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Abstract
Optical imaging systems are inherently limited in their resolution due to the point

spread function (PSF), which applies a static, yet spatially-varying, convolution to the
image. This degradation can be addressed via Convolutional Neural Networks (CNNs),
particularly through deblurring techniques. However, current solutions face certain limi-
tations in efficiently computing spatially-varying convolutions. In this paper we propose
CoordGate, a novel lightweight module that uses a multiplicative gate and a coordinate
encoding network to enable efficient computation of spatially-varying convolutions in
CNNs. CoordGate allows for selective amplification or attenuation of filters based on
their spatial position, effectively acting like a locally connected neural network. The ef-
fectiveness of the CoordGate solution is demonstrated within the context of U-Nets and
applied to the challenging problem of image deblurring. The experimental results show
that CoordGate outperforms existing approaches, offering a more robust and spatially
aware solution for CNNs in various computer vision applications.

1 Introduction
Convolution is a fundamental operation that lies at the core of methods from numerous dis-
ciplines, from physical processes like heat transfer, to convolutional neural networks in ma-
chine learning. In an optics context, this operation involves sliding a point spread function

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 S. HOWARD, P. NORREYS, A DÖPP: COORDGATE

(PSF) - a system’s response to a point source - over an input signal in order to obtain the con-
volved signal. While classical convolution requires a PSF that is spatially-invariant (i.e. no
change as it is passed over the input), this is a property that is rarely found in reality, due to,
for example, optical aberrations. When one considers a convolution with a spatially-variant
PSF, the expressability of the operation becomes even greater. However, with greater func-
tionality, comes greater computational complexity. Discretised spatially-varying convolution
is described by the general formula,

n(i) = ∑
j∈Ω(i)

h(i, j)m(j), (1)

where m and n are the input and convolved signals, h is the point spread function, i is a
position, and Ω(i) describes a relevant region around i (which may include the full domain
of n). Classic, spatially-invariant, convolution enforces that h(i, j) = h(i− j).

When imaging an object, a PSF is known to be dependant on the in-plane spatial co-
ordinates, (x,y), as well as the angles of incidence, θ (or equivalently depth, z). Using
a typical single two-dimensional (2D) sensor does not allow access to the latter variable,
which leads to deconvolution becoming underdetermined. Here, a static spatially-varying
convolution is defined as one where the PSF is consistent for every data sample and depends
only on the in-plane coordinates, so that the other degree of freedom is removed. Such
a condition is satisfied in many scenarios in optics; for example, when imaging at a fixed
depth (z(x,y) =C(x,y)), such as in microscopy or in relay imaging, or at very far distances
(θ → 0), such as in astronomy. The aforementioned definition also typically removes exam-
ples that include motion blur, which would not be static between data samples. Finally, one
notes that the (pseudo-)inversion of a static convolution gives rise to a static spatially-varying
deconvolution, which in a noise-free case is totally determined. This paper focuses on the
problem of performing static spatially-varying convolution and deconvolution.

Recent efforts in these problems have turned to deep learning methods, such as convo-
lutional neural networks (CNNs). CNN’s are composed of convolutional layers, which have
the typically desirable characteristic of weight-sharing - significantly reducing the number
of trainable parameters in the network and allowing for efficient position-independent ex-
traction of local features from images. By sequentially stacking convolutional layers, CNNs
extract highly abstract features, whilst also widening their receptive field. However, the
property of weight-sharing also imposes a constraint on the model’s ability to learn spatially-
aware representations. While CNNs can actually detect spatially varying features [9], the
method of how they do this is inefficient, as will be described in subsequent sections of this
paper. Several methods have been suggested to improve CNN’s spatial capabilities, one of
which is the CoordConv layer [12], which appends coordinates to the input features, enabling
the network to learn spatial-aware representations.

