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Abstract

Training models to apply common-sense linguistic knowledge and visual concepts
from 2D images to 3D scene understanding is a promising direction that researchers
have only recently started to explore. However, it still remains understudied whether
2D distilled knowledge can provide useful representations for downstream 3D vision-
language tasks such as 3D question answering. In this paper, we propose a novel 3D
pre-training Vision-Language method, namely Multi-CLIP, that enables a model to learn
language-grounded and transferable 3D scene point cloud representations. We leverage
the representational power of the CLIP model by maximizing the agreement between
the encoded 3D scene features and the corresponding 2D multi-view image and text
embeddings in the CLIP space via a contrastive objective. To validate our approach,
we consider the challenging downstream tasks of 3D Visual Question Answering (3D-
VQA) and 3D Situated Question Answering (3D-SQA). To this end, we develop novel
multi-modal transformer-based architectures and we demonstrate how our pre-training
method can benefit their performance. Quantitative and qualitative experimental results
show that Multi-CLIP outperforms state-of-the-art works across the downstream tasks of
3D-VQA and 3D-SQA and leads to a well-structured 3D scene feature space.

1 Introduction

*These authors contributed equally and are listed alphabetically.
© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Topdoun U2l Humans, by nature, have a coupled rep-

resentation of textual and visual structures
to shape their perception of the world. In
recent years, vision and language research
has shown remarkable progress in devel-
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R e Image encobled level commonsense reasoning and an en-
feature (Zyeat) % 7 feature (Zimage)  hanced textual and visual understanding
is Visual Question Answering (VQA) [3,

* ‘3D e soded 4, 11], where the model predicts an an-

feature (Zscene) swer based on the visual content in an im-

age. The dominant approaches in this task

leverage elaborate pre-training strategies
and multi-modal transformer-based archi-
T tectures, which learn generalizable contex-
tualized text and visual embeddings. How-
ever, these methods are restricted to 2D vi-
sual information and this limitation affects
their usability in many 3D world applica-
tions, such as robotics and AR/VR.

In this direction, recent works aim to ex-
tend VQA to the 3D domain. Two recently
released benchmarks, namely ScanQA [5]
and SQA3D [18], introduce the tasks of
3D Visual Question Answering (3D-VQA)
and 3D Situated Question Answering (3D-
SQA) respectively. In the 3D-VQA setting,
a model receives visual information of a 3D scene from a rich RGB-D indoor scan and has
to answer a given question about the scene content and localize the referred objects. In the
3D-SQA setting, an additional textual input is provided describing the situation (i.e., posi-
tion and orientation) of the agent in the scene. The task is to first understand the agent’s
situation and then answer a question about the surrounding environment. However, extend-
ing 2D VQA methods to the 3D domain is not trivial, since 3D models face the challenge of
understanding complex geometry structures and spatial relations among objects.

To endow models with 3D semantic understanding and reasoning abilities, a new line of
research has emerged. Recent works [21, 35, 36, 37] harness 2D knowledge of foundation
models, such as CLIP [23], and achieve state-of-the-art zero-shot performance on the tasks of
3D object recognition and 3D semantic segmentation. Other lines of work on 3D representa-
tion learning tackle these tasks by leveraging pre-training strategies. In [2, 17], a contrastive
pixel-to-point approach is employed to transfer 2D visual information to 3D models, while
in [38], an unsupervised pre-training scheme is explored to align 3D point clouds and voxel
representations. However, to our knowledge, no pretext methods for vision-language tasks,
such as 3D question answering, have been proposed that guide a model to correlate scene-
level 3D visual input to language cues and 2D information.

