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Abstract
Brain dysmorphologies are present in many neurodegenerative, neurodevelopmental

and genetic disorders, such as Alzheimer’s Disease, schizophrenia, or Down syndrome.
Magnetic resonance imaging (MRI) is a widely used tool for diagnosing and monitor-
ing these conditions, but the interpretation of MRI data can be challenging and time-
consuming, particularly for large datasets. For this reason, there is a growing interest
in developing automatic methods to detect anatomical landmarks in brain MRI data to
quantify such dysmorphologies and obtain brain biomarkers to assist in the diagnosis and
prognosis of these disorders. In this paper, we propose and evaluate two brain landmark-
ing architectures based on Deep Convolutional Neural Networks (DCNN): an ensemble
of single-landmark models, and a multi-landmark model. Both approaches are compared
on MRI scans of healthy and Down syndrome subjects. The proposed pipeline comprises
several steps: i) the preprocessing of the MRI data, involving registration to a common
anatomical space, ii) the automatic extraction of the Mid-Sagittal Plane (MSP) of the
brain, based on a multi-scale search algorithm, and iii) the training and evaluation of the
DCNN models to detect 8 anatomical landmarks on the MSP. Our results indicate that i)
the ensemble of single-landmark models is more accurate, achieving average landmark-
ing errors lower than 2mm in healthy subjects, and ii) landmarking error is higher in
Down syndrome individuals, which suggests that brain dysmorphologies associated with
certain disorders require training specific models for accurate landmarking.
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1 Introduction
The analysis of medical images plays a fundamental role in the correct diagnosis and treat-
ment of many disorders. Among medical imaging modalities, magnetic resonance imaging
(MRI) stands out as a non-invasive, high-resolution, and radiation-free technique that can be
used to image a wide range of body tissues and organs. In particular, MRI of the brain is
used for the diagnosis and prognosis of multiple genetic and developmental disorders, such
as schizophrenia or Alzheimer’s disease, among others.

However, the analysis of brain MRI images is a complex and time-consuming task that is
usually tackled by expert radiologists and neurologists. This situation has led to the proposal
of multiple solutions to perform this interpretation automatically. Key recent contributions
in this area include medical image reconstruction, enhancement, segmentation, registration,
and landmark detection [15] [4].

Landmark detection plays a crucial role in a wide variety of medical image analysis
tasks, as landmark positions are used for the segmentation [7] [5] and registration of different
medical images [11][9], together with automatic diagnosis [10]. In the specific area of our
study, there has been extensive research on brain MRI segmentation [2] and registration [6].
However, it has been established that additional investigation is necessary to delve deeper
into these topics.

However, landmark annotation in brain MRI and, in general, all medical images is often
performed manually, which is time-consuming and labour-intensive. For this reason, many
computer-assisted landmark detection methods have been developed in recent years and can
be classified into two types: traditional and deep learning based.

On the one hand, traditional methods focus on the extraction of invariant features and
image filtering [16]. For instance, Asaei et al. [1] presented a supervised model that predicts
brain landmarks based on the similarity between feature vectors, and Zhang textitet al. [14]
proposed a brain landmark detection algorithm based on a random forest regression.

On the other hand, deep learning based methods have obtained more promising results.
Yang textitet al. [13] proposed a multi-task learning architecture that automatically detects
the anterior and posterior commissures of the brain (AC and PC, respectively). Zhu textitet
al. [16] developed a universal anatomical landmark detection model to perform multiple
landmark detection tasks with end-to-end training based on a mixed dataset. Edwards textitet
al. [3] presented a deep learning model to automatically locate multiple landmarks given 3D
brain images.

This paper introduces an end-to-end pipeline -Figure 1- that, using large datasets of brain
MRI scans from both healthy individuals and patients, i) identifies statistically significant
disparities in brain anatomy between distinct groups, ii) establishes brain biomarkers with di-
agnostic potential by leveraging the identified anatomical differences, iii) defines a collection
of brain landmarks based on the identified biomarkers, iv) detects these defined landmarks
within brain MRI scans of unseen subjects, v) utilizes the detected biomarkers to diagnose
new subjects.

