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Abstract

Speech-driven animation has gained significant traction in recent years, with current
methods achieving near-photorealistic results. However, the field remains underexplored
regarding non-verbal communication despite evidence demonstrating its importance in
human interaction. In particular, generating laughter sequences presents a unique chal-
lenge due to the intricacy and nuances of this behaviour. This paper aims to bridge this
gap by proposing a novel model capable of generating realistic laughter sequences, given
a still portrait and an audio clip containing laughter. We highlight the failure cases of
traditional facial animation methods and leverage recent advances in diffusion models
to produce convincing laughter videos. We train our model on a diverse set of laugh-
ter datasets and introduce an evaluation metric specifically designed for laughter. When
compared with previous speech-driven approaches, our model achieves state-of-the-art
performance across all metrics, even when these are re-trained for laughter generation.
Our code and project are publicly available 1.

1 Introduction
Facial animation is essential in many applications, such as virtual reality, movies, and human-
computer interaction (HCI), by providing more immersive and engaging experiences. Cur-
rent facial animation methods predominantly focus on speech-driven animation, resulting in
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Figure 1: The proposed end-to-end laughter generation model synthesizes a video of a laugh-
ing face using a still image of the speaker and an accompanying laughter segment.

the neglect of non-verbal expressions such as laughter, head nods, or blinks. This omission
poses a substantial issue since these non-verbal cues often convey essential contextual in-
formation and play an important role in natural dialogue. Laughter is an interesting initial
subject of study due to its ancient roots as a social signal [35, 36, 41], acting as a powerful
non-verbal communication medium that conveys emotions, intentions, and social relation-
ships [15, 39]. However, laughter, unlike speech, lacks a direct correlation with lip move-
ment. When combined with the scarcity of training data, this makes the development of a
model for realistic laughter sequence generation quite challenging.

Until recently, speech-driven animation methods mainly relied on Generative Adversar-
ial Networks (GANs) [16]. Early approaches were limited in terms of head rotations [55]
or could only modify lip movements [38]. Recent advances have led to methods capable of
generating realistic facial animations, with [32, 61, 62] or without [56] the use of intermedi-
ate representations such as key points, landmarks, or driving videos. Some of these methods
even incorporate emotion control into the generation process [17, 23]. The emergence of
diffusion-based generation techniques has further spurred progress in the field, as researchers
leverage the improved performance of these new models [44, 50]. Current methods employ
frame-based generators, exploiting the strong correlation between speech and lip movement.
However, these models struggle with laughter generation due to several issues. Firstly, laugh-
ter lacks the robust audio-visual correlation seen in speech [1, 24], making the generation of
authentic audio-driven laughter sequences considerably more difficult. Secondly, laughter’s
complexity and variability, involving various muscles and facial movements, poses a sub-
stantial challenge for existing frame-based generators. These models, which are designed
for speech, primarily focus on the mouth and lips and struggle to capture the subtleties and
variations in laughter, resulting in unnatural or inaccurate visual renditions. Finally, the
spontaneity and context-dependency of laughter make it difficult to predict the timing and
intensity of the speaker’s facial movements accurately. These challenges emphasize the need
for innovative approaches specifically designed for laughter generation.

In this paper, we design a novel video diffusion model to generate videos of laughing
faces based on raw audio input. Our model leverages recent developments in video diffu-
sion [21, 45] to accurately capture the complex laughter dynamics, leading to realistic and
synchronized laughing animations. To the best of our knowledge, our method is the first
to generate natural laughter videos. In addition, we address the issue of limited publicly-
available audio-visual laughter corpora by proposing an ensemble of existing datasets for
training and evaluation purposes. To assess the quality of our results, we employ a series of
metrics from existing video generation works and design a novel metric specifically tailored
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for laughter generation. We perform a thorough evaluation of our proposed method’s per-
formance and conduct an ablation study on our model to systematically assess the impact of
each individual component within this system. We find that our approach outperforms previ-
ous state-of-the-art speech-driven facial animation models, including other diffusion-based
methods, whether pre-trained on speech or re-trained on laughter. Furthermore, our method
produces videos that are significantly better aligned with the input laughter audio.