In this work, we propose Multi-CLIP, a simple yet effective 3D Vision-Language (V-L)

Point cloud

Figure 1: Our pre-training method encour-
ages the alignment of the 3D scene representa-
tion to the corresponding text and multi-view
image embeddings in CLIP space via a con-
trastive loss.
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pre-training method to help a model learn transferable and semantically meaningful scene
representations. We demonstrate that infusing knowledge from large-scale pre-trained 2D
vision and language models can enhance a model’s 3D scene-based perception and boost per-
formance in downstream 3D vision-language tasks. To this end, we develop a transformer-
based 3D scene encoder module, which captures a holistic 3D scene representation by mod-
eling the spatial relations between the scene’s object features. Our proposed pre-training ob-
jective is to facilitate 3D point cloud understanding by training the scene encoder to project
the appearance and geometric features of the 3D scan to an interpretable embedding space
with desirable properties. This can be achieved by aligning the 3D scene-aware embeddings
to the corresponding text and multi-view image representations generated by CLIP [23].

To validate the effectiveness of our approach, we consider the challenging downstream
tasks of 3D-VQA and 3D-SQA. To this end, we transfer the weights of the pre-trained 3D
scene encoder to a novel 3D Vision-Linguistic architecture that fuses the multi-modal repre-
sentations and fine-tune the model in a supervised manner. Our fine-tuned model achieves
state-of-the-art results on the tasks of 3D-VQA and 3D-SQA as well as on the auxiliary
task of referred object localization. We also provide a visualization of the learned 3D scene
features after pre-training, demonstrating that our model learns mappings in a semantically-
structured latent space, where scenes with similar properties are clustered together.

2 Related Work

3D Question Answering. The task that initiated research on language-driven 3D scene un-
derstanding was 3D language grounding, in which a model has to localize an object in a scene
guided by a textual description [1, 6, 7, 26]. Building upon these advances, a novel task has
been proposed, namely 3D Visual Question Answering, which tests a model’s spatial rela-
tion comprehension and commonsense reasoning abilities. In this problem, a model receives
3D visual information, often in the form of a 3D scene scan, and is tasked with answering a
question about the scene. A few benchmarks have been proposed in this direction, such as
[5], which introduces a new 3D-VQA dataset, namely ScanQA, based on ScanNet [9] scenes
and develops an architecture that jointly models 3D object and question features to predict
the correct answer. More recently, Ma et al. [18] proposed SQA3D, a dataset for embodied
scene understanding and question answering. In this setting, the agent has to localize its
situation in the 3D scene as described by a textual prompt and answer a question about its
environment. In this work, we develop novel architectures to tackle the tasks of 3D-VQA
and 3D-SQA and show that our pre-training method leads to state-of-the-art results on the
ScanQA and SQA3D benchmarks.

2D and 3D Vision-Language Pre-training. In the 2D domain, V-L pre-training has been
thoroughly investigated [8, 12, 15, 25, 33]. Methods for language and image comprehension
tasks have largely benefited from extensive pre-training on large-scale V-L datasets, enabling
meaningful image-text representations to be extracted. Two characteristic examples are VL-
BERT [25] and UNITER [8]. The core of these architectures is a multimodal transformer
encoder, which leverages enriched pre-training strategies for global image-text alignment
and fine-grained word-region mapping.

In the 3D domain, current state-of-the-art pre-training methods have focused on learning
enhanced 3D point cloud semantic attributes that can be successfully deployed in down-
stream tasks, such as 3D object classification and scene segmentation [24, 31, 38]. Initial
lines of work focused on learning transferable and augmentation-invariant point cloud rep-
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resentations. In DepthContrast [38], the authors propose a joint pre-training framework of
point cloud and voxel architectures via an instance discrimination objective. More recent
lines of work employ cross-modal pre-training methods, by exploiting large-scale 2D mod-
els. In [17], the authors map pixel-level and point-level features into the same latent space us-
ing a pixel-to-point contrastive loss. Similarly, in CrossPoint [2], the authors enforce 3D-2D
correspondences of object features and invariance to affine point cloud transformations via
self-supervised contrastive learning. Recently, ULIP [32] significantly improves 3D object
classification and zero-shot 3D classification accuracy by learning a unified representation
of the 3D object features and the corresponding image and text features. However, these ap-
proaches investigate pre-training in the context of 2D images or focus on single objects and
lack scene context. To our knowledge, pre-training methods for language-based 3D scene
reasoning and question-answering tasks, which leverage the synergies between textual, 2D
and 3D visual modalities have not been explored and with this work we aim to stimulate
interest in this direction.

