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Abstract

Lensless image reconstruction is a class of inverse problems in computational imag-
ing that is gaining immense popularity in the imaging research community because of
its potential to revolutionize traditional imaging systems radically. It is possible to build
cameras with extremely flat form factors that enable imaging in challenging scenarios.
In this paper, we reconstruct simulated lensless images using a very low number of ex-
amples where we pre-train a decoder architecture with the available examples to model
the data semantics, and then solve the inverse problem of lensless image reconstruction
guided by a physics-informed forward loss function. We contrastively analyze and eval-
uate the reconstruction performance of our model against its untrained counterpart and
show a substantial improvement in the reconstruction quality and convergence time even
with a few example images.

1 Introduction
Computational cameras are increasingly being adopted for scientific and commercial ap-
plications owing to their promising performance in highly constrained scenarios. Lensless
computational cameras are an example where a potential to revolutionize traditional imaging
systems could be observed. The complete elimination of the need for lenses brings a major
prospect for camera size compactification, however, the absence of lenses requires a com-
putational algorithm for the restoration of the images thus formed. Since the images formed
without a focusing element are not directly comprehensible to the human eye, lensless imag-
ing has a privacy-preserving attribute inherent to it.

There have been notable advancements in the field of computational imaging in recent
years, particularly in the area of deep learning techniques for solving inverse problems. Deep
learning methods succeed in learning highly complex patterns and relationships from large
datasets which can be observed from the exceptional restoration performance compared to
the traditional techniques. The research community on computational imaging is focusing
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on novel techniques for solving inverse problems that include generative priors, untrained
neural network priors, and unfolding networks. These advances have led to significant im-
provements in solving inverse problems in various applications such as medical imaging,
remote sensing, and digital photography.

Generative Priors: They are probabilistic models trained to generate images that model
the data distribution of a huge image dataset. These models use generative adversarial net-
works (GANs) [6], acting as natural image priors for image reconstruction as decoder-based
latent variable models. Recent research provides a robust theory for solving inverse prob-
lems including compressed sensing [5, 8, 12, 13, 22], phase-retrieval [9, 18], and blind
deconvolution [2, 7]. Despite their effectiveness, deep generative models have certain draw-
backs, including the requirement of a large amount of data for training and their non-trivial
representation error, as they model the natural image manifold through a low-dimensional
parameterization.

Untrained Neural Networks Priors: Recent advancements in solving inverse imaging
problems have revealed that randomly initialized neural networks can serve as natural image
priors without prior training, unlike neural networks that require large datasets for training.
In [20], the authors proposed solving inverse problems like denoising, inpainting, and super-
resolution by optimizing the parameters of a convolutional neural network to fit a single
image. Another study [11] proposed under-parametrized optimization for image compress-
ing using non-convolutional networks for linear inverse imaging. [3, 4] performed untrained
reconstruction of lensless images using over-parameterized and under-parameterized neu-
ral networks. Well-regularized untrained neural network models have been successful for
various inverse problems without using any training data [10, 14, 21]. However, there is
limited research addressing how to interpolate between no-data and high-data regimes. To
address this gap, [16] proposed a low-shot learning technique employing an untrained neural
network, which leverages the benefits of both and interpolates between no-data and high-
data regimes which could be used for colorization and compressed sensing with moderate
compression ratios.

In this paper, we propose a decoder-based neural network architecture for lensless image
reconstruction in the low-data regime. Inspired by [16], we pre-train our network with a few
images sharing similar data semantics by jointly optimizing the network parameters and the
latent space. We solve the inverse problem of lensless image reconstruction by modeling the
lensed image as the output of the generator and performing a two-step optimization guided
by a physics-informed forward loss function. We contrastively evaluate the reconstruction
performance of our low-shot network against its untrained counterpart and show a significant
improvement in reconstruction quality and convergence time. We also show how it compares
against a fully trained state-of-the-art method.

2 Methodology

In this section, we discuss the details regarding the architecture of our decoder framework.
We provide the required data for performing few-shot reconstruction in restricted domains
and explain the reason for the choice of these particular domains. We describe the training
procedure while discussing the loss functions used for the two-step optimization procedure
for solving the inverse problem of lensless image reconstruction. We also provide the imple-
mentation details for reproducing the results shown in this paper.
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Figure 1: Decoder architecture using 256-dimensional latent code. The output image is
generated at a resolution of 256×256.