2 Related Work
Speech-Driven Facial Animation. Early facial animation research [60] established a strong
relationship between speech features and facial motion, initially leveraged through hidden
Markov models (HMMs) [58, 59]. Quality enhancements were realized with the rise of deep
learning methods [13, 25, 51], notably through the introduction of generative adversarial
networks (GANs) [16]. As a result, an initial wave of research focused on achieving lip
synchronization [6, 51] with Prajwal et al. [38] attaining near-perfect synchronization for
in-the-wild videos. Subsequent work incorporated natural facial expressions such as blinks
and eyebrow movements but lacked head rotations [46, 56]. Some methods addressed this
by using intermediate representations like landmarks [17, 62], keypoints [23] or a driving
video [32, 61]. On the other hand, recent diffusion-based approaches [50] have demonstrated
state-of-the-art performance, showcasing their ability to generate plausible head motion and
diverse facial expressions by using only speech as a conditioning input. Other works have
also focused on adding control over the emotion displayed in the generation [1, 17, 32].
Despite these remarkable advances, the generation of non-verbal aspects of human commu-
nication remains unexplored.

Diffusion Models. Introduced in [19, 47, 48], diffusion models have shown strong gen-
erative capabilities in point cloud generation [34], music synthesis [22, 42] and video gener-
ation [20, 21, 45]. Compared to GANs, diffusion models provide a more stable and robust
training process, as well as improved mode coverage which makes the model less likely
to overfit [57]. Score-based diffusion models, presented in [49] and improved in [8, 27],
extend the original diffusion models by generalizing the noise distribution through the use
of stochastic differential equations (SDEs). They can effectively capture complex data dis-
tributions and generate high-quality samples, while still maintaining the advantages of the
original diffusion models in terms of denoising and sampling efficiency. These advance-
ments allow for a broader range of applications and adaptability to different domains. More
recently, [40] propose Latent Diffusion Models, managing to produce high-resolution im-
ages by transferring the training and inference processes to a compressed lower-dimension
latent space for more efficient computing. However, we found that this approach failed to
yield successful results in our case, likely due to the limited amount of data available.

Laughter in Human Communication. Laughter generation has been explored across
various modalities, including audio, text, and animation. In the audio domain, studies have
primarily focused on synthesizing laughter sounds [30, 52, 54] to extend the capabilities of
text-to-speech systems. In the text domain, researchers have investigated methods for gen-
erating and recognizing laughter in textual conversations, such as identifying and generating
laughter events in dialogues [2]. For animation, Ding et al. [9] developed a real-time laughter
animation generator that takes input pseudo-phonemes of laughter and their duration times,
synthesizes facial and body motions by learning the relationship between input signals and
human motions, and employs a combination of contextual Gaussian Models and motion
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Figure 2: Overview of our proposed pipeline for laughter generation. The model takes as
input the noisy video concatenated with the reference frame and outputs the denoised version
of the images conditioned on the laughter audio and the timestep of the diffusion process.

capture data. More recently, projects like ILHAIRE [12] have showcased the importance
of laughter synthesis and recognition in human-avatar interactions. Incorporating laughter
in facial animation is crucial for developing more realistic and engaging virtual characters,
ultimately enhancing the overall user experience.

3 Methodology

3.1 Diffusion models

Diffusion models [19, 47, 48] are a class of generative models that synthesize samples by
progressively removing random noise. The input to a conditional diffusion model consists
of a conditioning signal c, a random time step t, and a sample xt obtained by corrupting the
original data x by adding i.i.d. Gaussian noise of standard deviation σ .

We adopt the approach of Karras et al. [27] that further explores the design choices of
this type of model, both theoretically and empirically, and presents a sampling process that
uses Heun’s method as the ODE solver, reducing the number of neural function evaluations
needed while maintaining the FID score [7]. This process is characterized by a noise sched-
ule with a standard deviation σt at time t. The time range t is uniformly sampled during
training, with the diffusion progressing in the direction of increasing time. The Gaussian
diffusion dynamics can be fully described by a single noise vector nnn ∼N (000,σ2III) with noise
levels σ0 = σmax > σ1 > · · · > σT = 0, as xt can be expressed as a function of the original
sample and the noise vector nnn, i.e., xt = x+nnn. The model Dθ is trained to determine the orig-
inal image given this input. The diffusion loss minimizes the expected L2 denoising error for
samples drawn from the training data separately for every σ , i.e.:

L(θ) = Ex,c,t,σ [wt∥Dθ (xt ;c,σt)− x∥2
2], (1)

where wt is a fixed weight function of choice. Inference is performed by taking random noise
at time tmax and denoising it using the noise predictions provided by the model.
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3.2 Architecture
Our architecture primarily builds upon the work of Ho et al. [21], which employs a fac-
torized space-time U-Net architecture, extending the standard 2D U-Net used in image dif-
fusion models. The model, illustrated in Fig. 2, comprises four down-sampling and up-
sampling blocks connected by residual connections. The input of our model is a video
sample xt ∈ RB×C×F×H×W , where B,C,F,H,W are the batch, channels, frames, height, and
width dimensions respectively. The condition signal c, in our case, consists of a single frame
x′ ∈ RB×C×H×W concatenated channel-wise with xt by repeating it in the temporal dimen-
sion, and an audio sequence a which is passed through an audio encoder (Ea). Additionally,
we pass the timestep information of the diffusion process t processed by a two-layer MLP
(Et ). The U-Net contains a composition of convolutional and self-attention layers followed
by a down-sampling or up-sampling layer. In our proposed method, we apply Pseudo-3D
Convolutional and Attention Layers [45] to balance computational efficiency, and informa-
tion sharing in the network. For each layer, instead of using the full 3D convolution, we
use a 2D convolution applied to the spatial dimensions (RB×C×F×H×W → R(B×F)×C×H×W ),
followed by a 1D convolution applied to the temporal dimension by merging the other di-
mensions (RB×C×F×H×W → R(B×H×W )×C×F ). We apply a similar strategy for the attention
layers. The details of the network can be found in Fig. 3.

Figure 3: Details of the U-Net layers. Left: Overview of the U-Net architecture. Right:
Detailed view of the ResBlock.

The audio signal is processed using an audio encoder from [4] pre-trained on AudioSet [14].
We split the corresponding audio sequence into chunks of equal length based on the number
of frames in the video, resulting in a new audio sequence a′ = {a′0, ...,a

′
F}. Then, the audio

and timestep conditioning is performed in each of the ResBlocks of the U-Net at the first
convolutional layer. This is done by modulating the input xt through a scale-shift operation
after a group normalization layer (GN):

hs+1 = GN(hs)∗ (k+1)+ s (2)

where hs and hs+1 are consecutive hidden states of the U-Net, and k and s are the scale and
shift, respectively. To obtain k and s, we sum the audio sequence at and the encoded timestep
information t and pass it through a linear layer. We then split the result to obtain the scale
and shift.
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3.3 Training
One challenge in generating laughter is the lack of large publicly available datasets. To mit-
igate the risk of overfitting, a common issue in diffusion models trained on smaller datasets,
we adopt a series of techniques described below that we further discuss in section 5.2:

Augmentation regularization. We use a technique originally developed for training
GANs with limited data [26] and later successfully applied to diffusion models [27]. The
pipeline incorporates several geometric transformations which are applied to training im-
ages prior to adding noise. To prevent these augmentations from leaking into the generated
images, we supply the augmentation parameters as conditioning input to Dθ . During infer-
ence, we set these parameters to zero, ensuring only non-augmented images are generated.

Classifier-free guidance (CFG). This technique, proposed by Ho and Salimans [18],
enhances the alignment between generated samples and conditional input. At inference, the
noise vector is computed both with and without the conditional input, and the final noise
vector is determined by wDθ (xt ;c,σt)+ (1−w)Dθ (xt ; ·,σt), where w > 1. We found that
w = 1 worked best in our case. During training, the conditional input is masked with a
probability of 0.1, enabling the same model to handle both conditional and unconditional
generation.

Longer sequence generation. Due to computational constraints, we train our model on
sequences of 16 consecutive frames randomly sampled from the videos, rather than training
on the full videos. However, during inference, we can generate arbitrary lengths by autore-
gressively sampling our model. Initially, we generate a video xa ∼ pθ (x) and use the last
frame of xa as a condition for xb ∼ pθ (xb|xa).

We train all models using the Lion optimizer [5] with β1 = 0.95 and β2 = 0.98 and a
learning rate of 6× 10−5. During initial experimentation, we found that Lion converged
noticeably faster than commonly used optimizers such as Adam [29] or AdamW [33], while
consistently achieving equivalent or superior final performance. We linearly warm up the
learning rate for the first 20 epochs and subsequently apply a cosine decay schedule until the
end of training. We train our models for 200 epochs with a total minibatch of 32 samples.