3 Proposed Method

We propose a pretext method (Figure 1) that aligns the 3D scene representation to the cor-
responding text and multi-view image embeddings in CLIP space [23] via a contrastive
learning loss. To demonstrate its effectiveness, we (a) pre-train a 3D scene encoder with
this objective (Section 3.1) and (b) transfer the learned representations to a novel 3D V-L
model and fine-tune it for the downstream tasks of 3D-VQA (Section 3.2) and 3D-SQA
(Section 3.3). Since the problem setting of the two downstream tasks differs, we slightly
modify the architecture of the 3D V-L model to train for each task independently.

3.1 Pre-training Framework Overview

3D Scene Encoder. We model the scene as an RGB-colored point cloud of N points,
p € RV*6 which is processed by the 3D scene encoder to generate a holistic representa-
tion of the scene objects. The scene encoder fg comprises a VoteNet [22] with a pre-trained
PointNet++ [38] backbone, which outputs a set of M point clusters, C, € RMx128 represent-
ing 3D object proposals with enriched point features. The VoteNet model is followed by a
transformer encoder layer [29], which leverages self-attention to refine the object represen-
tations by modeling their spatial relations. We denote the final scene representation obtained
by our scene encoder fy as C € RM*128,

3D Scene Encoder Pre-training. The examined tasks of 3D-VQA and 3D-SQA require
commonsense reasoning and a solid understanding of the underlying relations among the
text and 3D object regions in the scene. Thus, the objective of our pre-training method is
to encourage discriminative feature learning by transferring the rich 2D visual and linguistic
understanding of CLIP to the 3D model. To achieve this, we aim to maximize the agreement
between the scene-level features, generated by our 3D scene encoder fy, to the corresponding
CLIP text and multi-view image representations. In order to learn an enhanced 2D represen-
tation of the scene, we render it from five different viewpoints. These viewpoints comprise
the top-down view and four additional views, through a rotation along the z-axis with equal
angles. The rendered views are processed by the CLIP image encoder and we fuse the multi-
view features by averaging them to obtain a view-robust scene representation Z;yqe.. We
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Figure 2: The proposed model architectures for the two downstream tasks of 3D-VQA (left)
and 3D-SQA (right).

embed the textual description of the scene to the same feature space via CLIP’s text encoder,
receiving the text representation Z; ;.

To generate the 3D scene global representation Zg.,., we follow the practice of [10] and
append a learnable classification token to the input sequence of object features extracted by
VoteNet. The state of this token (i.e., global feature) at the output of the transformer encoder
is projected to the CLIP feature space in R via a linear projection head. Our goal is to align
the text, image and point cloud modalities. To achieve this, we leverage a 3D-2D and 3D-text
Noise-Contrastive Estimation (NCE) loss for contrastive learning by modifying the InfoNCE
loss [27]. Our proposed loss encourages the model to bring 3D scene features close to their
corresponding 2D image and text features while separating them from other dissimilar 2D
image and text embeddings. Formally,

T
| B exp (Zi7scenezi7image/7>
Limage = 7@ Z 10g B T (1)
i=1 Zj:l €xp (Zi;cenezjsimage/r)
T
1 B €xp (Zi,sceneZiJex’/T>
Liew = _ﬂ Zl g 2)

(0]
B T
i=1 Zj:l exp (Zi,scenerJeXl/T)

where (Z; scenes Zigext) and (Zj scene, Ziimage) are the positive text-scene and image-scene
pairs for each sample i of a batch respectively, B is the batch size and 7 is the temperature
coefficient.

Following previous works [5, 18], we add an auxiliary loss term that supervises the
VoteNet module to facilitate 3D object detection and classification, which we denote as L.
This loss term helps the VoteNet module of our 3D scene encoder to produce accurate object
proposals, which contribute to a refined global scene representation. We refer the reader to
the supplementary material for more details about the loss term L.
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Formally, the final loss for the pre-training is defined as
Epre = Edet + aﬁtext + ﬁﬁimage (3)

where we set o, 8 = 0.5.