In this paper, we revisit the problem of CNNs’ inefficiency in spatial awareness and
propose a novel solution, CoordGate. While CoordConv appends the coordinates to the data
before convolution, in CoordGate they are passed through an encoder network, before being
applied to the convolved data via a multiplication gate, similar to that found in a channel-
attention mechanism. This technique enables selective amplification or attenuation of filters
based on their spatial position, and it provides a large efficiency increase over existing CNNs.
The paper is structured as follows: In Section 2, a discussion is provided on the state of
the art regarding spatially varying convolutions in CNN architectures and relevant related
work is highlighted. This section serves as a basis for the subsequent introduction of the
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Figure 1: The position encoding effects from ‘same’ padding. a): Convolving a uniform
input with a 3×3 uniform kernel 5 times. b&c): The same effect for 2 U-Net architectures,
containing 2 and 4 steps of down-and-up sampling respectively. Before each dimension-
changing operation, three 3×3 convolutions were applied, except for the middle layer in b),
where 12 additional convolutions were applied so each model had the same total number of
convolutions.

proposed solution in Section 3 and experimental results are provided in Section 4. Section 5
summarizes the new findings and concludes the paper.

2 State of the Art and Related Work
Boundary Effects. Standard CNNs inadvertently leverage spatial variance due to padding
effects [8, 9]. It is common to pad the input to a convolutional layer with zeros before pass-
ing the kernel over it (‘same’ padding), as this maintains the spatial size of the image. Post
convolution, a systematic defect appears around the feature map’s boundary, which seeps in-
wards with each subsequent convolutional layer. This effect is observable in Fig. 1a), where
a (12×12) uniform input is convolved with a (3×3) uniform kernel using ‘same’ padding.
The resultant feature map displays the position-encoding effect propagating inward. A differ-
ent kernel would disrupt symmetry in these maps. A network cannot detect spatial variance
in a region until the defect reaches it; this is visible in the central region of Fig. 1a) that re-
tains a uniform value. In a standard computer vision task with an input size of ∼ 500×500,
a significant number of 3× 3 convolutions are needed to reach the center. Using encoder-
decoder architectures like U-Net [15] can alleviate this issue. Convoluting at the downsam-
pled layer in U-Net helps encode positional information in fewer steps, but at a downsampled
resolution, as shown in Fig. 1b-c). Thus, for U-Net to exploit positional information, it is
necessary for the network to be deep and it may require a large number of channels to de-
scribe more complicated positional relationships. This unintended positional encoding of
padding contributes to deep CNN’s performance in spatial tasks, but it encourages explo-
ration of more deliberate encoding methods for potentially higher accuracy and efficiency.

Adaptive Convolution. It is possible to adapt a classic convolution in order to give it some
spatial variance. One of the simplest methods in this class is the CoordConv layer, which
concatenates normalized spatial coordinates to the input features before they are passed
through a convolution, aiming to allow the network to learn spatially-aware representations
more explicitly [12], and it has been adopted for various applications [3, 4, 16, 19, 21, 26]. In
the case of static spatially-varying convolution, one desires that the coordinate information
affects the feature map in the same way for every data sample. Throughout the training set,
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the values of data will vary, while the value of the coordinates will be static. CoordConv
layers include the coordinate within a weighted sum with the data values which makes it
impossible to find weights for a convolutional kernel that will allow the coordinates to effect
each sample in the same way. This is a fundamental limitation of CoordConv.

Another method trying to address this issue is the pixel-adaptive convolution (PAC) [17].
In this method, the actual convolution function is multiplied by a pairwise function of pixel
features (such as the coordinates). However, in PAC, the pairwise function has a fixed para-
metric form, such as a Gaussian, which limits this techniques generalisability, as a certain
choice of function may not suit all problems. A spatially-varying optical PSF is nearly al-
ways smoothly changing, and can be represented as a superposition of a small number of
kernels. For this reason, there is no need to introduce an expensive pairwise operation, if a
more desirable light-weight method is able to simply interpolate between the kernels. The
proposed method is based on this simplification, and enables easier training and faster infer-
ence. Furthermore, being a modification of the convolution itself, PAC cannot take advantage
of hardware acceleration for standard convolutions.

