjects appearing
in more than one split while trying to keep class frequencies representative over all splits.
Each split is guaranteed to contain recordings of all three sessions. The validation split is
about a tenth of the size of the training split, the testing split is about a third of the size of the
training split. Data annotation has been realized by six human annotators, each sample was
verified by at least two individuals. Keeping with the recommendations of YOLOv5 [15],
each split contains about 9% of background images without any annotations. Table 1 lists
the number of frames and total annotations per class for each split in the dataset.

Figure 2 shows the relative distribution of annotations for the whole dataset (all), as
well as each split. Similarly, Figure 3 shows the histograms for the relative sizes of the
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frames annotations

split total background pedestrian wheelchair rollator crutch cane

train 8456 768 (9.0%) 10518 (48.1%) 3907 (17.9%) 3178 (14.5%) 2466 (11.3%) 1781 (8.2%)
val 784 71 (9.0%) 486 (30.8%) 418 (26.5%) 347 (22.0%) 153 (9.7%) 176 (11.1%)
test 2946 267 (9.0%) 3058 (43.5%) 1660 (23.6%) 787 (11.2%) 979 (13.9%) 540 (7.7%)

Table 1: Number of frames and annotations for each split in the dataset. The relative amount
is given in percent in brackets.

bounding boxes. The dataset has only little bias towards preferred locations, the splits are a
good representation for the whole data. Figure 4 shows the distribution of annotations per
class. There exists no bias towards preferred locations for any class compared to the others.
Lastly, Figure 5 shows the respective size and location of annotations. The bounding box
size is color coded as the length of a square of same area. We can see small annotations
of pedestrians on the sidewalk on the opposite side of the road. These were included since
state-of-the-art detectors are able to detect such small structures, and ignoring them could
lead to poor learning cues for detector training. Since in practice they are most likely not
relevant, users may filter them before evaluation if the need arises.

Figure 2: Distribution of bounding box centers for the complete dataset (left) and each split.
Coordinates are relative to the respective image dimension.

Figure 3: Distribution of bounding box sizes for the complete dataset (left) and the respective
splits. Bounding box sizes are relative to the respective image dimension.

4 Classification
As the first baselines, we provide classification results of the methods detailed in Sec. 4.1. All
approaches are trained, validated and evaluated using ground-truth annotations for detection,
thereby eliminating the impact of object detectors in the dataset evaluation. This provides
an estimate on the distinguishability of object classes, as well as hard cases and possibilities
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Figure 4: Distribution of labels (centers of respective annotation bounding boxes) per class.

Figure 5: Distribution of annotations, color coded for bounding box size. The size is given as
equivalent length of a square of same area. Again, coordinates are relative to the respective
image dimension.

for confusion. Evaluation metrics and evaluations are decribed in Sec. 4.2 and Sec. 4.3,
respectively.

4.1 Method

To classify pedestrians based on their use of mobility aids, we employ a standard whole-
image classification method, based on a pre-trained convolutional neural network for feature
extraction [33]. The classifier is learned with a transfer learning strategy, replacing and
retraining the linear classification layer on top of the backbone for the proposed five classes,
and fine-tuning the weights of the entire network.

We compare the classification performance of several commonly used feature backbones
on our dataset, including MobileNetV3 Large (MobileNetV3 L) [12], different ResNet [11]
variants, DenseNet201 [13], VGG16 [22], and ViT Base 16 (ViT-B/16) [4]. Our aim is to
provide a diverse set of baselines with different characteristics, including shallow and deep
models, light-weight as well as memory and compute-intensive models. All networks are
pre-trained on the ImageNet-1K dataset [3] and fine-tuned on our dataset for 20 epochs us-
ing Sigmoid Cross-Entropy Loss with Adam optimizer and Step Decay every 5 epochs. For
training we use a batch size of 32 and an initial learning rate of 1e−4. We employ the imple-
mentations provided in the PyTorch model zoo [26] with pre-trained weights, which repro-
duce the original results published by the respective authors (denoted ImageNet_1K_V1), as
well as the improved TorchVision weights (denoted ImageNet_1K_V2), where available.