4 Experiments

4.1 Datasets
We identified four datasets suitable for laughter generation, namely MAHNOB [37], AVLaugh-
terCycle [53], AVIC [43] and SAL [10]. As these datasets do not solely contain laughter, we
focus on the videos that feature it. We divide the data into training, validation, and test sets
following an 80 – 10 – 10 % ratio, ensuring there is no overlap between the speakers in each
set. The exact split of data can be found in the supplementary material. For all datasets, we
use an audio sampling rate of 16 kHz and a video frame rate of 25. During preprocessing,
we align all faces to a canonical face and normalize images to the [-1,1] range. Details for
each dataset are presented in Table 1.

4.2 Evaluation Metrics
We employ widely-used reconstruction metrics, such as peak Frechet Inception Distance
(FID) and structural similarity (SSIM) index, to assess the quality of generated images. Fur-
thermore, we employ Frechet Video Distance (FVD) to evaluate visual quality, temporal
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Dataset # Speakers # Videos Avg. length (sec.) Total length (hours)

AVLaughterCycle [53] 8 421 3.80 ± 6.42 0.44
Mahnob [37] 22 554 1.56 ± 2.21 0.24
AVIC [43] 21 312 0.36 ± 0.30 0.03
SAL [10] 28 98 1.46 ± 0.77 0.04

Table 1: Overview of the datasets used in the study.

coherence, and sample diversity. To assess the authenticity of the generated laughing faces,
we train a Laughter Classifier (LC) to differentiate between speech and laughter videos. This
model, based on a pre-trained MViTv2 [31] for video classification on Kinetics [28], is fine-
tuned with laughter and speech data from MAHNOB [37]. More details are available in
the supplementary material. This novel metric allows us to highlight the limitations of pre-
trained speech-driven animation methods, while simultaneously demonstrating our model’s
capability to generate realistic laughter sequences. The Laughter Classifier achieves an accu-
racy and F1 score of 100 % on the test set. We then apply this trained model to categorize the
generated videos, assessing whether they are accurately classified as laughter. When mea-
suring the Laughter Classifier’s accuracy, we prevent any bias caused by the initial frame by
ensuring that the reference frame is a neutral face, which may not always be the case when
sampling a random video. This is crucial as a smiling face can easily resemble laughter,
introducing bias into our evaluation.

5 Results
To the best of our knowledge, this is the first work on audio-driven laughter generation, so
we compare against three speech-driven animation methods that we re-trained for laughter:
Diffused Heads [50], SDA [55], and EAMM [23]. We also compare with pre-trained models
such as MakeItTalk [62] and PC-AVS [61]. Furthermore, we perform ablation studies on
various design choices within our framework and discuss their importance. In terms of
video generation, we evaluate the models at a resolution of 128× 128. These models are
conditioned on a single frame and generate the following 16, adhering to the FVD model’s
expectation of a 16-frame video. However, for human evaluations, we opted to generate
2-second videos.

5.1 Comparison with Other Works

As shown in Table 2, models that are pre-trained on speech struggle to generate satisfac-
tory results, especially in terms of the Laughter Classifier metric. This highlights the need
for re-training the models on laughter. Consequently, we also compare our method against
re-trained models, adhering to the recommended parameters from their respective papers.
Despite the improvements achieved by re-training, our approach consistently outperforms
other methods in terms of visual quality and laughter accuracy. We primarily attribute our
model’s performance to our 3D architecture, which, unlike other frame-based methods, en-
ables longer audio context. This is essential since laughter exhibits a lower correlation be-
tween acoustic and visual cues compared to speech. Other significant improvements stem
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Model FVD ↓ FID ↓ SSIM ↑ LC ↑ (%) MOS ↑
Pre-trained

Diffused Heads [50] 149.51 49.36 0.236 80.70 -
SDA [55] 594.32 111.89 0.053 13.85 -
EAMM [23] 391.62 71.71 0.094 16.67 -
PC-AVS [61] 1164.49 175.99 0.004 53.91 -
MakeItTalk [62] 196.89 49.08 0.262 72.50 1.94±1.12

Re-trained

Diffused Heads [50] 152.30 67.46 0.232 94.09 2.45±1.22
SDA [55] 696.33 124.52 0.040 85.13 -
EAMM [23] 324.97 74.18 0.095 20.67 1.87±1.05

Laughing Matters (Ours) 111.95 45.69 0.371 96.52 3.39±1.09

Ground truth - - - 100.00 3.49±1.23

Table 2: Comparative performance of the proposed methods against pre-trained and re-
trained models. The best result is highlighted in bold.

from the choice of an audio encoder specifically tailored for laughter and the training im-
provements employed to compensate for limited training data, as discussed in Section 5.2.