For the sake of completeness one should also mention the arguably most general case of
an adaptive convolution, the locally-connected network (LCN) [2]. Here, each position uses
its own kernel to connect to a region in the feature map. Unfortunately, this flexibility comes
at a price and LCNs require a much larger number of parameters than CNNs, which requires
more memory, makes them prone to overfitting and harder to train. Furthermore, similarly
to pixel-adaptive convolution, these networks cannot use the GPU-level optimization of pure
convolutions and thus, are significantly slower to execute than deep CNNs.

Attention. Finally, a brief description is provided for the attention mechanism, which bares
some similarity to the proposed method and has received significant recent interest in com-
puter vision [6, 14, 25]. Attention acts on an input vector v to give an output vector z, and
its general form is given by,

z = f (g(v),v), (2)

where g is a function to generate the attention, and f applies the attention to v. Common
forms of f include element-wise multiplication, weighted sum, or concatenation, while g
can be a simple linear transformation, a neural network, or even a more complex function.
A popular evolution of the method, self-attention, refers to the case where the generator
function depends on pairwise function of elements of v. When used as spatial attention,
this addresses a limitation of the receptive fields of convolutions, and has thus received use
in computer vision in order to capture non-local features [20]. One method utilised self
attention for image recognition [26], and also applied a CoordConv inspired technique of
concatenating the coordinates to the feature map.

3 Proposed Method

As has been discussed above, current methods either rely on (indirect) modification of the
convolution kernel, on concatenating a coordinate map that acts as additional weight, or
on the use of an attention mechanism. The proposed method takes inspiration from these
approaches, but condenses them into a lightweight module, which is ideally suited for appli-
cations such as static spatially-varying convolution in optical imaging. In the convolutional
CoordGate module (see Fig. 2), the input, x ∈ Rnx×ny×nc , is first fed through a standard
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Figure 2: CoordGate. The data, X, and coordinates, C, are fed through a CNN and a MLP
respectively, before the Hadamard product is used between the resultant tensors.

convolutional block, h, with the final layer containing nl
c output channels. As discussed pre-

viously, these channels correspond to globally applied convolutions. To synthesize a locally-
varying convolution from these, the output channels are then multiplied with a gating mask
of the same size, somewhat similar to an attention map. However, in contrast to attention
that is based on the input signal, here we create the gating mask by taking a static coordinate
map, C ∈ Rnx×ny×2, as in CoordConv, and feeding it through a pixel-wise fully-connected
encoding network, g, with the last layer containing nl

c neurons. If one is using residual learn-
ing, a final 1×1 convolutional layer can be used to yield an output with the original number
of channels. Denoting an index of the two-dimensional arrays with the vector i, and the
channel slice of the resultant vector, y, with a, CoordGate is described by,

yi,a = (h(x)i ·g(Ci))a . (3)

The intuition behind the method is as follows. The convolutional network h(x) can learn
a wide range of resultant kernels, and stores nl

c different ones in the channels of its feature
map. If the network includes downsampling and upsampling, such as the U-Net, these ker-
nels can be very large and encorperate non-local features. In order to selectively attenuate
filters, adopting a different resultant convolution for each pixel, the feature map is multiplied
by the channel-wise attention generated from the coordinates. In other words, the feature
channels form a basis whose amplitudes at each position are encoded in the gating map. Im-
portantly, the encoding network g(Ci) is only dependent on the coordinates and once trained,
one directly saves the parameters of the gating map. As a result, during inference the only
computational overhead compared to a standard convolution is an element-wise multiplica-
tion.