In the context of the proposed pipeline, this paper is focused only on the automatic land-
mark detection process. Specifically, the goal of this paper is to develop accurate two-
dimensional brain landmarking algorithms based on DCNN following two opposite ap-
proaches: single-landmark, or SL for short (i.e. an ensemble of N DCNNs to detect one
landmark each) and multi-landmark (or ML, a single DCNN to detect N landmarks simulta-
neously). The algorithm was implemented in a 2D context due to the constraints of available
annotated data, which exclusively provided landmarks along the Mid-Sagittal Plane (MSP)
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Figure 1: Proposed disease identification framework, based on brain landmarks. It includes
(A) MRI Registration and feature extraction, (B) voxel-based statistical group comparison
and data-driven landmark definition, (C) automatic landmark detection, (D) landmark infor-
mation extraction, and landmark-based disease classification.

of the brain. Moreover, we also analysed landmarking accuracy in the brains of healthy con-
trols and individuals with Down syndrome, so as to evaluate the adaptability of the trained
models to different brain morphologies.

Our findings revealed detectable differences in prediction errors between the proposed
models, with a mean difference of 1 mm. In particular, the proportion of highly accurate
landmark detections, with an error of less than 2 mm, doubled when comparing the ensemble
of SL models with the ML model. In addition, analysis of the prediction errors on healthy and
Down syndrome subjects revealed the need for training specific models to achieve accurate
landmarking on patients with particular brain dysmorphologies. Specifically, the ensemble
of SL models had a mean landmarking error of 1.84 mm for healthy subjects, while the error
increased to 2.25 mm for Down syndrome individuals.

2 Automatic Landmark Detection
Our solution for automatic landmark detection involves three main steps: i) MRI registration
and preprocessing, ii) automatic extraction of the MSP, and iii) training and evaluation of
Deep Convolutional Neural Network (DCNN) models to detect N anatomical landmarks.
An overview of the proposed pipeline is shown in Figure 2.

In the first step, the input volume is in the NIfTI Data Format by Neuroimaging Informat-
ics Technology Initiative [8], and all images are reoriented to Posterior Inferior Left (PIL)
orientation. The 2D image slices fed to the DCNN are then subject to further processing,
including cropping, histogram matching, and mean-variance normalisation.

The second step involves automatic extraction of the MSP, which is the MRI slice that
separates the brain into two almost-identical hemispheres. The MSP is found using a multi-
scale search algorithm based on previous work [12], which proposes multiple planes and
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Figure 2: Proposed landmark detection framework, including (1) training of the model using
labelled MRIs and (2) testing of the neural network.

evaluates the symmetry defined by the 3D image and the plane itself. Specifically, the ob-
jective was to compare our image A with the image B obtained when A is flipped about
the plane under evaluation. The method used to quantify the symmetry between these two
images is the cross-correlation between images A and B. The equation is as follows:

S(A,B) =
(A−A ·1) · (B−B ·1)

∥(A−A ·1)∥∥(B−B ·1)∥
(1)

This algorithm focuses on a two-scale process that, first, evaluates the cross-correlation
of planes using 1

4 scale of the volume, and then refines the search using the full volume. At
the end of the multi-scale search, the MSP is identified as the plane that maximises brain
symmetry on its both sides. The N landmarks will be detected on the MSP.

The third step involves training and evaluating multiple DCNN models for the detection
of the N landmarks on the extracted MSP. In this work, the DCNNs models are composed
of four blocks comprising each a convolutional layer, a batch normalization layer, a recti-
fied linear unit (ReLU) activation function, and a max-pooling layer, followed by three fully
connected layers, together with ReLU activation functions and dropout layers to avoid over-
fitting. The details and implementation of these models are publicly available for further use
(see section 3.2).

In this work, we propose and compare two DCNN-based architectures for detecting N
landmarks: a multi-landmark model trained to detect the N landmarks, and an ensemble of
N single-landmark models.

On the one hand, single-landmark models are trained with backpropagation using a loss
function (LSL) that measures the Euclidean distance between the (x,y)-coordinates of the
predicted and the ground truth landmarks (see Equation 2).

