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Abstract

This paper presents a classification framework based on learnable data augmentation
to tackle the One-Shot Unsupervised Domain Adaptation (OS-UDA) problem. OS-UDA
is the most challenging setting in Domain Adaptation, as only one single unlabeled target
sample is assumed to be available for model adaptation. Driven by such single sample,
our method LearnAug-UDA learns how to augment source data, making it perceptually
similar to the target. As a result, a classifier trained on such augmented data will gen-
eralize well for the target domain. To achieve this, we designed an encoder-decoder
architecture that exploits a perceptual loss and style transfer strategies to augment the
source data. Our method achieves state-of-the-art performance on two well-known Do-
main Adaptation benchmarks, DomainNet and VisDA. The project code is available at
https://github.com/IIT-PAVIS/LearnAug-UDA

1 Introduction
Although deep learning empowers us to tackle intricate tasks with exceptional performance,
it comes with an inherent trade-off—a voracious appetite for copious amounts of data for
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effective model training. To overcome this, new areas of research were born, specifically de-
signed to cope with either the scarcity of labeled data, the availability of unlabeled data only,
or situations where only few samples can be exploited. In these settings, Domain Adapta-
tion focuses on the task of transferring knowledge from a (usually) richly annotated Source
domain to a Target domain, where data is assumed to be scarce or labelling is absent, in any
case insufficient to train a model from scratch. When target data is completely unlabeled,
we deal with the research area of Unsupervised Domain Adaptation (UDA). In UDA, the
scarcity of target samples could be a further issue. Few-shot Unsupervised Domain Adapta-
tion (FS-UDA) focuses on solving the DA problem where only few labeled source samples
are available [20, 21], while one-shot Unsupervised Domain Adaptation (OS-UDA) is the
case where target data is reduced to only one unlabeled sample [3, 12]. Last, an even more
extreme setting is the one referred to as Domain Generalization [2, 9, 13], where no data
whatsoever is available for the target domain(s), yet one would like the model to generalize
as best as it can to unseen domains.

To the best of our knowledge, there are only two methods focusing on solving OS-UDA.
Adversarial Style Mining (ASM) [12] leverages style transfer to synthesize target samples to
be used for training a classifier. Target-driven One-shot Unsupervised Domain Adaptation
(TOS-UDA)[3] applies a two-step strategy to learn a set of fixed transformations guided by
a perceptual loss.

In this paper, we propose a new approach to tackle the OS-UDA task. We design an
original method to learn augmentations for the source samples to resemble the (only) target
data by exploiting style transfer strategies. To ensure the quality and fidelity of the learned
augmentations, we employ a perceptual loss function. By doing so, we guide the learned
augmentations to closely align with the target domain. In summary, in our work:.

• We present LearnAug-UDA a novel approach for tackling One-shot Unsupervised Do-
main Adaptation setting, which is a challenging UDA task where only one single un-
labeled target sample is available.

• The proposed architecture is composed by two encoder-decoder modules to learn aug-
mentations by enforcing a perceptual similarity and conditioning with two types of
methods: Mixup[23] and Style disentanglement[7, 24].

• We achieve state-of-the-art results for OS-UDA on DomainNet and VisDA bench-
marks.

The rest of the paper is organized as follows. In Section 2, we illustrate the related
work, in comparison with our proposed solution. In Section 3, we detail the description of
our proposed model and its component modules. In Section 4, we introduce the domain
adaptation benchmarks used for testing, and we present the results obtained by our method.
In Section 5, we draw the conclusions of the work, while commenting our proposed approach
in relation to both the methodological choices and the experimental analysis.