As a data pre-processing step, we extract image patches using bounding box annotations
(examples can be found in the supplemental). Since the bounding boxes tightly enclose the
person annotated, we provide the model with extended context by expanding the boundaries
of the bounding boxes by 20 pixels on each side when extracting images patches. The ex-
tracted patches are resized to 224×224, their intensities are scaled to [0,1] and normalized
to be zero-mean, unit-variance.
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4.2 Metrics
During fine-tuning on our dataset, we monitor the performance of the model after each epoch,
focusing on the final validation accuracy score after 20 epochs. A more comprehensive
comparison of the models in term of training performance and complexity can be found in
the supplemental material. We report the classification performance in terms of the number
of true positives (TP) and test accuracy (Acc).

4.3 Results
Table 2 reports the classification accuracy on the test set. All models predict classes pedes-
trian and wheelchair with very high accuracy of about 99%. Class rollator is also predicted
with high accuracy above 94%, all ResNet models as well as DenseNet201 achieve very high
accuracies between 97% to 98%. Unsurprisingly, the most challenging task for all models
is to distinguish between classes crutch and cane, demonstrating the challenge of correct
classification depending on thin and fine-graned visual cues.

An interesting observation is that the most complex networks do not necessarily perform
the best on our dataset, allowing for selection of more lightweight and faster networks. Please
refer to the supplemental material for a further analysis of the classification performance and
confusion matrices.

pedestrian wheelchair rollator crutch cane all
GT 3058 GT 1660 GT 787 GT 979 GT 540 GT 7024

TP↑ Acc↑ TP↑ Acc↑ TP↑ Acc↑ TP↑ Acc↑ TP↑ Acc↑ TP↑ Acc↑

MobileNetV3 L 3041 0.9944 1642 0.9892 751 0.9543 732 0.7477 424 0.7852 6590 0.9382
MobileNetV3 L (V2) 3044 0.9954 1642 0.9892 744 0.9454 745 0.7610 421 0.7796 6596 0.9391
ResNet18 3053 0.9984 1650 0.9940 764 0.9708 753 0.7992 449 0.8315 6669 0.9495
ResNet34 3056 0.9993 1645 0.9910 775 0.9848 726 0.7416 440 0.8148 6642 0.9456
ResNet50 3057 0.9997 1651 0.9946 763 0.9695 776 0.7926 430 0.7963 6677 0.9506
ResNet50 (V2) 3056 0.9993 1645 0.9910 771 0.9797 764 0.7804 436 0.8074 6672 0.9499
DenseNet201 3053 0.9984 1651 0.9946 764 0.9708 789 0.8059 459 0.8500 6716 0.9562
ResNet152 3054 0.9987 1654 0.9964 764 0.9708 792 0.8090 445 0.8241 6709 0.9552
ResNet152 (V2) 3053 0.9984 1642 0.9892 771 0.9797 788 0.8049 438 0.8111 6692 0.9527
ViT-B/16 3054 0.9987 1648 0.9928 760 0.9657 711 0.7263 397 0.7352 6570 0.9354
VGG16 3054 0.9987 1648 0.9928 758 0.9632 771 0.7875 431 0.7981 6662 0.9485

Table 2: Classification performance on the test split of our dataset. Scores in bold represent
the best results, scores in bold and italics indicate the second-best results, and underlined
scores notate the third-best results. GT denotes the number of ground truth samples.