We further validate our model’s superior performance through a Mean Opinion Score
(MOS) test. Participants are shown an average of 23 randomly selected videos, featuring a
blend of ground truth, our model, Diffused Heads [50], MakeItTalk [62], and EAMM [23].
Participants watch the videos sequentially and rate them on a scale of 1 to 5, where 1 in-
dicates the video appears clearly artificial, and 5 suggests it is highly realistic and indistin-
guishable from genuine laughter. We collect a total of 72 responses that we detail in the
supplementary material. Even though the performance difference is minimal in the laughter
metric, it is significant in terms of user preference, where temporal smoothness and natural
expressions are crucial factors. It is worth highlighting that even ground truth videos score
relatively low, which is likely due to the difficulties in assessing whether a laughter video
is realistic and well synchronized with its corresponding audio. This discriminative task is
indeed challenging, even for humans, as evidenced by the videos provided in the supplemen-
tary material.

Additionally, we compare two variants of our approach as two different models in the
user study: with and without head rotations. This is achieved by taking the original video
and eliminating the head rotation using the model from [11]. We evaluate both models on
videos taken from the MAHNOB [37] test set. The results, shown in Table 3, show that
removing head rotation severely deteriorates performance, highlighting the importance of
correctly modelling the speaker’s head movements when generating laughter videos.

Model MOS ↑
Laughing Matters w/ rotations 3.08 ± 1.12
Laughing Matters w/o rotations 2.08 ± 1.07

Table 3: Mean Opinion Score of our model with and without the head rotations.
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5.2 Ablation study
Audio Encoder. Choosing the right audio encoder is essential for achieving optimal results.
While a pre-trained model on a large speech dataset is a common choice for speech ani-
mation, they prove inadequate for our specific use case. As indicated by Table 4, speech
encoders such as SDA [55] and WavLM [3] yield unsatisfactory results, producing outputs
closer to speech rather than laughter, as observed in the Laughter Classifier metric. Training
from scratch, for instance with mel-spectrograms, provides some improvement as it allows
the model to learn directly from the laughter data. However, due to the limited availability
of training data, it is highly beneficial to identify a pre-trained model suitable for our task.
To this end, we apply BEATs [4], a state-of-the-art self-supervised audio encoder. Being
trained on AudioSet [14], which contains 15.8 hours of laughter data, it achieves superior
performance across all metrics.

Audio Encoder FVD ↓ FID ↓ SSIM ↑ LC ↑ (%)

SDA [55] 169.48 55.07 0.318 68.21
WavLM [3] 136.76 46.01 0.312 54.21
Mel-spectrograms 124.81 47.74 0.320 83.52
BEATs [4] 111.95 45.69 0.371 96.52

Table 4: Ablation study on the audio encoder.

Training improvements. To mitigate overfitting, a common issue with diffusion models
trained on smaller datasets, we implement two techniques detailed in Section 3.3: Augmen-
tation regularization and Classifier-free guidance (CFG). Table 5 illustrates the impact of
both components, demonstrating consistent performance improvements when they are used.

Training configuration FVD ↓ FID ↓ SSIM ↑ LC ↑ (%)

Baseline 111.95 45.69 0.371 96.52
w/o Augmentation regularization 195.03 60.60 0.308 83.93
w/o Classifier-free guidance 126.89 46.91 0.302 75.09

Table 5: Ablation study on the training improvements.

5.3 Qualitative evaluation
Our method effectively generates realistic videos from previously unseen faces and audio
clips taken from the test set. Fig. 4 illustrates the laughter sequence generated by our model
and competing approaches. Upon visual examination, it is apparent that EAMM [23] strug-
gles to preserve identity, whereas MakeItTalk [62] only animates the lips. While Diffused
Heads [50] can consistently produce high-quality visuals, the synchronization with the au-
dio input often falls short. Conversely, our model succeeds in creating a laughter sequence
with correlated head movement. For a deeper understanding of our results, we invite readers
to review the generated videos available in the supplementary material, where our model
generates various laughter types and ad- justs to out-of-distribution speakers.

Moreover, our aim is to demonstrate that our model can replicate the movement patterns
seen in real laughter videos. Fig. 5 presents a comparison of the average magnitude of
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Figure 4: Qualitative evaluation results. The
reference frame and the laughter waveform
can be seen on the top.

