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Abstract

Research to address the class imbalance problem aims to balance the impact of each
class on the loss function because logit weight vectors tend to favor a majority class.
To this end, researchers have introduced balanced losses such as margin-based loss and
logit adjustment. The balanced losses succeed to classify the minority class better than
the conventional loss. However, the balanced loss focuses on balancing the norm of logit
weight, but overlooks the direction of logit weight vectors. As a result, the balanced loss
sacrifices the head class performance by shrinking the region between the logit vectors.
In this paper, we delve into the behavior of the gradient of the balanced loss and clarify
how it shrinks the decision plane of each class from two perspectives. First, balanced
loss pushes the decision boundary from tail to head within limited space, shrinking the
decision plane of the head class. Second, balanced loss does not prevent the logit vec-
tors to have a similar direction to each other during the update, shrinking region between
logit vectors. Based on this study, we propose a new regularization called Logit Weight
Repulsion (LWR), which encourages a logit weight vector for a class to repel those for
other classes. This repulsion enlarges the region between the logit vectors for each class.
The proposed LWR regularizer has been evaluated on benchmark datasets where ours
achieves the state-of-the-art performance for long-tailed classification. Notably, LWR
achieves performance improvements in minority classes without sacrificing the perfor-

mance in majority classes.

1 Introduction

In real-world scenarios, highly imbalanced datasets [22, 23, 35] are common where some
classes have a large number of samples while others have very few. Models trained on
such data struggle to accurately predict the minority classes because the decision boundary
between the minority class and the majority class is severely biased to predict the majority
class well while sacrificing the minority class. Long-tailed visual recognition aims to address

this problem [9, 10, 17, 28, 31].

One of the most popular approach for training a robust classifier in the imbalanced setting
is training with a balanced loss. The balanced loss applies class-wise weights or introduces
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Figure 1: Brief comparison of logit weight vector and decision boundary (D.B.) trained
by different training objectives. (a) Standard cross entropy results in decision boundary
favored to the head class. (b) Balanced loss [5, 10, 26, 31] relaxes this problem by balancing
logit weight magnitude. However, there exists a sacrifice of the head class region, and it
cannot prevent logit weights to have a similar direction during the training, resulting in the
angular distance between wy.,s and wy,; decreased. (c) Proposed logit weight repulsion
(LWR) regularizer with balanced loss enlarges the narrowed angular distance. ‘Acc’ denotes
accuracy on CIFAR-10 LT [5, 18] whose imbalance factor of 100.

adjustment terms, to relax the negative influence caused by class imbalance [3, 5, 10, 11, 26,
28, 31]. When training with imbalanced data using the conventional cross-entropy softmax
loss, the norm of the classifier (logit) weight of the majority class tends to be significantly
larger than that of the minority class, resulting in poor prediction performance for the minor-
ity class (Figure 1 (a)). The balanced loss balances the norm of the weight to improve the
prediction performance of the minority class (Figure 1 (b)).

In this paper, we first investigate the limitation of balanced loss mentioned so far, and
explain why this is problematic in long-tailed classification from two perspectives. First,
balanced loss pushes the decision boundary from the tail class to the head class, shrinking
the decision plane of the majority class as shown in Figure 1 (b). Second, the balanced loss
does not prevent logit weight vectors to have a large cosine similarity to each other during
the update, shrinking the decision plane of each class.

To mitigate this issue, we propose a novel regularizer named Logit Weight Repulsion
that makes logit vectors for each class be repulsive from each other. Unlike balanced loss
only considers the magnitude(norm) of the logit weight vector and overlooks its direction,
our regularizer considers directions. As shown in Figure 1 (c), the adjusted logit vectors by
our regularizer produce large output space between classes mitigating the misclassification
of the tail class without sacrificing head class accuracy. Our experiments show performance
improvement in both head and tail classes in long-tailed classification benchmarks [5, 23],
and we demonstrate the effectiveness of the proposed method through ablation studies.