3.2 Model Architecture for 3D-VQA

Our architecture for the downstream 3D-VQA task (Figure 2) consists of three modules,
the pre-trained 3D scene encoder fg, which processes the 3D scene point features, a CLIP
text encoder that generates the question word embeddings and a 3D Vision-Language Trans-
former that fuses the visual and question representations. The model is tasked with finding
the correct answer to the question and localizing the target object referred to by the question.
To process the question, we use CLIP’s text encoder to obtain 512-dimensional word-
level embeddings Q € RN+>*312 where N, is the number of words in the question. The word
and 3D scene features, extracted by the scene encoder fjy, are transformed to the same hidden
dimension % using two independent linear layers. Then, they are concatenated and fused via
a two-layer transformer encoder that leverages self-attention to model intra- and inter-modal
relations. The updated scene object features C' € R¥*" are forwarded to a linear layer that
performs target object localization by determining the likelihood of each of the M object
boxes being related to the question. Following CLIP, we treat the updated EOT embedding
(last token in the sequence) of the question as the pooled question feature Q' € R” and use
it as input to two linear classifiers. The first one predicts the correct answer by projecting Q’
into a vector a € R™ for the N, answer candidates. The second predicts which objects from
the 18 ScanNet [9] classes are associated with the question.
Loss Function. We model the final loss as a linear combination of four terms. We utilize
the referred object localization loss Ly,, as defined in [7], and the object detection loss L,
of VoteNet [22]. To further supervise the training, we include an object classification loss
Lopj, which is modeled as a multi-class cross-entropy loss and an answer classification loss
Lans, which is a binary cross-entropy (BCE) loss function as there may be multiple candidate
answers. Therefore, the total loss is defined as Lygq = Laer + Lopj + Lans + Lioe-

3.3 Model Architecture for 3D-SQA

In 3D-SQA, the model is given an additional input sentence that describes the situation of
an agent in the scene and answers a relevant question. Thus, we modify our architecture
(Figure 2) to incorporate the situation into our pipeline. We leverage CLIP’s text encoder
to obtain 512-dimensional word-level situation embeddings S € RNs*312 where N is the
number of words in the situation description. The situation word embeddings S are used as
input to a transformer decoder (functioning as query tokens) and the 3D scene features C
are used to generate the keys and values. We take advantage of the cross-attention module
to capture the relationships between them and generate object-centric feature tokens guided
by the situation. These are forwarded to a second transformer decoder, where they attend to
the language tokens of the question Q to yield the final representation. Finally, we utilize
two MLPs, one for predicting the answer a € R« to the question and one for predicting the
location [ = (sP° s™") of the agent in the scene.

Loss Function. We adopt a similar loss formulation as the one described in the previous
section. In order to adapt it to the 3D-SQA task, we substitute the object localization and


Citation
Citation
{Dai, Chang, Savva, Halber, Funkhouser, and Nie{T1ss }ner} 2017

Citation
Citation
{Chen, Chang, and Nie{T1ss }ner} 2020{}

Citation
Citation
{Qi, Litany, He, and Guibas} 2019


DELITZAS ET AL.: MULTI-CLIP 7

Method EM@]1 BLEU-1 BLEU-4 ROUGE METEOR CIDEr

Test set w/ objects
Scanrefer + MCAN  20.56  27.85 7.46 30.68 1197  57.36

ScanQA 2345 31.56 12.04 3434 13.55 67.29
Ours w/o pre-training 22.76  31.08 13.31 33.84 13.28  65.81
Ours 24.02  32.63 12.65 3546 1397 68.70

Test set w/o objects
Scanrefer + MCAN  19.04  26.98 7.82 28.61 11.38 5341

ScanQA 20.90  30.68 10.75  31.09 12.59  60.24
Ours w/o pre-training 20.71  31.22 11.49 31.35 12.80  60.75
Ours 2148 32,69 1287 32.61 13.36  63.20

Table 1: Comparison of 3D visual question answering results on the ScanQA test datasets.