LSL =
√
(xpred − xgt)2 +(ypred − ygt)2 (2)

where (xpred ,ypred) and (xgt ,ygt) are the coordinates of the predicted and ground truth
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landmarks, respectively. Consequently, the output of a SL model is a 2-dimensional vector
of the (x,y)-coordinates of the landmark.

On the other hand, the multi-landmark models are trained to minimise a loss function LML
equal to the average of the N Euclidean distances between the coordinates of the predicted
and ground truth landmarks (see Equation 3).

LML =
1
N

N

∑
i

√
(xi

pred − xi
gt)

2 +(yi
pred − yi

gt)
2 (3)

where (xi
pred ,y

i
pred) and (xi

gt ,y
i
gt) are the predicted and ground truth coordinates of the ith

of the N landmarks. Thus, the output of a ML model is a 2N-dimensional vector with the
(x,y)-coordinates of the N landmarks.

Consequently, each of the SL models in the ensemble focuses solely on the individual
landmark distance, whereas the ML model also considers the inter-landmark distance rela-
tionship.

3 Experiments and results

3.1 Data
The SL and ML DCNN models were trained with 1,837 brain MRI scans obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) database (adni.loni.usc.edu)1. To
assess the performance of the implemented models, we used a completely different dataset
of MRI images. In particular, we tested the models with a dataset of 141 brain structural
T1 MRI scans obtained with a Philips 3 Tesla X Series Achieva scanner and provided by
Hospital Sant Pau Memory Unit (Barcelona, Spain). Interestingly, this test set comprises
scans from 87 adult healthy subjects and 54 adults with Down syndrome. The study was
approved by the Sant Pau Research Ethics Committees, following the standards for medical
research in humans recommended by the Declaration of Helsinki. All participants or their
legally authorised representative gave written informed consent before enrolment.

Given the limited availability of manually labelled brain MRI scans, we used the solution
proposed in [1] for labelling the training and test set scans, placing N = 8 landmarks on the
MSP, and serving as the ground truth for our experiments. Figure 3 exhibits the defined
landmarks annotated on the mid-sagittal plane of a brain MRI. After labelling [1], all scans
were thoroughly reviewed to remove outliers.

3.2 Implementation details
The deep learning models in this study were implemented using PyTorch. The models were
initialised using a Gaussian distribution with a mean of 0 and a standard deviation of 0.1. The
learning rate was initially set to 0.005 and gradually reduced to a final value of 0.0005 using
a gamma factor of 0.95. The scaling operation was performed multiple times, as necessary,
until reaching the desired final learning rate at the end of training. This approach ensured
a gradual and controlled adjustment of the learning rate throughout the training process,

1The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
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Figure 3: Set of N = 8 landmarks located on the MSP.

allowing for better optimisation and convergence of the model. The SL models were trained
for 5,000 epochs, and the ML model was trained for 10,000 epochs.

All experiments were conducted on a PC with Intel Core™ i9-10980XE CPU @ 3.00GHz
× 36 cores and NVIDIA GeForce RTX 2080 Ti GPU. The code is publicly available on
GitHub, https://github.com/jrdimale/DCNN-BrainLandmarking/.

3.3 Evaluation metrics

The evaluation metrics employed for assessing the landmarking accuracy of the SL and ML
methods were based on comparing the coordinates of the ground truth and the predicted
landmark coordinates in terms of i) Euclidean distance (in mm), and ii) Successful Detection
Rate (SDR), defined as the percentage of landmarks predictions to be within a certain radius
of their real position (according to the ground truth), evaluating the accuracy at each of a
series of increasing distances (from 1 to 5 mm). Thus, a higher SDR indicates a higher
success rate in accurately detecting the landmarks.

3.4 Results

The 141 MRI scans of the test set were subject to automatic landmarking by the ensemble
of 8 SL models and the ML model. We measured the accuracy of the landmarking for the
healthy subjects (HS) and the Down syndrome individuals (DS) separately. The results are
summarised in Table 1, expressed in terms of the Euclidean distance (mean value ± standard
deviation) and the SDR metric defined earlier.

The ensemble of SL models performed better than the ML model, achieving an average
landmarking error of 1.99±1.94 mm, in comparison to a 3.03±2.13 mm error for the lat-
ter. In terms of SDR, the ensemble of SL models achieves 83.86% with a 3mm threshold,
compared to 58.86% for the ML model.