2 Related work
One-Shot Unsupervised Domain Adaptation (OS-UDA): as mentioned above, OS-UDA
refers to the scenario in Unsupervised Domain Adaptation where the available samples of
the Target domain are reduced to only one unlabeled sample and the literature focusing on
this setting is very limited. In [12], They introduced Adversarial Style Mining (ASM). ASM
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leverages style transfer to augment source samples with the style of a single target sample, by
introducing a Random Adaptive Instance Normalization (RAIN) module, which in practice
performs style transfer. However, RAIN is pretrained for such a task, with extra information
from an external dataset (wikiArts). Therefore, while a single target sample is used to drive
RAIN at inference time, extra data is actually exploited to learn the style transfer task. ASM’s
training pipeline is not end-to-end and the additional dataset for pre-training needs to be
manually selected based on task and characteristics of source and target dataset. In [3], They
introduced Target-driven One-shot Unsupervised Domain Adaptation (TOS-UDA) which
applies adversarial training and a perceptual loss to guide an augmentation module to learn
the parameters of two fixed transformations. TOS-UDA augments source samples to train a
classifier, which is expected to generalize well for target data.

An alternative to using domain adaptation methods is to re-purpose methods that does not
tackle the domain adaptation problem per se. TeachAugment [19] is presented as a method for
data augmentation to improve model generalization. TeachAugment augments data samples
by performing two types of fixed transformations: a geometrical and color transformations.
The parameters of such transformations are then defined by an optimization-based approach
and an adversarial training strategy is used to drive the process. This strategy aims to generate
augmented samples that are “hard” for the model to learn from. Our approach, although
drawing similarities from the aforementioned methods, obtains better results by exploiting
the unused potential that the other methods omitted. First of all, we applied an encoder-
decoder architecture for our augmentation module. This allows the model to learn better
augmentations as it is not bound to a set of fixed transformations. Furthermore, we introduce
a modified perceptual loss, able to measure the similarity in both style and content.

Style transfer: Style transfer refers to task of synthesizing an image that resembles the
characteristics in style from an image and the content from a different image. In [5], a first
approach to use Convolutional Neural Networks (CNNs) for style transfer was presented.
This process was later referred as Neural Style Transfer (NST). NST disentangles content and
style by using features representations of different layers of a VGG network [18]. In [8], they
proposed a perceptual loss for training a feed-forward network for the style transfer task. The
perceptual loss measures the perceptual similarity between the synthesized image, content
image, and the style image. The first methods solving style transfer were only capable of
transfer one specific style [5, 8]. Later, methods [4, 22] raised the expectations by learning
different styles from a set of target images. Finally, the introduction of arbitrary style transfer
allowed to perform style transfer without being bound to a set of style targets [7, 11, 24]. We
can regard our proposed augmentation method as a style transfer module, which has to deal
with the difficult task of learning style from a single target image and transferring it to the
source samples.

3 Methodology
Our proposed model is constituted by three elements: an augmentation module, a style align-
ment module and a classifier. Each of these elements focuses on a specific task. The Aug-
mentation Module (AUM) augments source samples to resemble the Target domain. The
AUM achieves this by conditioning the image synthesis on the only target sample that is
available. The Style Alignment Module (SAM) is responsible of measuring the perceptual
similarities (at different levels) between Source samples, the Target sample, and the synthe-
sized augmented samples. Similar to style transfer, AUM and SAM work together to learn

Citation
Citation
{Carrazco, Kadam, Morerio, Bue, and Murino} 2023

Citation
Citation
{Suzuki} 2022

Citation
Citation
{Gatys, Ecker, and Bethge} 2015

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Johnson, Alahi, and Fei-Fei} 2016

Citation
Citation
{Gatys, Ecker, and Bethge} 2015

Citation
Citation
{Johnson, Alahi, and Fei-Fei} 2016

Citation
Citation
{Dumoulin, Shlens, and Kudlur} 2016

Citation
Citation
{Zhang and Dana} 2018

Citation
Citation
{Huang and Belongie} 2017

Citation
Citation
{Liu, Lin, He, Li, Wang, Li, Sun, Li, and Ding} 2021

Citation
Citation
{Zhang, Zhang, and Cai} 2018



4 J.I.D. CARRAZCO ET AL.: LEARNABLE DATA AUGMENTATION FOR ONE-SHOT UDA

the augmentations for the Source data (see Fig. 1, Step 2). In other words, SAM guides the
learning process of AUM to obtain augmentations that have a similar style as the Target do-
main. Our intuition is that the classifier trained on these augmented samples will generalize
better for the Target domain (see Fig. 1, Step 1). A two-step training strategy is adopted (see
Fig. 1). In the first step, the AUM synthesizes augmented samples for the classifier to train
on. In this step, only the classifier is updated via back propagation while the AUM’s weights
remain frozen. In the second step, AUM is trained by learning augmentations that favour a
similarity with the Target domain’s style. More detalis are provided in the following.