The previously discussed zero-padding boundary effects can also be seen as a position-
encoded multiplication operation. A 3× 3 kernel being passed over an image will include
3 pixels of 0 when at the boundary (assuming it is not in a corner); accordingly, the corre-
sponding pixel in the feature map will have an average relative magnitude of 2

3 compared to
a pixel in the center. This effect propagates inwards with successive convolutions and the
proposed method involves a more deliberate and efficient use of this desirable property of
multiplication.



6 S. HOWARD, P. NORREYS, A DÖPP: COORDGATE

Also note that one could, in principle, remove the position decoder network and make
the gating map directly trainable. However, this would not only result in a much larger
amount of parameters for the network that will complicate training, but more importantly
it would ignore the fact that many systems exhibiting a spatially-varying convolution vary
smoothly over the input space and hence, can be parameterized. One might further note that,
interestingly, if one were to train the map directly, and the kernels within the convolutional
layer form a complete base, this method becomes equally expressive as a locally-connected
neural network with shared bias term.

4 Experiments
Here the proposed method is implemented to find solutions to a number of problems. Firstly
the trivial example of performing 1D spatially-varying convolution is considered, in order
to clearly demonstrate the technique’s effectiveness compared to common alternatives. Sec-
ondly, the method is applied to the practical problem of image deblurring (2D spatially-
varying deconvolution).

4.1 Learning 1D spatially-varying convolutions
Eq. (1) can be rewritten as the following matrix multiplication,

n⃗ = Hm⃗, (4)

where for the 1D case, m⃗ and n⃗ are the original and convolved data, and H is the convolution
matrix. Note that in the case of a spatially invariant convolution, H has the form of a Toeplitz
matrix, and can be approximated perfectly by a single-channel convolutional layer with a
suitable kernel size.

Here, 10000 normalized uniform random samples of size (30) are generated for m⃗, before
being multiplied with a custom convolution matrix H to give n⃗. The task of the network is
to predict n⃗ given m⃗, thus approximating H. The proposed method is benchmarked against
a number of convolutional architectures, demonstrating their limitations. Each network is
trained to convergence using the Adam optimizer [10] (with default parameters) to minimize
the mean squared error (MSE).

A convolutional neural network is denoted by CNN(L,k,c), containing L convolutional
layers with a kernel size of k with c channels, except from the last layer which has 1 chan-
nel. A convolutional model utilising CoordConv layers is denoted by cCNN(L,k,c) and the
CoordGate architecture is denoted by CG(L,k,c, p), where L,k,c describe the parameters of
the convolutional network, and p describes the number of fully connected layers to encode
the coordinates, each with c nodes. The custom convolution matrix consists of a Gaussian
for each pixel, with varying offset, δ (x′), and standard deviation, σ(x′), as described by the
following equation and shown in shown in Fig. 3,

H(x,x′) = e
−(x−δ (x′))2

2σ(x′)2 , (δ (x′),σ(x′)) =

{
(1− x

15 ,0.5), if x < 15
(0,0.5(2− x

15 )+2(1− x
15 )), otherwise

. (5)

Discussion. The graph in Fig. 3 displays the peak signal to noise ratio (PSNR), defined
as 10× log10(

1
MSE ), against the inference time for each model. Beginning with the CNNs,
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Figure 3: Showing the approximations of the convolution matrix by different models. Also
shown is a plot of PSNR against inference time for each model, with the spot size being
proportional to the number of parameters in the model.