5 Detection
For use in applications, not only the classification of persons according to their use of mo-
bility aids is essential, but processing of whole scenes with localization and simultaneous
classification is necessary. To this end, we provide results for the state-of-the-art one-shot
YOLOv5 [15] detector. An important aspect, especially in tasks geared towards providing
increased safety for vulnerable road users, is to assure detection as reliably as possible. When
treating all mobility classes as equivalent but independent, detections may be lost if, due to
uncertainty, multiple classes are predicted with all having a low score below the detection
threshold. To remedy this, we propose to model classification into mobility aids used in a hi-
erarchical fashion inspired by YOLO9000 [27] as explained in Sec. 5.1. The used evaluation
metrics, as well as the detection and classification results are presented in Sec. 5.2 and 5.3,
respectively.
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5.1 Hierarchical Class Prediction
The key idea behind hierarchical class training is to structure class labels in a semantic
hierarchy with a tree-like structure [27], where all labels in lower branches also share com-
mon parent labels up to the respective semantic root. The classification head is then trained
to not only predict the fine-grained class, but to also predict all classes further up in the
hierarchy necessary to reach that specific label. When evaluating class predictions, we
start at the root labels, at every point taking the branch with the highest score, up to the
point where we either reach the end of the semantic tree or the score drops below a pre-
defined threshold. In practice, we realize this by giving each of the 5 classes {pedes-
trian, wheelchair, rollator, crutch, cane} in our mobility dataset the common root class
of person and training the detection model to also predict this class, jointly with the spe-
cific mobility class. The idea being, that through this formulation even in cases where
all fine-grained labels score low due to uncertainty in class prediction, at least the com-
mon superclass of person will remain with a high enough score to yield a proper detec-
tion. For a further explanation we refer to the original publication of YOLO9000 [27].
The code used for training and evaluation of the detection models is made available at
https://github.com/mordecaimalignatius/yolo-9k.

5.2 Metrics
We provide detection and classification results in terms of the well established average pre-
cision metric (AP), defined as the area under the precision-recall curve for each class sepa-
rately, as well as the average over all classes. In addition to the common AP@50 measure
introduced by Pascal VOC [6], i.e. average precision at 50% Intersection-over-Union (IoU),
we also provide results averaged over 10 IoU thresholds from 50% to 95% as mAP@50-95,
as proposed by COCO [20]. Furthermore, we compare detector performance in terms of
recall (accuracy ACC), relative amount of misclassified (MCL) and missed detections (MIS)
for each class, as well as overall number of false detections (FP) and missing detections
(FN).

5.3 Results
All models have been fine-tuned until convergence for a maximum of 200 epochs, with early
stopping if the performance on the validation set has not increased in the last 20 epochs,
starting from the weights pre-trained on COCO [20]. We used AdamW as optimizer. For
testing the IoU threshold for non-maximum supression was chosen as 0.45, the confidence
threshold as 0.4.

Table 3 lists the performance of the trained models for each class separately, as well as
the average performance over all classes. As expected, performance increases with model
complexity, yet within a comparatively small margin relative to model complexity. Perfor-
mance is best for easily distinguishable classes wheelchair and rollator, which have large
footprints in the images. Correct classification of thin mobility aids like crutches and walk-
ing canes reduced, implying again a necessity of further research to reliably detect such
instances. Notably, the hierarchically trained models suffer a performance penalty in this
measure of around 2-3 percentage points. However, we see from Table 4 that particularly for
mobility aids training with the hierarchical class structure reduces the number of false posi-
tives as well as false negatives by up to a factor of 2, independent of model complexity. This
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emphasizes the benefit of a hierarchical approach for increased safety, providing the network
with an explicit fallback in case of uncertainty. For an in-depth comparison we refer to the
confusion matrices available in the supplemental material, together with a further evaluation
of detection on a smaller image size of 640×480 pixels.