Our main contributions are summarized as follows:

* We investigate the limitation of balanced loss, which only tries to balance the magni-
tude of the logit weight vectors, but overlooks their direction. Balanced loss makes
region between logit vectors of classes shrink.

* To mitigate the limitation of the balanced loss, we propose a Logit Weight Repul-
sion(LWR) regularizer, which controls the direction of the logit weight vector. LWR
makes a logit weight vector for a class be repelled from the others to reduce their
cosine similarity, enlarging the region between logit vectors of each class.
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* We achieve considerable performance gain, outperforming the state-of-the-art meth-
ods without sacrificing the performance in the majority class.

2 Related Works

Balanced Loss Balanced loss aims to balance the negative influence caused by class im-
balance. The re-weighting approach tries to adjust the impact of each class by multiplying
weight, which is inversely proportional to the number of samples [16, 39], to the loss. In-
stead of weighting by simple inverse class frequency, Class-Balanced loss [10] proposed
the effective number, which theoretically calculates the size of samples that can cover the
class. On the other hand, instance-level re-weighting methods [20, 28] re-weight each sam-
ple based on its different impact. For example, Influence-balanced loss [28] re-weights sam-
ples with the influence of each sample on the model. Balanced Softmax loss [31] modifies
the prediction logits by multiplying them with the training label frequencies to alleviate bias.
Meanwhile, Label-Distribution-Aware Margin (LDAM) loss encourages larger margins for
minority classes to shift the biased decision boundary. Recently, logit adjustment methods
handle the long-tailed problem by adjusting the logits of a class prediction [15, 26].
Balanced loss methods show a prominent effect in balancing the magnitude(norm) of the
logit weight vector, where imbalanced norm results in ill-conditioned decision boundary [21,
40, 43]. However, the balanced loss considers only the magnitude of the logit weight vectors,
overlooking the direction of them.
Re-sampling Re-sampling aims to train the model with more class-balanced data than the
original data, by oversampling minority class data [1, 37] or undersampling majority class
data [25, 36]. Advanced re-sampling methods generate synthetic minority class samples [2,
6, 13, 27, 29], or augment minority data in feature space [8, 44].
Advanced model There is approaches using multiple networks and ensemble them to solve
imbalanced classification. BBN [46] trains two classifier heads with different samplers, re-
spectively. RIDE [38] trains multiple classifiers to reduce model variance. ACE [4] trains
multiple networks using data with different distributions, and ensemble them via optimiza-
tion. In addition, to learn robust representations, PACO [9] uses contrastive learning [7],
and recent works [24, 33] adopt large-scale vision-language pretraining models. For a more
thorough study on this topic, we refer the reader to survey [45].

3 Methods

In this section, we provide the motivation for the proposed logit weight repulsion(LWR)
regularizer and details, along with the training strategy. We begin with the mathematical
analysis behind balanced losses, which show that their gradients only affect the decision
boundary between the head and tail classes, balancing their norms (Section 3.1). Based on
this analysis, we propose Logit Weight Repulsion (LWR) regularizer, which makes the logit
weight vectors be distant by considering the gradient direction in Section 3.2. We present
the training process in Section 3.3.

Notations. We provide notations that we use throughout this paper. The class-wise logit
weight vectors are denoted by column vector w;, and X; denotes the set of feature vectors
from samples belonging to class i. Direction vector of w; is w; = w;/||wi||> where ||w;]|> is
L, norm(magnitude) of w;.
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Figure 2: Illustration of gradient directions and change of logit weight vectors and decision
boundary between head and tail classes. (a) On imbalanced data, the norm of logit weight
for the head class is much larger than that of the tail class in the original softmax loss. (b)
Balanced Loss aims to balance the norm of the logit weight and pushes the biased decision
boundary from the tail class, but this can shrink the decision plane for the head class. (c)
Our proposed Logit Weight Repulsion Regularizer Ry r encourages the weights of the head
and tail classes to become farther apart from each other by taking into account the gradient
direction.