2.1 Architecture
Our model has a convolutional decoder architecture that enables it to take the latent vec-
tor as the input and predict an output image at a resolution of 256× 256. In Fig. 1, each
block in yellow corresponds to Conv2D→ ReLU→ Conv2D→ ReLU→ Upsample2D oper-
ation which increases the output resolution. Although transposed convolutions could have
been used for the same task, still we prefer to use convolutional blocks followed by upsam-
pling. This prevents checkerboard artifacts on the final reconstruction after the deconvolution
process since convolutions followed by upsampling make the network biased against such
artifacts.

2.2 Data
By definition, the low-shot approach does not depend on the availability of a large dataset,
however, it is important for samples from a domain to share similar attributes such that
the network can model the domain from the available few examples. Although datasets
on lensless images are publicly available [1, 17], they are too diverse to be modeled by a
low number of examples. Potential applications of lensless computational cameras could be
in the research area of lensless microscopy, privacy-preserving face-verification, etc, there-
fore, we perform reconstructions by restricting the domain to microscopic images collected
from pinterest.com, and face images obtained from FlatCam Faces Dataset [19]. The
pre-training and testing images for the microscopy section can be accessed using this link:
shorturl.at/pswF4.

2.3 Loss Functions and Training
The main objective of low-shot learning is to make use of the available few examples to
provide an improved reconstruction compared to its untrained counterpart. In contrast to
untrained neural networks that work in the no-data regime, low-shot networks work in the
low-data regime where the available examples are used to pre-train the network such that the
network is capable of learning the range statistics. The weight parameters of the decoder
framework, θ are randomly initialized and we start with a latent code, z, sampled from the
random normal distribution.

We define the pre-training step as the joint optimization of z and θ using the low shots, as
shown in Fig. 2. We minimize the L2 loss between G(z,θ) and the low shots, xi, as suggested
by [16].

Citation
Citation
{Asif, Ayremlou, Sankaranarayanan, Veeraraghavan, and Baraniuk} 2017

Citation
Citation
{Monakhova, Yurtsever, Kuo, Antipa, Yanny, and Waller} 2019

Citation
Citation
{Tan, Niu, Adams, Boominathan, Robinson, Baraniuk, and Veeraraghavan} 2018

Citation
Citation
{Leong and Sakla} 2019

https://in.pinterest.com/pin/38069559328556738/
https://drive.google.com/file/d/1UepEhGYnhMZ3zQauOtfXJFCDyoLAqFev/view?usp=sharing


4 BANERJEE ET AL.: RSLILDR

The solution to the inverse problem is obtained using a two-step optimization approach as
shown in Fig. 3. For solving the inverse problem, we compute the physics-informed forward
loss where we use the prior knowledge of the point spread function (PSF) to simulate the
forward imaging process. Our approach works on the assumption that the shift-invariance
property, i.e., the angular memory effect of the PSF is globally valid. Therefore, the forward
imaging process can be modeled by performing the 2D convolution of the PSF and the lensed
image. It is to be noted that this assumption does not perfectly model the forward process
for larger impinging angles, and the simulated lensless image is an approximation of the real
lensless image. For calculating the physics-informed forward loss, we convolve the random
PSF with the intermediate reconstruction obtained from the network.

The first step of the two-step optimization procedure is to find the approximate solution
by optimizing over z while keeping θ fixed. We initialize the latent code by averaging the
optimized individual latent codes, zi for i∈ [S], where S is the number of shots, corresponding
to each low-shot obtained via pre-training. Then the physics-informed forward loss between
the intermediate lensless image, G(z, θ̃), and the original lensless image, y0, is optimized
according to Eq. 1.

min
z

1
2
||IPSF ∗G(z, θ̃)− y0||2 (1)

Next, we use the image adaptivity approach [13] for obtaining the final solution, where the
z and θ are jointly optimized subject to the physics-informed forward loss for obtaining the
final reconstruction according to Eq. 2.

min
θ ,z

1
2
||IPSF ∗G(z,θ)− y0||2 (2)

2.4 Implementation Details
The decoder network was pre-trained using the available examples for 45,000 iterations with
a learning rate of 1e− 3 to obtain the jointly optimized network parameters, θ , and latent
code space, z. We used the Adam optimizer and L1 loss for the pre-training section. The
lensless image was reconstructed by solving the inverse problem using a two-step optimiza-
tion approach. The first step for lensless microscopic images involves optimizing the latent

Figure 2: Pre-training stage: The network is pre-trained using the low number of examples
and the optimal latent code (z) and network parameters (θ ) are obtained via joint optimiza-
tion.
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Figure 3: This is the complete optimization framework for solving the inverse problem of
lensless image reconstruction.

space z using Adam for 500 iterations with a learning rate of 1e−1, by keeping the network
parameters fixed, while for lensless face images, we had to perform 1200 iterations. In the
next step, the network parameters were also allowed to update with a learning rate of 1e−4
for around 1500 iterations which led to a converged model for both cases.