pedestrian wheelchair rollator crutch cane all

YOLOv5 AP@50 mAP@50-95 AP@50 mAP@50-95 AP@50 mAP@50-95 AP@50 mAP@50-95 AP@50 mAP@50-95 mAP@50 mAP@50-95

small 0.881 0.650 0.983 0.721 0.952 0.693 0.821 0.695 0.674 0.569 0.862 0.666
medium 0.886 0.669 0.986 0.719 0.960 0.706 0.843 0.719 0.639 0.545 0.863 0.672
large 0.891 0.671 0.982 0.727 0.972 0.712 0.840 0.720 0.669 0.568 0.871 0.679
xlarge 0.887 0.682 0.982 0.735 0.954 0.708 0.858 0.732 0.716 0.612 0.880 0.694

h small 0.860 0.637 0.981 0.722 0.941 0.699 0.760 0.666 0.583 0.508 0.825 0.647
h medium 0.853 0.642 0.985 0.734 0.949 0.724 0.796 0.699 0.660 0.582 0.849 0.676
h large 0.859 0.652 0.981 0.736 0.953 0.726 0.788 0.689 0.632 0.548 0.843 0.670
h xlarge 0.852 0.647 0.976 0.747 0.942 0.717 0.820 0.723 0.670 0.597 0.852 0.686

Table 3: Detector performance on the full resolution of the test split for different model
sizes of YOLOv5. Models in the top have been trained with independent classes, models
prepended with ’h’ in the bottom part have been trained with the hierarchical class structure.
The best model has been marked in bold face, the second best in italic.

pedestrian wheelchair rollator crutch cane all

YOLOv5 ACC↑ MCL↓ MIS↓ ACC↑ MCL↓ MIS↓ ACC↑ MCL↓ MIS↓ ACC↑ MCL↓ MIS↓ ACC↑ MCL↓ MIS↓ ACC↑ MCL↓ FP↓ FN↓

small 0.874 0.070 0.055 0.967 0.006 0.027 0.940 0.034 0.025 0.653 0.336 0.011 0.693 0.289 0.019 0.859 0.105 430 255
medium 0.880 0.049 0.071 0.965 0.008 0.027 0.924 0.053 0.023 0.664 0.322 0.014 0.598 0.369 0.033 0.863 0.103 440 312
large 0.880 0.049 0.071 0.965 0.008 0.027 0.924 0.053 0.023 0.664 0.322 0.014 0.598 0.369 0.033 0.853 0.103 440 312
xlarge 0.897 0.054 0.048 0.968 0.009 0.024 0.921 0.051 0.028 0.701 0.290 0.009 0.643 0.341 0.017 0.870 0.098 609 227

h small 0.854 0.076 0.070 0.964 0.010 0.027 0.917 0.064 0.019 0.590 0.395 0.014 0.598 0.389 0.013 0.831 0.127 146 295
h medium 0.846 0.105 0.049 0.966 0.015 0.019 0.939 0.047 0.014 0.662 0.333 0.005 0.657 0.330 0.013 0.844 0.126 278 206
h large 0.854 0.094 0.052 0.963 0.016 0.021 0.943 0.041 0.017 0.637 0.349 0.013 0.641 0.337 0.022 0.843 0.124 274 232
h xlarge 0.818 0.123 0.059 0.939 0.033 0.029 0.937 0.039 0.024 0.672 0.322 0.006 0.587 0.394 0.019 0.822 0.141 226 264

Table 4: Detector performance in terms of accuracy (ACC), misclassification (MCL) and
missed (MIS) detections as well as overall false negatives (FN) and false positive (FP) de-
tections.

6 Conclusion
We presented a new dataset (available online at [24]) focused on the detection and classi-
fication of the most vulnerable road users, i.e. pedestrians using mobility aids. Our care-
fully designed data collection ensures that this dataset can be used without restrictions for
future research. Improved detection and classification models for mobility aid users can im-
prove traffic safety, as well as vision-based applications in convalescent homes. Since at
least in Europe and the United States monitoring of public spaces is a highly sensitive task
demanding processing of the data directly at the monitoring site, this requires lightweight
detection and classification architectures which can be deployed on embedded devices effi-
ciently. These architectures will need to be able to reliably classify mobility aid users based
on thin structures, a task at which even current, large and powerful architectures struggle.
Our detailed evaluations with commonly used classification and detection approaches pro-
vide strong baselines for future comparisons.
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