3.1 Analysis of Balanced Loss
In this section, we discuss the potential limitation of balanced loss in imbalanced data by

analyzing it from the perspective of gradient direction. The most commonly used balanced
losses [3, 5, 10, 26, 31, 32] can be generalized as follows:

exp(w; - x; + 6;)
Zjexp(wj -xl-+6i7j)

Ly = —Cjlog + Awal Wil I3, (1)

where x; € X; is the feature, C; is a class-wise re-weighing coefficient, J; and §; ; are
margin or adjustment term, and A,,; is a hyper-parameter for weight decay [19].
Then, its gradient with respect to w; can be written as:

exp (W,' - X; + 61"1') )
Y.jexp(w; - xi+ 6; )

CXp(Wj - X; + 51']')
+CV,.6,—C;y V.6 i -
% ; Wi, ] Z] exp (W] - Xj + 617])

— V. Lpal =Cix; <1 -
(2)

— Zdei.

In the Balanced Loss methods, various designs of &; and §; ; are used to adjust the im-
portance of tail and head classes, which results in different gradient magnitudes for updating
logit weight vector w;. This helps to push the decision boundary from the tail to the head
classes by assigning more importance in the gradient update to the tail class than that of the
head class as in Figure 2 (b).

In our work, we delve into the behavior of the gradient of the balanced loss as follows.
Since 6; and J; ; are usually designed as a function of the class frequency [5, 26, 31], V,,,6;
and V,,,0; j becomes 0 since §; and &; ; are not the function of w;. Then, the negative gradients



HA ET AL.: LOGIT WEIGHT REPULSION FOR LONG-TAILED CLASSIFICATION 5

with respect to w; can be decomposed into two directions: x; and —w;. It means the direction
of the logit weight vector w; is updated by the feature x;, and its magnitude is reduced by
itself, —w;, by weight decay regularization.

The update by these directions leads to the following issues.

* First, pushing the decision boundary from the tail class to the head class makes de-
cision plane of the head class shrink. Though this change in the decision boundary
improves performance in the tail class, it sacrifices the head class performance.

* Second, when a hard example appears near the decision boundary, the logit weight
vectors are updated to pull each other. For example, consider the case where a head-
class sample x;.,s updates the logit weight vector wy,.,s in Figure 2 (b). Since the
gradient of V,, Ly, 18 a weighted addition of xjeqq¢ and wpeqq, the direction of the
gradient points between xp.,q and wj..q (Figure 2 (b) Upper). As a result, the updated
logit weight vector w;,., have moved closer to the other logit weight vector, causing
the region between logit vectors to shrink when hard example appears near decision
boundary. In conclusion, hard examples in confusing classes can be misclassified due
to the shrink of region between logit vectors for each confusing class pairs.

To mitigate the aforementioned problem, we propose a Logit Weight Repulsion regularizer
in the following section.

3.2 Logit Weight Repulsion (LWR)

As depicted in Figure 2 (c), our regularizer is designed to enlarge the region between logit
vectors by increasing the angular distance between the logit weight vectors of different
classes. It is achieved by updating w; in the direction repelled from other w;, j # i. From
this motivation, we propose logit weight repulsion regularizer Ry g that can increase the
difference between logit weight vectors as:

exp(wi - w;)
RLWR = — 10 (3)
Z Z j exp(w; - w;)’
Then, the derivative of Ry yields the following.
W — (W -W;)W;
—V,Riwr = — Zci,j ( i ) ) 4)
i ||Wi’ ‘2

The LWR regularizer takes into account the direction of other logit weight vectors w; when
updating w;. Intuitively Rywr leads to repulsion between pairs of logits by reducing cosine
similarity W; - w;. Analyzing the gradient of Rywg, the update direction (w; — (w; - w;)w;),
j # i is orthogonal to W;) since w; - (Wj — (W; - w;)w;) = 0. This update increases the angular
distance between w; and w;, which enlarges the region between logit vectors of both i and
J. This mechanism not only reduces the risk of misclassification of the tail class but also
prevents degradation of the head class performance.