Moreover, Table 1 reveals that the landmarking accuracy of both models is higher on
the HS than on the DS sample. Taking into account that all our models were trained on
the ADNI-1 dataset (which contains a large share of healthy subjects and individuals with
mild cognitive impairment), we can infer that accurate landmarking of brains with different
dysmorphologies (like those in DS) would require training specific models.

https://github.com/jrdimale/DCNN-BrainLandmarking/
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Figure 4: Landmarking error (in mm) on the Down syndrome sample using the ensemble of
SL models (orange bars) and the ML model (blue bars), represented as the average value and
standard deviation per landmark.

Figure 4 and Figure 5 provide a visual representation of the precision of each individual
landmark prediction for the DS and the HS samples, respectively. In both cases, we can see
that the ensemble of SL models achieves a lower landmarking error than the ML model in
every single landmark (with the possible exception of landmark #2 in the DS sample).

Finally, Figure 6 provides a visual representation of the results of automatic landmarking
on three MRI scans of the test set (one HS and two DS individuals). These results reinforce
that the ensemble of SL models performs more accurately than the ML model and that this
accuracy is higher in the landmarking of HS.

Model Group Euclidean distance (mm) SDR (%)
1mm 2mm 3mm 4mm 5mm

ML DS 3.26 ± 2.15 10.64 31.25 53.47 71.29 84.95
HS 2.89 ± 2.11 13.36 39.79 62.22 78.59 88.36

SL DS 2.25 ± 2.35 25.92 62.73 80.32 87.96 90.97
HS 1.84 ± 1.63 31.75 68.53 86.06 92.09 96.12

Table 1: Landmarking error in terms of Euclidean distance (mean value ± standard devi-
ation) and SDR with 1mm to 5mm error thresholds for both the SL and ML models and
sample groups (HS and DS).

4 Conclusions and further work
In this work, we investigated the accuracy of deep learning models for the automatic detec-
tion of landmarks on a given 2D MRI sagittal slice of the brain. Two approaches have been
compared: an ensemble of single-landmark models, and a multi-landmark model. Moreover,
the accuracy of both approaches has been evaluated on MRI scans of subjects with different
brain morphologies (healthy subjects and individuals with Down syndrome).

The paper’s main objective is to achieve precise landmarking and to begin investigating
the distinction between healthy subjects and those with Down Syndrome or other illnesses.
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Figure 5: Landmarking error (in mm) on the healthy subjects sample using the ensemble of
SL models (orange bars) and the ML model (blue bars), represented as the average value and
standard deviation per landmark.

Nonetheless, directly comparing our method to state-of-the-art techniques might not be en-
tirely equitable, as these methods utilize uniform datasets and do not specifically focus on
identifying potential diagnostic biomarkers.

As our experimental results reveal, the ensemble of single-landmark models performed
better for all landmarks, obtaining more accurate results than the multi-landmark model.
This suggests that it is preferable to have a model that focuses on only the loss function
of the Euclidean distance of a single landmark, rather than focusing on the average loss
functions of N-landmarks and the relative position between them, as the ML model does.

Furthermore, we have also analysed the performance of both landmarking models on
test data from different groups. This analysis aims at evaluating the ability to generalize
landmark predictions to unseen brain morphologies. The fact that both models perform
better on the healthy subjects sample than on the Down syndrome sample highlights the
need for new models to be trained specifically to predict landmarks for groups of patients
with particular brain morphologies.

Future research directions include several aspects to improve the implemented mod-
els and extend their applicability to different patient groups. First, the exploration of new
datasets would contribute to improving the performance and generalization of the models.
In addition, the incorporation of data augmentation techniques may improve the robustness
of the models and their ability to handle variations in the input data. On the other hand,
the differences observed between groups highlight the need for future research focused on
defining new biomarkers based on regions of the brain that are linked to specific diseases,
rather than relying on pre-defined landmarks based on prior knowledge. Moreover, our work
aims to develop a three-dimensional model to predict these newly defined landmarks and,
ultimately, to train a classifier to diagnose based on the features of the extracted biomarkers.
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