Figure 5: Average magnitude of opti-
cal flow for different speakers across
all videos.

optical flow for various speakers, showing the regions of the frames that exhibit the most
movement. The heatmaps from our generated videos closely align with the ground truth
across all speakers, validating our model’s ability to create laughter sequences with natural
movement. In contrast, MakeItTalk [62] and EAMM [23] yield results that significantly
deviate from the ground truth. Notably, while Diffused Heads [50] generates somewhat
accurate movements, it falls short in matching the ground truth for Speakers 3, 5, and 6.

6 Conclusion

In this work, we introduce Laughing Matters, an end-to-end model that synthesizes realistic
laughing faces from a still image and an audio clip. Our approach outperforms existing
methods in generating convincing laughter animations, as demonstrated through quantitative
and qualitative evaluations. We conduct a set of ablation studies to examine the impact of the
audio encoder and training improvements. Our findings reveal that using a laughter-specific
audio encoder, applying augmentation regularization techniques, and leveraging classifier-
free guidance significantly enhance the model’s performance. Looking forward, it would
be promising to extend our model to cover other non-verbal cues, with the aim of creating
a comprehensive facial animation model that can animate all verbal and non-verbal cues
present in natural speech.

References
[1] Triantafyllos Afouras, Honglie Chen, Weidi Xie, Arsha Nagrani, Andrea Vedaldi, and

Andrew Zisserman. Audio-visual synchronisation in the wild. In BMVC, page 261.
BMVA Press, 2021.

[2] Dario Bertero and Pascale Fung. A long short-term memory framework for predicting
humor in dialogues. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 130–135, 2016.

Citation
Citation
{Zhou, Han, Shechtman, Echevarria, Kalogerakis, and Li} 2020

Citation
Citation
{Ji, Zhou, Wang, Wu, Wu, Xu, and Cao} 2022

Citation
Citation
{Stypulkowski, Vougioukas, He, Zieba, Petridis, and Pantic} 2023



BIGATA ET AL.: LAUGHING MATTERS 11

[3] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Jinyu Li,
Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yan-
min Qian, Yao Qian, Michael Zeng, Xiangzhan Yu, and Furu Wei. Wavlm: Large-scale
self-supervised pre-training for full stack speech processing. IEEE Journal of Selected
Topics in Signal Processing, 16:1–14, 10 2022. doi: 10.1109/JSTSP.2022.3188113.

[4] Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, and Furu Wei.
Beats: Audio pre-training with acoustic tokenizers. CoRR, 12 2022. doi: 10.48550/
arXiv.2212.09058.

[5] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu
Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Sym-
bolic discovery of optimization algorithms. CoRR, abs/2302.06675, 2023.

[6] Joon Son Chung, Amir Jamaludin, and Andrew Zisserman. You said that? In BMVC.
BMVA Press, 2017.

[7] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffu-
sion models in vision: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023.

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthe-
sis. Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

[9] Yu Ding, Ken Prepin, Jing Huang, Catherine Pelachaud, and Thierry Artières. Laugh-
ter animation synthesis. In Proceedings of the 2014 international conference on Au-
tonomous agents and multi-agent systems, pages 773–780, 2014.

[10] Ellen Douglas-Cowie, Roddy Cowie, Cate Cox, Noam Amir, and Dirk Heylen. The
sensitive artificial listener: an induction technique for generating emotionally coloured
conversation. In LREC workshop on corpora for research on emotion and affect, pages
1–4. ELRA Marrakech, Morocco, 2008.

[11] Nikita Drobyshev, Jenya Chelishev, Taras Khakhulin, Aleksei Ivakhnenko, Victor Lem-
pitsky, and Egor Zakharov. Megaportraits: One-shot megapixel neural head avatars. In
ACM Multimedia, pages 2663–2671. ACM, 2022.

[12] Stéphane Dupont, Hüseyin Çakmak, Will Curran, Thierry Dutoit, Jennifer Hofmann,
Gary McKeown, Olivier Pietquin, Tracey Platt, Willibald Ruch, and Jérôme Urbain.
Laughter research: a review of the ilhaire project. Toward Robotic Socially Believable
Behaving Systems-Volume I: Modeling Emotions, pages 147–181, 2016.

[13] Bo Fan, Lijuan Wang, Frank K Soong, and Lei Xie. Photo-real talking head with deep
bidirectional lstm. In 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 4884–4888. IEEE, 2015.