To enhance the effectiveness of repulsion, we apply the repulsion to a pair of logit weight
vectors with high cosine similarity to each other. To this end, we define the final Ry g as

follows:
Riwr = _Z ( xpUlij oW ) > )
ZJ exp(1; j,oW;- W) )’
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where

1 ifw;-w; >0
lijo= C 6
L7, {O otherwise. ©)

3.3 Training Schemes
3.3.1 Adaptive Weight Regularization

Optimizing regularization weight is crucial for effective training. In this section, we propose
an adaptive regularization scheme that adjusts the weight of the logit weight regularization
according to the training progress. It is designed to give strong repulsion initially to reduce
the similarity between weights and gradually decrease the influence of LWR to focus on fine-
tuning the classifier. For the total training epoch 7', A(¢) for the current epoch 7 is calculated
by:

A(t) = (1—1/T)*. (7)

We validate the effectiveness of adaptive weight regularization in the Experimental section.
Then, our final training objective becomes:

Lpar +A(t)Rpwr. (8)

3.3.2 Implementation Trick

To adjust the scale of the cosine similarity [7], we introduced temperature T = 0.1 replac-
ing w; - W; to w; - w;/7 in Equation (5). And, for better generalization [12], we design the
loss to repulse between logit weight vectors projected by trainable multi-layer perceptrons
with one hidden layer whose hidden dimension is the same as an input logit weight vector’s
dimension.

4 Experiments

Implementation Details. We implemented all our methods with PyTorch [30] library. We
evaluate our model on the most commonly used benchmark datasets: CIFAR100-LT [5]
with various imbalance factors and ImageNet-LT [23], which is a large-scaled classifica-
tion benchmark. We use Balanced Softmax loss [31] for the balanced loss (L;,;) in our
experiments. For all datasets, we use stochastic Gradient Descent as the optimizer with the
momentum of 0.9 and follow the augmentation strategy from [32]. For, CIFAR100-LT, we
use ResNet-32 [14] as the backbone and train our network for 200 epochs. With the initial
learning rate of 0.1, the learning rate decays at the 140th and 170th epoch by a factor of 0.1.
We set weight decay to Se — 4. For ImageNet-LT, we use resnet-50. The network is trained
for 100 epochs with an initial learning rate of 0.1. The learning rate decays at the 60th and
80th epochs by 0.1. We set the weight decay as 2e — 4. We fix 8 = 0.4 for all experiments
except Table 5.

Metrics. To provide a quantitative comparison between methods, we report classification
accuracy. In addition, following [23], we report the accuracy for three disjoint subsets:
many-shot classes with more than 100 training samples, medium-shot classes with 20 to 100
training samples, and few-shot classes with less than 20 samples. Additionally, we present
the results for three imbalance factors (IFs) for CIFAR-100 LT, namely IF=100, IF=50, and
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Methods All IF=100

IF=100 IF=50 IF=10 | Few Medium Many All
Softmax 38.6 440 564 | 87 37.6 653 38.6
CBL' [10] 39.6 454  58.0 - - - 39.6
IB-Loss [28] 39.8 464 504 | 204 449 50.3 39.8
Focal [20] 41.9 482 598 | 109 413 68.7 419
BBN[46] 42.6 470  59.1 - - - 42.6
UNO-ICT [34] 43.1 - 58.6 - - - 43.1
SEQLT [32] 43.4 - - - - - 43.4
LFME' [41] 43.8 - - 28.0 - 59.5 43.8
BS[31] 46.3 512 615 | 250 467 63.9 463
LA [26] 46.5 - - 244 471 63.6 46.5
LDAM-DRW][5] 46.6 512 596 | 228 485 644  46.6
Ours(Rywg + BS [31]) | 50.7 543 63.6 | 322  50.0 66.6 50.7

Table 1: Comparisons with state-of-the-art methods on CIFAR100-LT trained for 200 epochs
with ResNet-32 [14] backbone. T are copied from their original paper.