Figure 1: Our proposed approach with its three elements: Augmentation module (AUM),
the Style Alignment Module (SAM) and the Classifier Module (CM). The training strategy
focuses on alternating between updating the CM and AUM. In step 1, the CM is trained by
minimizing a cross-entropy loss. In step 2, AUM learns to synthesize augmentations guided
by SAM whom measures the perceptual similarity with the Target sample.

3.1 Augmentation module

The Augmentation Module (AUM) manages the synthesis of augmented samples used for
training the Classifier module (CM). We designed two variations of the augmentation module
architecture to explore different approaches for achieving style transfer in data augmentation.

The first variation, the Shared Encoder (see Fig. 2a), is a simple encoder-decoder archi-
tecture. Both style and content samples are encoded using the same encoder, with condition-
ing performed at the bottleneck through Mixup between the embeddings [7, 23]. Namely
a convex combination of source and target sample is fed as input to the decoder, in order
to synthesize the augmented sample. We designed the Share Encoder to exploit a Mixup-
inspired data augmentation approach where we wanted the resulting feature maps to contain
characteristics of both domains.

The second variation consists of Disentangled Encoders (see Fig. 2b). This design lever-
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ages the concept of domain separation [1], the intuition being that different domains exhibit
shared characteristics and domain-specific characteristics. Similarly, image style and con-
tent can be considered separate aspects. Therefore, our disentangled encoders consist of a
Style encoder and a Content encoder. In this case, the intuition is that differences in style
are responsible for the performance drop of the source classifier tested on target data. Each
encoder specializes in learning different aspects of the image and generates an embedding
representing that particular aspect. To synthesize an augmented sample, the concatenated
embeddings are passed to the Bottleneck module, to reduce dimensionality, and subsequently
a decoder generates the augmented sample. In contrast to the shared encoder, we do not per-
form Mixup between embeddings with this architecture, as fusion is left to the bottleneck
module. To improve the disentanglement between style and content, we introduce a recon-
struction loss which allows the encoders to see samples of both domains. The reconstruction
loss is defined as:

Lrec = ∥Tφ (x,x)− x∥2
2 (1)

where Tφ (·) is the augmentation module, x is an input sample from the source or target data.

Figure 2: The Augmentation Module (AUM) in its two variations: Shared encoder (a) and
Disentangled encoders (b). The Shared encoder applies the same encoding to both the source
and target samples, while performing style conditioning through mixup at the bottleneck.
The Disentangled encoders treat style and content as separate elements within the image,
with each individual encoder learning a distinct feature representation.

3.2 Style alignment module
The Style alignment module (SAM) is in charge of enforcing a perceptual similarity in style
and content between a source sample, the only target sample and the synthesized augmented
sample. SAM imposes a similarity in style with respect to the target sample. By doing
so, AUM learns to synthesize augmented samples for the Target domain. Furthermore, by
imposing a similarity in content with respect to the input source sample, i.e. the shared
characteristics between source and target, the classifier can use labels from the input source
to train for the target domain. SAM consists of a frozen VGG-16 [18] from which feature
maps of selected layers are extracted to evaluate the perceptual similarity [8]. The perceptual
loss comprises two type of losses: a style and content loss. The style loss evaluates similarity
between aspects such as color, texture, and common patterns. Gatys et al. [6] defined the
representation of style as the correlation between filter responses of the feature map. These
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feature correlations are represented as a Gram matrix which is defined as:

G j(x) =
1

C jH jWj

H j

∑
h=1

W j

∑
w=1

H j(x)HT
j (x) (2)

where x is the input image, H j represents the feature map from the j-layer of the SAM; C j,
H j, and Wj denote the number of channels, the height, and the width of H j, respectively.
The Gram matrix is calculated for the target and the augmented samples. The style loss of a
single layer is calculated as:

ℓstyle
i (x̂s,xt) = ∥Gi(x̂s)−Gi(xt)∥2

F , where x̂s = Tφ (xs,xt) (3)

where Tφ (·) is the Augmentation module, x̂s is then the augmented sample, xs represents a
source sample, xt indicates the target sample, ∥·∥2

F is the Frobenius norm, and i represents
the selected layers of SAM. For the content loss which focuses on preserving the semantic
content, i.e. the actual objects present in the scene, we define it as:

ℓcontent
j (x̂s,xs) =

1
C jH jWj

∥H j(x̂s)−H j(xs)∥2
2 (4)

where H j represents the feature map from the j-layer of the SAM; C j, H j, and Wj denote the
number of channels, the height, and the width of H j, respectively. As established by [6, 8],
multiple layers could extract the information regarding the style and content. So, it stands to
reason to add up the individual loss of different layers to better capture the style and content
information. Therefore, these cumulative losses are defined as:

Lstyle = ∑
i
ℓstyle

i (x̂s,xt), Lcontent = ∑
j
ℓcontent

j (x̂s,xs) (5)

where i and j represent the selected layers of SAM for evaluating style and content, respec-
tively. Finally, The perceptual loss is calculated as:

Lperceptual_G = Lstyle +Lcontent (6)

The perceptual loss, as defined in the previous equations, has limitations when performing
style transfer with only one target sample. Naively enforcing a perceptual similarity against
the single target sample leads to locally injecting its feature’s patterns always in the same po-
sition. The synthesized samples tend to exhibit characteristics related to the target sample’s
content, such as shapes and contours. To address this issue, we propose a new variation of
the perceptual loss that incorporates an average pooling operation over the feature maps. By
using a spatial average pooling operation, we instead enforce a global perceptual similarity
of the feature maps. This operation introduces a smoothing effect on the reduced feature
map, leading to a smoother synthesized sample. We apply this new variation to both the
style and content losses, defining the new loss as follows:

ℓi(x̂s,xc) =
1

CHW
∥AvP(Hi(x̂s))−AvP(Hi(xc))∥2

2 (7)

where x̂s represents the augmented sample, xc represents the sample to compare against
with, i.e. the target or input source sample, Hi represents the feature map from the i-layer
of the SAM, AvP specifies the average pooling operation, C, H, and W denote the number
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of channels, the height, and the width of reduced feature map after the average pooling
operation, respectively. Finally, the new perceptual loss is redefined as:

Lperceptual_AvP = ∑
i
ℓi(x̂s,xs)+∑

j
ℓ j(x̂s,xt) (8)

where xs represents input source sample, xt represents the only target sample, i and j repre-
sent the selected layers of SAM for evaluating style and content, respectively.

3.3 Classifier module
The Classifier module (CM) is trained on the augmented samples and the labels of their cor-
responding input source sample. The intuition behind training the classifier with augmented
samples is that by doing so it should generalize well for the target domain. The classifier is
trained in supervised manner by minimizing a traditional cross entropy loss:

LCE =− ∑
xs∈X

yk log fθ (Tφ (xs,xt)) (9)

where X is the source sample set, y ∈ {0,1}K denotes the one-hot ground-truth vector, K is
the number of classes, Tφ (·) denotes the AUM with parameters φ , and fθ (·) represents the
classifier with parameters θ .

3.4 Training strategy
A two-step training strategy alternates the learning of the CM and the AUM to enhance
the performance and generalization of the model (see Fig. 1). This strategy is applied to
stabilize the learning process. This process will allow the individual modules to update their
parameters without causing drastic changes in the other modules. The division of task leads
to a more effective and specialized learning in each module.

In the first step, the classifier is trained on the augmented samples to learn the underlying
patterns and features. The CM is trained by minimizing Eq. 9. During step 1, the weights of
AUM are frozen, allowing the backpropagation process to update only the Classifier Module
(CM).

In the second step, AUM is trained, guided by SAM, to learn augmentations that resemble
the Target domain. AUM can be trained using either variation of the perceptual loss (Eq. 6
or Eq. 8). When the Disentangled encoders are used, the reconstruction loss (eq. 1) can be
used together with the perceptual loss to improve AUG’s performance. The learning process
of AUM can be controlled by conducting several iterations solely focused on step 1.