[14] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and
human-labeled dataset for audio events. In Proc. IEEE ICASSP 2017, New Orleans,
LA, 2017.

[15] Phillip Glenn. Laughter in interaction, volume 18. Cambridge University Press, 2003.



12 BIGATA ET AL.: LAUGHING MATTERS

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[17] Siddharth Gururani, Arun Mallya, Ting-Chun Wang, Rafael Valle, and Ming-Yu
Liu. Spacex: Speech-driven portrait animation with controllable expression. CoRR,
abs/2211.09809, 2022.

[18] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. CoRR,
abs/2207.12598, 2022.

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 33:6840–6851, 2020.

[20] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey A. Grit-
senko, Diederik P. Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim
Salimans. Imagen video: High definition video generation with diffusion models.
CoRR, abs/2210.02303, 2022.

[21] Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi,
and David J. Fleet. Video diffusion models. CoRR, abs/2204.03458, 2022.

[22] Qingqing Huang, Daniel S. Park, Tao Wang, Timo I. Denk, Andy Ly, Nanxin Chen,
Zhengdong Zhang, Zhishuai Zhang, Jiahui Yu, Christian Havnø Frank, Jesse H. En-
gel, Quoc V. Le, William Chan, and Wei Han. Noise2music: Text-conditioned music
generation with diffusion models. CoRR, abs/2302.03917, 2023.

[23] Xinya Ji, Hang Zhou, Kaisiyuan Wang, Qianyi Wu, Wayne Wu, Feng Xu, and Xun
Cao. EAMM: one-shot emotional talking face via audio-based emotion-aware motion
model. In SIGGRAPH (Conference Paper Track), pages 61:1–61:10. ACM, 2022.

[24] Venkatesh Shenoy Kadandale, Juan F. Montesinos, and Gloria Haro. Vocalist: An
audio-visual synchronisation model for lips and voices. In INTERSPEECH, pages
3128–3132. ISCA, 2022.

[25] Tero Karras, Timo Aila, Samuli Laine, Antti Herva, and Jaakko Lehtinen. Audio-driven
facial animation by joint end-to-end learning of pose and emotion. ACM Transactions
on Graphics (TOG), 36(4):1–12, 2017.

[26] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo
Aila. Training generative adversarial networks with limited data. Advances in neural
information processing systems, 33:12104–12114, 2020.

[27] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space
of diffusion-based generative models. CoRR, abs/2206.00364, 2022.

[28] Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Su-
leyman, and Andrew Zisserman. The kinetics human action video dataset. CoRR,
abs/1705.06950, 2017.

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
ICLR (Poster), 2015.



BIGATA ET AL.: LAUGHING MATTERS 13

[30] Eva Lasarcyk and Jürgen Trouvain. Imitating conversational laughter with an articula-
tory speech synthesis. Proceedings of the Interdisciplinary Workshop on the Phonetics
of Laughter, 04 2008.

[31] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra
Malik, and Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers
for classification and detection. In CVPR, pages 4794–4804. IEEE, 2022.

[32] Borong Liang, Yan Pan, Zhizhi Guo, Hang Zhou, Zhibin Hong, Xiaoguang Han, Junyu
Han, Jingtuo Liu, Errui Ding, and Jingdong Wang. Expressive talking head generation
with granular audio-visual control. In 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3377–3386, 2022. doi: 10.1109/CVPR52688.
2022.00338. ISSN: 2575-7075.

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

[34] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud genera-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2837–2845, 2021.

[35] C Niemitz. Visuelle zeichen, sprache und gehirn in der evolution des menschen—eine
entgegnung auf mcfarland. Z. Sem, 12:323–336, 1990.

[36] Alex Pentland. Honest signals: how they shape our world. MIT press, 2010.

[37] Stavros Petridis, Brais Martinez, and Maja Pantic. The mahnob laughter database.
Image and Vision Computing, 31(2):186–202, 2013.

[38] K. R. Prajwal, Rudrabha Mukhopadhyay, Vinay Namboodiri, and C. V. Jawahar. A lip
sync expert is all you need for speech to lip generation in the wild. In Proceedings
of the 28th ACM International Conference on Multimedia, pages 484–492, 2020. doi:
10.1145/3394171.3413532.

[39] Robert R Provine. Laughter: A scientific investigation. Penguin, 2001.

[40] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent diffusion models, 2021.