| Methods | Architecture | All | Few Medium Many |
Focal [20] ResNet-50 38.0 | 11.2 31.0 56.3
BBN? [46] ResNeXt 41.2 | 40.8 433 40
Softmax ResNet-50 | 41.6 | 5.8 33.8 64.0
UNO-IC? [34] ResNeXt 4577 | 9.3 38.7 66.3
OLTR® [22] ResNeXt 46.7 | 19.5 45.5 58.2
LFMES [41] ResNeXt 47.0 | 22.0 43.5 60.6
ESQLS [32] ResNeXt 473 | 15.7 44 62.5
cRT# [17] ResNet-50 | 47.3 | 26.1 44.0 58.8
CE-DRW [5] ResNet-50 | 47.6 | 28.0  44.9 57.6
LWS* [17] ResNet-50 | 47.7 | 29.3 45.2 57.1
LA [26] ResNet-50 | 48.0 | 29.1 44 4 58.5
BS [31] ResNet-50 | 48.7 | 240  46.2 60.5
LDAM-DRW* [5] ResNet-50 | 49.8 | 30.7 469 60.4
Ours(R;wg + BS [31]) | ResNet-50 | 51.5 | 30.7 49.2 62.6

Table 2: Comparisons with state-of-the-art methods on ImageNet-LT [23]. For a fair com-
parison, we compare the baselines trained with ResNet-50 [14]/ResNext [42] for 90 or 100
epochs. # and § denote the results from [29] and [45], respectively.

IF=10, where IF is defined as the ratio of the number of training samples of the largest class
to that of the smallest class.

4.1 Benchmark results

CIFAR100-LT Table 1 displays the performance evaluated on CIFAR-100LT [5]. We com-
pare our method with various state-of-the-art methods [5, 10, 20, 26, 28, 31, 32, 34, 41, 46].
Applying our proposed regularizer Ry g outperforms the other baselines in overall accuracy
along with the accuracy in Few-shot, and Medium-shot classes. Notably, applying LWR
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| Methods | All | Few Medium Many |
CE-DRW [5] 47.6 28.0 449 57.6
+Riwr 50.4(+2.8) | 30.0(+2.0) 47.7(+2.8) 60.4(+2.8)
BS [31] 48.77 24.0 46.2 60.5
+Riwr 51.5(+2.8) | 30.7(+6.7) 49.2(+3.0) 62.6(+2.1)
Focal [20] 38.0 11.2 31.0 56.3
+Rrwr 41.0(+3.0) | 13.7(+2.5) 34.1(+3.1) 58.6(+2.3)
Logit Adjustment (LA) [26] 48.0 29.1 44 .4 58.5
+Rrwr 50.1(+2.1) | 31.5(+2.4) 46.9(+2.5) 60.4(+1.9)

Table 3: The impact of applying Rpwg to different losses. We add Rypwr with various
balanced losses Ly, to verify its effectiveness on the large-scale dataset, ImageNet-LT[23].
Applying Ry brings significant performance improvements across all many-shot, medium-
shot, and few-shot categories.

| Methods | Few Medium Many | All |
Balanced Softmax [31] | 25.0 46.7 63.9 | 46.3
+Riwr 28.8 51.6 64.0 | 49.3
+Rrwr W/ proj 30.0 49.9 65.3 | 49.5
+A(t)Rpwr W/ proj 32.2 50.0 66.6 | 50.7

Table 4: Ablation study on CIFAR100-LT(IF=100). Our baseline is Balanced Softmax [31]
reproduced by us. w/ proj denotes that we use projection layers explained in Section 3.3.

shows considerable improvement of accuracy in the Few-shot class from its baseline bal-
anced loss, BS. Furthermore, it is noteworthy that applying our regularizer further improves
the accuracies of the Medium and Many-shot classes, not compensating their performances.
Imagenet-LT The performance evaluated on Imagenet-LT [23] is displayed Table 2, respec-
tively. Again, when applying our method to the Balanced Softmax loss [31], we observe
significant performance improvements not only in few-shot classes but also in many-shot
and medium-shot classes.