3 Results
In this section, we show the reconstructed outputs generated using the decoder pre-trained
using the low shots. We compare the reconstruction performance against the untrained coun-
terpart and show that our model actually benefits from the low-shots provided. In Fig. 4, the
variation in L1 loss during the untrained iterative optimization step for solving the inverse
problem is plotted for both networks. It can be observed that the low(10)-shot model starts
with a very low L1 loss due to the pre-training step, and hence is able to converge within
1.5k iterations.

3.1 Quantitative Comparison
We compare the reconstructed images generated by using our low-shot network against the
untrained reconstructions. The untrained model, however, takes about 15k iterations to con-
verge to a convincing output, therefore we also provide the intermediate reconstruction per-
formance corresponding to the convergence time of our low-shot model. Since quantita-
tive evaluation metrics like Peak Signal-to-Noise-Ratio (PSNR) and Structural SIMilarity
(SSIM) index often do not outline the complete picture, we also provide visual comparative
reconstructions for a better interpretation. Image-specific reconstruction results are provided
in Table 1, where the image number corresponds to the test-image filenames provided in the
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Figure 4: Comparison of loss curves obtained using an untrained iterative approach (red) and
the low(10)-shot approach (blue).

link in Sec. 2.2. It can be observed from Table 1 that it required 10 shots to obtain a PSNR
of 20dB in the case of lensless microscopic image reconstruction. However, for face recon-
struction, it took a minimum of 25 shots to obtain a similar performance within the same
convergence time.

Image Untrained (1.5k) Untrained (15k) S-shot (1.5k)
PSNR SSIM PSNR SSIM PSNR SSIM

Micro-1 17.78 0.56 22.66 0.70 25.00 0.88
Micro-2 19.34 0.59 23.88 0.78 25.93 0.90
Micro-3 20.69 0.63 23.03 0.71 26.18 0.93
Face-1 11.13 0.37 14.67 0.49 20.04 0.60
Face-2 13.05 0.39 17.46 0.66 23.03 0.79
Face-3 9.96 0.28 14.23 0.42 18.44 0.56

Table 1: PSNR (in dB) and SSIM comparison of our low-shot model against the untrained
model. S=10 for microscopic images, and S=25 for face images.

3.2 Visual Comparison

In Fig. 5, we have provided a detailed comparison of reconstructions using the untrained
method contrasted against our low-shot method. For a fair comparison, we also provide the
intermediate reconstructions of the untrained model corresponding to the convergence time
of the low-shot network. It can be observed that the pre-training step with the available
low shots can greatly improve the understanding of data semantics thus translating to faster
convergence and improved reconstruction quality. In Fig. 6, we provide reconstruction
results of our method trained on a limited set of 10 domain-restricted images, alongside the
fully trained state-of-the-art (SOTA) model [15] that effectively illustrates the performance
gap in reconstructions. Emphasizing the data limitations, our reconstructions stem from
just 10 images, without additional perceptual enhancements, in contrast to the data-intensive
nature of the fully trained GAN-based method.
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Figure 5: Visual comparison of reconstruction results obtained using the low(S)-shot net-
work converging after ∼1.5k iterations, against the untrained network converging after ∼15k
iterations.

4 Conclusion

We presented an approach for reconstructing lensless images in the low-data regime. The
reconstructions have improved quality over their untrained counterpart and also converge sig-
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Figure 6: Visual comparison of our method (last column) using only 10 domain-restricted
images, against a fully trained PSF-agnostic GAN-based state-of-the-art method [15]. The
third and fourth columns represent the output of the trainable inversion layer and the GAN-
based perceptual enhancement layer in [15], respectively.

nificantly faster. We performed a comparative performance evaluation of our model against
its untrained counterpart with multiple standard evaluation metrics and also provided a vi-
sual comparison for a better interpretation of results. We have also performed a comparative
analysis against reconstructions generated by fully trained neural networks to show the gap
in performance. In this paper, we observed that by restricting the domain, it is possible to
model the data semantics even with as few as 25 images. We performed low-shot recon-
structions with restricted domains of microscopic images and face images and observed both
qualitative and quantitative improvements in the reconstruction quality with the added ad-
vantage of faster convergence. We expect this work to be a step toward physics-informed
lensless image reconstruction. Modeling diverse data distribution using a smaller number of
examples would improve the generalizability of this approach which remains a problem to
be solved, which would contribute to increasing the practicality of lensless computational
cameras.
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