4 Experiments

4.1 Datasets
To assess the performance of our proposed method, we evaluate it on two well-known bench-
marks for domain adaptation: DomainNet [15] and VisDA [14]. DomainNet consists of four
distinct domains: Real, Painting, Clipart, and Sketch. Following the evaluation procedure
established in [17], we conduct our assessment across seven domain adaptation tasks: Real
to Clipart (R → C), Real to Painting (R → P), Real to Sketch (R → S), Painting to Clipart
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Table 1: Classification accuracies of our proposed method for DomainNet on seven DA tasks. For
Few-shot, three target samples are used. (SE) refers to the Shared encoder, while (DE) is the Disentan-
gled encoders. (RL) specifies a model trained with the reconstruction loss.

Method Type R → C R → P R → S P → C P → R C → S S → P Average
Source only - 56.59 ± 0.79 56.79 ± 0.50 46.25 ± 0.86 55.55 ± 0.83 66.20 ± 0.72 52.07 ± 1.01 44.81 ± 1.59 54.04
TeachAugment[19] - 53.84 ± 0.56 56.70 ± 0.59 46.70 ± 1.34 50.40 ± 1.27 58.64 ± 0.68 50.52 ± 0.09 44.89 ± 0.83 51.67
ASM[12] One-shot 39.74 ± 0.56 46.39 ± 1.53 31.37 ± 5.51 4.31 ± 0.60 5.87 ± 2.33 37.12 ± 1.12 19.67 ± 2.99 26.35
TOS-UDA [3] One-shot 58.11 ± 0.38 58.57 ± 0.20 49.87 ± 0.97 54.24 ± 0.62 62.72 ± 0.32 52.88 ± 0.25 47.94 ± 1.12 54.90
Our model (SE) One-shot 49.89 ± 4.96 57.52 ± 7.05 39.07 ± 16.88 51.55 ± 3.27 58.08 ± 6.41 37.47 ± 19.76 42.09 ± 16.43 47.95
Our model (DE+RL) One-shot 56.74 ± 0.62 61.02 ± 1.31 47.03 ± 3.41 54.24 ± 2.66 69.06 ± 0.87 53.42 ± 0.76 52.95 ± 1.77 56.35
Our model (SE) Few-shot (3) 57.06 ± 0.54 61.95 ± 0.57 49.18 ± 0.19 52.52 ± 3.01 66.79 ± 1.91 51.69 ± 1.99 50.08 ± 3.25 55.61
Our model (DE+RL) Few-shot (3) 57.96 ± 0.81 62.43 ± 0.88 47.95 ± 1.09 56.70 ± 0.80 69.59 ± 0.41 55.37 ± 0.89 54.58 ± 0.97 57.80

(P → C), Painting to Real (P → R), Clipart to Sketch (C → S), and Sketch to Painting (S →
P). The VisDA dataset, on the other hand, comprises two domains: Synthetic and Real. The
data is divided into three splits: training, validation, and testing. The training split repre-
sents the synthetic domain, while both the validation and testing splits consist of real domain
samples sourced from different image datasets (COCO [10] and the Youtube Bounding Box
dataset [16]). For our experiments, we treat the validation split as the training set for the
Real domain, as it is from this set that we obtain our target samples.

4.2 Setup
The pipeline training setup is as follows: the classifier CM is a ResNet-101 pretrained on
ImageNet. AUM was tested in its two variations: Shared encoder (SE) and Disentangled
encoders (DE). SAM, is a VGG-16 [18] pretrained on ImageNet. In the VGG-16, the features
maps from the layers relu1_2 and relu2_2 were used for the style loss while the features
map from layer relu4_3 was used for the content loss. AUM’s layers descriptions will be
presented on the supplementary material. All the experiments were run five times. We
present mean and std for DomainNet and only the mean for VisDA. VisDA results’ standard
deviations will be presented on the supplementary.