4.2 Ablation Studies
4.2.1 LWR with Other Balanced Losses

Our proposed LWR can widen the region between logit vectors trained with balanced loss,
allowing for improved performance across all classes without sacrificing the performance of
the majority class. To verify this, we apply our regularizer Ry g to other types of balanced
losses [5, 20, 26, 31] in Table 3. As shown in Table 3, we consistently observe significant per-
formance improvements across all many-shot, medium-shot, and few-shot categories. This
demonstrates that our regularizer can synergize with other balaced losses, further improving
performance.

4.2.2 Effectiveness of LWR

To verify the effectiveness of the LWR, we conduct experiments on CIFAR-100 LT with
IF=100. We apply the proposed LWR regularizer on the baseline [31] and training schemes
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| 6 | Few Medium Many | All |

—1.0 | 30.0 50.3 65.3 | 50.1
0 29.9 51.3 65.5 | 50.0
0.2 | 303 51.4 65.5 | 50.2
0.4 | 32.2 50.0 66.6 | 50.7
0.6 | 313 49.7 65.5 | 499
1.0 | 25.0 46.7 63.9 | 46.3

Table 5: Ablation study on CIFAR-100LT(IF=100). to verify the influence of repulsion
threshold 6. Note that 6 = —1.0 is equal to threshold is not working, and 6 = 1.0 is equal
to the baseline since —1.0 <w;-w; < 1.0

explained throughout Section 3.2 and 3.3. The results of these experiments are displayed in
Table 4. In Table 4, ‘+Rpwr’ denotes that we trained our model with training objective in
Equation (8) with fixed A (¢) = 1. This configuration shows +3.8% accuracy gain in Few and
+4.9% gain in Medium, +0.1% gain in Many, and +3.0% gain in overall accuracy. ‘+Rpwr
w/ proj’ denotes the use of projection MLP explained in Section3.3., and it further achieves
performance gain in overall accuracy(+0.2%), Few(+1.2%), and Many(+1.3%). Finally, ap-
plying A(¢) in Equation (7) results of our proposed method. Compared to the baseline, LWR
regularizer achieves +7.2% in Few, +3.3% in Medium, +2.7% in Many, and +4.4% in overall
accuracy. Notably, R;wg does not compromise the accuracy of the majority class.

4.2.3 Influence of the repulsion threshold 6

To evaluate the effectiveness of the repulsion threshold 6 in the indicator function 1; ; g, we
conduct experiments with different values of 8 as shown in Table 5. Note that 6 is compared
with the cosine similarity between w; and wW;. When 6 = —1.0, no threshold is applied since
1; 9 =1 for any i, j, and 6 = 1.0 indicates no logit weight repulsion occurs. It shows the
best performance when 0 = 0.4, and we use this value for all the other experiments.

5 Conclusion

In this paper, we have discussed the limitation of the balanced loss functions designed for the
class-imbalance problem. The balanced loss pushes the decision boundary from tail class to
head class within a limited region between logit vectors, and thus performance gain in the
tail class leads to performance sacrifice of the head class. In addition, updating logit weight
vectors by the balanced loss may shrink the region between logit vectors for each class, which
leads to performance degradation of each class. To mitigate this problem, we proposed logit
weight repulsion (LWR) regularizer for long-tailed classification. Through experiments and
ablation studies, we have shown LWR synergizes the balanced losses, achieving state-of-
the-art performance. We verify that the proposed LWR seamlessly cooperate with various
balanced losses, facilitating performance enhancement of tail classes along with the head
classes.

Limitations and Future work. The proposed Ry r requires repulsion threshold 8. Through-
out the experiments, we used a fixed value of 0 rather than optimizing it depending on class
pairs i and j. We expect that designing adaptive repulsion threshold 6; ; depending on class
i and j will show better performance than using a fixed value. We leave it to future work.
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