the simple case of a single convolutional layer is intuitive, with the network learning the
mean kernel. One then sees an increase in performance with successive layers added. This
is explained by the padding effects described earlier, and is seen between the CNN(3,7,4)
and CNN(4,7,4) plots, where the boundary is moving down the image, allowing the net-
work to learn spatially variant information in that region, whilst it learns the mean for the
rest. This propagation of spatial information is also seen for CNN(8,7,4). The comparison
of CNN(4,7,4) and CNN(4,7,20) demonstrates that adding more channels does not help the
model to learn spatially varying features. The CoordConv model possesses no benefit over
a standard convolutional model in this task - in fact, studying the convolutional kernel, the
model tries to discard the effect of coordinate layer. On the contrary, the model utilising Co-
ordGate learns the convolution matrix using one single convolutional layer, with signicantly
less inference time and a fraction of the number of parameters required by a convolutional
model. The convolution matrix can be thought of as a superposition between 3 gaussian
kernels: (δ = 1, σ = 0.5),(δ = 0, σ = 0.5) and (δ = 0, σ = 2), so it is intuitive that the
CoordGate model required 3 channels in order to interpolate between them. Also tested was
the case when instead of coordinates, the static variable was initialised as random numbers
(U(−1,1)), which was found to not converge, highlighting the use of the coordinates.

Futhermore, the CoordGate method scales much better with increasing sample size, or
with reduced kernel size, as it does not require subsequent convolutions to encode the posi-
tion.

4.2 Image deblurring

Image deblurring is an example of a spatially-variant deconvolution. Of the different possi-
ble types of blur, many are dynamic - that is, they may vary from image to image - including
things like motion blur. Here we consider a static blur, solely originating from imperfec-
tions in the imaging system. This is a problem that has received interest in fields such as
microscopy [18, 23] and astronomy [5, 11], and an effective image deblurrer could also be

Citation
Citation
{Toader, Boulanger, Korolev, Lenz, Manton, Sch{ö}nlieb, and Mure{³}an} 2022

Citation
Citation
{Yanny, Monakhova, Shuai, and Waller} 2022

Citation
Citation
{{Farrens, S.}, {Ngolè Mboula, F. M.}, and {Starck, J.-L.}} 2017

Citation
Citation
{Lauer} 2002



8 S. HOWARD, P. NORREYS, A DÖPP: COORDGATE

Figure 4: a): The backbone U-Net architecture. A model with depth, d, has nc[d] channels
in its deepest layer. The yellow CoordGate arrows are added for the CG U-Net(d) models.
b): A plot of PSNR against the logarithm of the number of parameters, demonstrating the
advantage of adding CoordGate to the U-Net architecture. Also included are the CoordConv-
UNet and MultiWienerNet models.

used to sharpen images from an imperfect relay imaging system [7].
The U-Net is well suited to spatially-varying deconvolution due to its ability to synthesise

resultant kernels with wide receptive fields, which helps with two problems; firstly, decon-
volution typically requires a much wider receptive field than convolution, due to a more
non-local resultant kernel (which theoretically spans the whole image due to mixing, but can
be approximated with a smaller kernel). Secondly, as has already been discussed, in order
to capture spatially varying features throughout the image, the zero-padding defect must be
propagated to the center. This second condition requires the U-Net to be very deep, as is
seen in Fig. 1, which adds a large number of parameters (as typically the number of chan-
nels increases with depth). Here, we hypothesise that adding CoordGate to the model will
allow for a more efficient extraction of spatially-varying behaviour, and thus allow a much
shallower U-Net to be able to achieve equal performance, with a fraction of the parameters.

Multiple U-Nets are used, and an architecture with depth d is denoted as U-Net(d). The
form of these models is seen in Fig. 4a). In every step there are two 3×3 convolutions with
the rectified linear unit activation function (ReLU) applied [1]. To test CoordGate’s effective-
ness in this scenario, it is added to both the most shallow and deep U-Nets at each down-or-
up sampling point. Furthermore, we also compare CoordGate to CoordConv-UNet[4], and
a state-of-the-art method in this setting of image deblurring from a static point spread func-
tion, named MultiWienerNet [23]. This technique first requires the measurement of the PSF
at a number of locations across the sensor (which represents an inconvenience not required
for CoordGate). Then Wiener deconvolution is performed each of these PSFs, resulting in a
number of feature maps that are relatively unblurred in the positions of where each PSF was
measured. Finally, a U-Net is used to combine and refine these maps to give the prediction.
One notes that the MultiWienerNet was developed in the setting where the PSF varies very
quickly (to be used with compressed sensing [22]), whereas here we consider a PSF of a typ-
ical lens. Both CoordConv-UNet and MultiWienerNet were implemented with the deepest
U-Net architecture, U-Net(6).