classification loss with two auxiliary MSE losses £,,s and L,y that encourage the model
to accurately predict the position s7° and orientation s" of the agent in the described input
situation respectively. The orientation is represented as quaternion (x,y,z,w) and the position
as a 3D coordinate (x,y,z). Thus, the total loss is defined as Lo = Laer + Lans + L pos + Lror-

3.4 Design principles for extensibility to other downstream tasks

3D V-L downstream tasks can have different characteristics and discrepancies in the inputs
and outputs. Our pre-training approach focuses on designing a shared and transferable back-
bone for downstream architectures, i.e., a 3D scene encoder capable of extracting rich scene
features in the CLIP space. In the downstream architectures, the CLIP model is used to pro-
cess the textual and 2D modalities and project them to the same space as the extracted scene
features. Then, a task-specific multi-modal fusion module is applied. In this work, we focus
on the popular and high-level 3D V-L tasks of 3D-VQA and 3D-SQA, and we also present
results on the referred object localization. However, these design principles can be naturally
extended to other downstream tasks by adapting the multi-modal fusion module and the final
heads that process the fused features for task-specific predictions.

4 Experiments

In this section, we validate our method by transferring the learned representations of our pre-
trained 3D network to two downstream 3D visual-linguistic tasks. The tasks for evaluation
are (a) 3D visual question answering and the auxiliary task of referred object localization on
the ScanQA dataset and (b) 3D situated question answering on the SQA3D dataset.

4.1 Experimental setup

Datasets. The ScanQA [5] dataset contains 41,363 diverse question-answer pairs and 3D
object localization annotations for 800 indoor 3D scenes of the ScanNet [9] dataset. ScanQA
also includes two test sets with and without object annotations. The SQA3D [18] dataset
provides around 6,800 unique situations, based upon 650 ScanNet scenes, accompanied by
20,400 descriptions and 33,400 diverse reasoning questions for these situations. ScanNet [9]
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Figure 3: Qualitative results on the ScanQA (left) and SQA3D dataset (right).

is a large-scale annotated dataset of 3D mesh reconstructions of interior spaces. In the pre-
training phase, we obtain the textual descriptions using the ScanRefer dataset [7], which
provides 51,583 descriptions of 800 ScanNet scenes. We also use the ScanNet point cloud
data to render the RGB images from multiple views with the Open3D software [39].

Implementation Details. We pre-train the
3D scene encoder for 15K iterations with

Adam [13] optimizer using a batch size of Method Acc@0.25 Acc@05
16, a learning rate of le-4 and a weight de- ~ Scanrefer+MCAN 23.53 11.76
cay of le-5. We use the pre-trained weights ~ ScanQA 24.96 15.42
of the scene encoder and fine-tune the 3D-  Ours w/o pre-training ~ 26.57 18.58
VQA network on ScanQA for 40 epochs Ours 29.60 21.41

with an initial learning rate of Se-4, which Table 2: Comparison of referred object local-
we decrease by a factor of 0.2 in epoch 15. ization results on the ScanQA valid dataset.
Likewise, we fine-tune the 3D-SQA net-

work on SQA3D for 50 epochs with the same initial learning rate. To mitigate overfitting,
we applied rotation about all three axes using a random angle in [—5°,5°] and randomly
translated the point cloud within 0.5 m in all directions. We also used random cuboid aug-
mentation, similar to [19], which extracts random cuboids from the input point cloud.

4.2 Results

3D Visual Question Answering. To measure the downstream performance of our model on
3D-VQA, we report the EM@1 metric, which is the percentage of predictions in which the
predicted answer exactly matches any of the ground-truth answers. Following the practice of
[5], we include the sentence evaluation metrics BLEU [20], ROUGE-L [16], METEOR [14]
and CIDEr [30]. These metrics are significant for evaluating robust answer matching since
some questions have multiple possible answer expressions. To assess the referred object
localization accuracy, we report the Acc@0.25 and Acc@0.5 metrics, which are the per-
centage of bounding box predictions that have a higher IoU with the ground truths than the
threshold 0.25 and 0.5 respectively. As baselines, we use the current state-of-the-art method
of ScanQA [5] as well as ScanRefer+MCAN [34], where a pre-trained ScanRefer [7] model
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Figure 4: T-SNE visualizations of scene-level features in ScanNet. The 3D scene encoder
weights learned during pre-training lead to a structured feature representation space.