4.3 Implementation details
To train LearnAug-UDA, we employed two optimizers. Each of them focusing on indi-
vidually updating the CM and AUG modules. The CM is trained using stochastic gradient
descend (SDG) while AUG is trained using the AdamW optimizer. The perceptual loss’
weights for layers relu1_2, relu2_2, and relu4_3 were set as 0.25,1.0, and 1.0 respectively.
The model was trained for 20 epochs with a learning rate of 1e− 4 for the CM optimizer
and 1e − 3 for the AUG optimizer, batch size of 8 samples with input size of 224x224.
When training with SE and Mixup, the parameters for the beta distribution were set as 5.0
for the alpha value and 1.0 for the beta value. Futher information can be found on the
supplementary material and the code repository of LearnAug-UDA: https://github.com/IIT-
PAVIS/LearnAug-UDA.

4.4 Results
In table 1, the results for DomainNet are presented. we evaluate the accuracy of our method
against four different competitors. Source only: a classifier trained only on source data us-
ing a cross entropy loss. TeachAugment[19]: as explained in section 2, this is a method for
model generalization that learns fixed augmentations. ASM[12]. One of the few methods
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Table 2: Classification accuracy of our proposed method on VisDA. For Few-shot, three target samples
are used. (SE) refers to the Shared encoder, while (DE) is the Disentangled encoders. (RL) specifies a
model trained with the reconstruction loss.

Method Type Aeroplane Bicycle Bus Car Horse Knife Motorcycle Person Plant Skateboard Train Truck Mean
Source only - 68.86 3.24 46.05 97.61 30.48 8.08 50.69 5.90 72.14 16.97 62.21 14.84 39.76
TeachAugm [19] - 26.47 0.35 39.49 40.38 1.28 1.21 31.76 0.40 39.36 9.67 55.69 10.45 21.38
ASM[12] One-shot 62.49 25.17 81.61 77.23 47.72 11.84 39.51 5.68 83.93 30.07 48.77 31.49 45.46
TOS-UDA[3] One-shot 15.05 0.01 13.96 17.31 2.47 20.38 0.53 1.34 11.46 7.15 20.51 5.32 9.63
Ours (DE+RL) One-shot 59.90 12.77 71.99 91.46 48.44 23.70 59.88 11.56 76.38 40.22 63.19 24.26 48.64
ASM[12] Few-shot (3) 70.27 35.57 78.62 83.36 43.95 13.88 36.39 4.04 83.14 32.06 37.65 30.31 45.77
TOS-UDA[3] Few-shot (3) 21.92 1.02 19.66 11.56 7.32 7.60 5.15 2.24 11.67 11.29 17.90 5.74 10.26
Ours (DE+RL) Few-shot (3) 62.21 10.68 68.38 90.93 53.88 22.99 58.91 12.96 70.14 39.49 67.24 27.95 48.79

that tackles OS-UDA setting; it leverages style transfer to generate target samples. TOS-
UDA[3]: it implements a perceptual loss to guide the learning process to learn fixed trans-
formations. Together with the aforementioned methods, we evaluate two variations of our
model: the one using the shared encoder and the other with the disentangled encoders. The
results shows that our method the disentangled encoders performs better than any of the other
evaluated methods. Instead, our model with shared encoder obtained a lower accuracy than
TOS-UDA. This could imply that one-shot is not enough for the shared encoder to transfer
the style to the augmented sample. To expand our experiments, we also trained our method
in the Few-shot setting (3 Target samples) to evaluate its accuracy if more samples were
available. In this setting, our model with shared decoder increase its accuracy which proves
that the shared encoder works only if more target samples are available. Our model with the
disentangled encoders has an increase of (2.0%) on its performance. This indicates that our
method could possibly be used for other DA scenarios where there are more available target
samples, without the need to be modified.

In table 2, the results for VisDA are presented. we evaluated our proposed approach
against the same methods that were used for DomainNet. To the best of our knowledge, it is
the first time that VisDA is used as a benchmark for the OS-UDA setting. We generate the
results presented for ASM and TOS-UDA following their respective training strategies. As
before, we present the results using differnt number of target samples. For VisDA, we only
tested the best performing configuration of our method, i.e. the disentangled encoders and
reconstruction loss are used. Based on the results, we conclude that methods which use fixed
transformations are not capable of closing the gap between synthetic and real domains. The
aforementioned methods obtained lower accuracy than the source only method. Furthermore,
our method with its disentangled encoders is able to obtained the highest mean accuracy
among all evaluated methods. When using three target samples, our method obtains a high
accuracy similar to the one-shot version. This could indicate that unlike the DomainNet
experiments, the model would need to be modified for it to reach higher accuracy.