[41] Willibald Ruch and Paul Ekman. The expressive pattern of laughter. In Emotions,
qualia, and consciousness, pages 426–443. World Scientific, 2001.

[42] Flavio Schneider, Zhijing Jin, and Bernhard Schölkopf. Moûsai: Text-to-music gener-
ation with long-context latent diffusion. CoRR, abs/2301.11757, 2023.

[43] Björn Schuller, Ronald Müller, Florian Eyben, Jürgen Gast, Benedikt Hörnler, Martin
Wöllmer, Gerhard Rigoll, Anja Höthker, and Hitoshi Konosu. Being bored? recognis-
ing natural interest by extensive audiovisual integration for real-life application. Image
and Vision Computing, 27(12):1760–1774, 2009.



14 BIGATA ET AL.: LAUGHING MATTERS

[44] Shuai Shen, Wenliang Zhao, Zibin Meng, Wanhua Li, Zheng Zhu, Jie Zhou, and Jiwen
Lu. Difftalk: Crafting diffusion models for generalized talking head synthesis. CoRR,
abs/2301.03786, 2023.

[45] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan
Hu, Harry Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv
Taigman. Make-a-video: Text-to-video generation without text-video data. CoRR,
abs/2209.14792, 2022.

[46] S. Sinha, S. Biswas, and B. Bhowmick. Identity-preserving realistic talking face gen-
eration. In 2020 International Joint Conference on Neural Networks (IJCNN), pages
1–10, 2020.

[47] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. In International Con-
ference on Machine Learning, pages 2256–2265. PMLR, 2015.

[48] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the
data distribution. Advances in neural information processing systems, 32, 2019.

[49] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Er-
mon, and Ben Poole. Score-based generative modeling through stochastic differential
equations. In ICLR. OpenReview.net, 2021.

[50] Michal Stypulkowski, Konstantinos Vougioukas, Sen He, Maciej Zieba, Stavros
Petridis, and Maja Pantic. Diffused heads: Diffusion models beat gans on talking-face
generation. CoRR, abs/2301.03396, 2023.

[51] Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-Shlizerman. Synthe-
sizing obama: learning lip sync from audio. ACM Transactions on Graphics (ToG), 36
(4):1–13, 2017.

[52] Noé Tits, Kevin El Haddad, and Thierry Dutoit. Laughter synthesis: Combining
seq2seq modeling with transfer learning. In INTERSPEECH, pages 3401–3405. ISCA,
2020.

[53] Jérôme Urbain, Elisabetta Bevacqua, Thierry Dutoit, Alexis Moinet, Radoslaw
Niewiadomski, Catherine Pelachaud, Benjamin Picart, Joëlle Tilmanne, and Johannes
Wagner. The avlaughtercycle database. In LREC, 2010.

[54] Jérôme Urbain, Hüseyin Çakmak, and Thierry Dutoit. Automatic phonetic transcription
of laughter and its application to laughter synthesis. In 2013 Humaine Association
Conference on Affective Computing and Intelligent Interaction, pages 153–158, 2013.
doi: 10.1109/ACII.2013.32.

[55] Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic. End-to-end speech-driven
facial animation with temporal gans. BMVC, 2018.

[56] Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic. Realistic speech-driven
facial animation with gans. International Journal of Computer Vision, pages 1–16,
2019.



BIGATA ET AL.: LAUGHING MATTERS 15

[57] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning
trilemma with denoising diffusion gans. In ICLR. OpenReview.net, 2022.

[58] Lei Xie and Zhi-Qiang Liu. A coupled hmm approach to video-realistic speech anima-
tion. Pattern Recognition, 40(8):2325–2340, 2007.

[59] Eli Yamamoto, Satoshi Nakamura, and Kiyohiro Shikano. Lip movement synthesis
from speech based on hidden markov models. Speech Communication, 26(1-2):105–
115, 1998.

[60] Hani Yehia, Philip Rubin, and Eric Vatikiotis-Bateson. Quantitative association of
vocal-tract and facial behavior. Speech Communication, 26(1-2):23–43, 1998.

[61] Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy, Xiaogang Wang, and Ziwei
Liu. Pose-controllable talking face generation by implicitly modularized audio-visual
representation. In CVPR, pages 4176–4186. Computer Vision Foundation / IEEE, 2021.

[62] Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevarria, Evangelos Kalogerakis, and
Dingzeyu Li. Makelttalk: speaker-aware talking-head animation. ACM Transactions
On Graphics (TOG), 39(6):1–15, 2020.