identifies the referred object and the MCAN model is applied to the image surrounding it.
We also compare to the performance of our model trained from scratch. The results are dis-
played in Table 1 and Table 2. With our pre-training method, we report a significant increase
in the question answering metrics and a gain of 3.03% and 2.83% in the Acc@0.25 and
Acc@0.5 metrics, respectively. This validates the effectiveness of our pre-training strategy
in both question answering and referred object localization. We also observe that our method
achieves a notable improvement over the ScanQA baseline.
3D Situated Question Answering. We further evaluate

our method on the SQA3D test set. Following the prac-

tice of [ 18], we adopt the EM @1 as our evaluation metric. Method EMel
We report our results in Table 3, where we use the cur- SQA3D 47.20
rent state-of-the-art method of [18] as a baseline. After —Ours w/o pre-training 47.38
pre-training and fine-tuning on the SQA3D train split, we ~ Ours 48.02
report clear performance gains in answer accuracy com- Table 3: Comparison of 3D sit-
pared to training from scratch. uated question answering results

on the SQA3D test dataset.
4.3 Visualization

In Figure 4, we provide the T-SNE [28] visualization of

the learned features of the pre-trained 3D scene encoder without fine-tuning on downstream
tasks. We observe that scenes with semantically similar properties (i.e., same scene type)
form clusters in the embedding space. This highlights the high-level semantic understanding
ability acquired by the model when it is pre-trained with rich 2D visual and linguistic infor-
mation. Additionally, we observe that our proposed contrastive pre-training objective leads
to more discriminative representations in feature space than using a commonly used cosine
similarity loss to align 3D-2D and 3D-text features, as later discussed in Section 4.4.

4.4 Ablation study

To justify our pre-training pipeline design choices, we include ablation studies (Table 4) on
SQA3D.

Do multiple views help? Many works have confirmed that learning multi-modal represen-
tations that are robust to view changes benefits 3D object and scene understanding. Thus, we
hypothesize that rendering the 3D scene point cloud to several 2D planes and aggregating
the multiview information will induce performance gains in the examined downstream tasks.
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We compare the result of pre-training with 5 views to training only with the top-down view
of the scene. It can be observed that adding more views increases accuracy. This confirms
our intuition that a multi-view representation can facilitate correspondence learning between
3D scene and language queries.

Is contrastive loss a good choice? We investigate
experimentally whether contrastive learning is the

. . . . . Method EM@]1
optimal choice for our pre-training strategy in this
setting by substituting the contrastive objective with ~ Ours w/o multi-view 47.81
a cosine similarity distance loss. As we can infer ~ Ours w/ cosine similarity 47.73
from both experimental results in Table 4 and feature ~ Ours /o Loy 47.59
space visualizations in Figure 4, contrastive learning ~ Ours wW/0 Lipmgge 47.65
leads to increased downstream performance and en-  Ours (full) 48.02

courages the model to capture representations that Table 4: Ablation study on the
discriminate more effectively between similar and SQA3D test set.

dissimilar data points.

Do all loss terms matter? We explore the added benefit of each term in our contrastive loss
formulation. The results show that removing either Lz, or Limage degrades accuracy. This
validates our hypothesis that connecting 3D point clouds to both their language descriptions
and 2D multi-view images promotes spatial relations comprehension and reasoning.

5 Conclusion

In this paper, we propose Multi-CLIP, a novel V-L pre-training strategy that helps a model
learn semantically meaningful and language-grounded 3D scene features which can be trans-
ferred to 3D scene reasoning and question answering downstream tasks. This is achieved by
aligning the 3D extracted features to the corresponding captions and rendered 2D multi-view
images in the CLIP embedding space via a contrastive objective. Our quantitative and qual-
itative results on the downstream tasks of 3D-VQA and 3D-SQA show the effectiveness of
our method in learning rich 3D scene representations and demonstrate state-of-the-art per-
formance on the challenging ScanQA and SQA3D benchmarks.
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