Here we utilise the database of microscopy images of live cells collected from multiple
sources [13, 24]. A synthetic PSF was applied to each of the 20000 samples, with defocus
increasing towards the edge of the image to try and simulate a realistic lens, which is seen
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in Fig. 5. The job of a model, is to recover the original unblurred image from its blurred
counterpart. Each model was trained with the Adam optimizer for 600 epochs. The initial
learning rate was 0.001, and was halved each time the validation loss didn’t decrease for 20
epochs. An example of a reconstruction is shown in Fig. 5.

Figure 5: An example showing the blurring and subsequent de-blurring process using our
CoordGate technique.

Discussion. Fig. 4b) shows the validation PSNR of each trained model against the number of
parameters. Comparing the different U-Net architectures, one sees that the PSNR increases
with depth, as expected due to the increased capacity to represent spatially-varying features
that has been described previously. The form of the PSF includes a region of focus in the
center, which explains why U-Net(6) performs only marginally better than U-Net(5), as the
latter model can still represent this section well with the average kernel.

The addition of CoordGate causes a large increase in performance and efficiency. In
fact, upon the implementation of CoordGate, the most shallow model (CG U-Net(3)) is able
to outperform the deepest normal model (U-Net(6)), despite the fact that it contains 60×
less parameters. The deeper model has much more capacity to synthesise bigger kernels,
which gives it a natural advantage, and thus the fact that it is outperformed, shows that
CoordGate is superior in learning the spatially-varying features. This claim is supported by
studying the average loss over all examples, which shows a significantly lower loss close to
the center of the image for CoordGate. Finally, one notes that CG U-Net(6) performs better
than CG U-Net(3), which is explainable by the fact that it can synthesise wider kernels,
therefore better approximating the true global deconvolution kernels.

It was found that the CoordConv-UNet model performed nearly identically to the base
U-Net(6) model, suggesting that the concatenation operation doesn’t provide the coordinate
information to the network in an optimum way. The incorporation of Wiener deconvolution
in MultiWienerNet resulted in a significant performance increase over the base U-Net. How-
ever, it must be remembered that this model is given more information, in the form of some
prior measurements of the PSF. Even so, it is outperformed by the shallower CoordGate
model, despite containing significantly more parameters. Experiments with varying the size
of the fully connected layer are included in the supplemental material, along with additional
metrics.
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5 Conclusion
This paper has introduced a new method, CoordGate, to allow for more efficient and accurate
spatially-varying convolution and deconvolution. The technique works by multiplying the
output of a CNN by a gating map, that is generated by an pixel-wise coordinate-encoding
network, thereby selectively attenuating the resultant convolutional kernels for each pixel.
CoordGate can be seen as lightweight in two ways. Firstly, the implementation itself adds
minimal parameters to the existing model. Secondly, the addition of CoordGate allows a
much simpler backbone network to achieve a superior performance than that of a more rela-
tively complex model, as has been proven in the experiments.

CoordGate’s utility was first verified on the simple case of 1D convolution, before being
applied to a more challenging problem of removing a spatially-varying blur caused by a lens.
In the latter, adding CoordGate modules to a shallow U-Net architecture enabled it to achieve
a higher accuracy than a much deeper U-Net architecture, despite having almost two order
of magnitude less parameters. For this problem, CoordGate also outperformed two more
sophisticated methods MultiWienerNet and CoordConv-UNet in terms of outright accuracy
and efficiency. Further work should involve the implementation of the CoordGate module to
different models and problems; in particular the authors plan to use CoordGate to mitigate
imperfections in the relay system of a snapshot compressive imaging apparatus [7].
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