4.5 Ablations

We conducted additional experiments to analyze various configurations of our model. We
compared our modified version of the perceptual loss, which incorporates an average pool-
ing (AvgP) operation, with the original approach presented in [8] that utilizes a Gram matrix
(eq. 2). We tested two different architectures for AUM: a shared encoder with conditioning
mixup (SE) and the disentangled encoders (DE). Additionally, for the second AUM archi-
tecture, we also examined its variation with the inclusion of a reconstruction loss (RL). In
Table 3, we present the results obtained from testing such ablations. AUM architectures.
When comparing both architectures without any other variations, i.e. SE and DE, there is not
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Table 3: Comparative results for different ablations of our proposed approach are presented in the ta-
ble. (SE) refers to Shared encoder, while (DE) represents the Disentangled encoders. (AvgP) indicates
the use of average pooling by the Style Alignment module, and (RL) specifies a model trained with the
reconstruction loss.

Model R → C R → P R → S P → C P → R C → S S → P Average
SE 56.53 ± 1.44 62.89 ± 1.03 50.33 ± 2.27 55.02 ± 1.96 64.32 ± 4.42 53.62 ± 0.73 50.33 ± 2.27 56.73
SE+AvP 54.16 ± 3.25 62.83 ± 0.40 48.64 ± 1.79 48.94 ± 5.24 66.21 ± 0.66 50.04 ± 4.69 52.91 ± 0.69 54.82
DE 56.12 ± 1.97 63.55 ± 0.61 49.87 ± 2.49 54.38 ± 2.00 66.53 ± 1.70 51.70 ± 1.41 54.34 ± 2.01 56.64
DE+AvP 56.79 ± 0.84 62.50 ± 0.54 48.71 ± 0.66 56.18 ± 1.37 69.11 ± 0.61 54.50 ± 1.70 55.12 ± 0.61 57.56
DE+AvP+RL 57.96 ± 0.81 62.43 ± 0.88 47.95 ± 1.09 56.70 ± 0.80 69.59 ± 0.41 55.37 ± 0.89 54.58 ± 0.97 57.80

a considerable difference in the average performance between them as the 0.09% difference
can be neglected. The same can be said about their evaluations on individual tasks as they
differ only about 1.0% in most of the task (6 out of 7). Average pooling. The use of average
pooling by SAM shows opposite results based on the AUM architecture tested. we believe
that the disentangled encoders is able to transfer more style information of the target sample
than the shared encoder. therefore after applying average pooling, there is still enough infor-
mation to measure the perceptual similarity for the style. Reconstruction Loss. Applying
the reconstruction loss when training the AUM (DE) shows a slight increase in the average
accuracy compare to the method which uses only the perceptual loss for training. However,
this configuration of the model achieves the best results not only in average accuracy among
all configurations but also obtains the best performances in four out of seven tasks.

5 Conclusions

In this paper, we introduced our novel approach called Learnable Data Augmentation for
One-Shot Unsupervised Domain Adaptation (LearnAug-UDA). Our method addresses the
difficult domain adaptation scenario known as OS-UDA, where the availability of only a sin-
gle unlabeled target sample poses a challenge. To overcome this limitation, we developed an
Augmentation Module that utilizes style transfer techniques to synthesize augmented sam-
ples. To guide the learning process of the AUM, we incorporated a Style Alignment Module,
which enforces a perceptual similarity between the augmented samples and the target sam-
ple. We improved the perceptual loss by introducing an average pooling operation to smooth
out the synthesized samples. Through these key components, our approach enables effective
adaptation to the target domain. We tested our approach in the image classification task for
two well-known Domain Adaptation benchmarks, DomainNet and Visda. We demonstrated
the superior performance of our method compared to the selected baselines across a majority
of the domain adaptation tasks.
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