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Abstract

Training a Convolutional neural network’s (CNNs) auto-encoder has been the defacto
approach for visual attention modelling. Recently, (Vision) Transformer models (ViT)
achieved excellent performance on various computer vision tasks. In this context, the self-
attention mechanism plays a crucial role enabling early aggregation of global information,
and ViT residual connections strongly propagate features from lower to higher layers.
This raises two important questions: are Vision Transformers inherently learning saliency
maps? Are the self-attention maps focusing on the salient regions of the input image?
Analyzing the self-attention maps of a pretrained ViTs on saliency prediction datasets, we
find that smoothing the internal attention maps with a small number of convolutional filters
can achieve reasonable saliency maps with acceptable metric scores. We explore how
this phenomenon arises, finding that self-attention promotes early aggregation of global
information, then in higher layers, it associates highly attended features, compares their
dependencies, and makes analogies over the recurring patterns. This suggests that ViTs
first perform feature search, followed by conjunction search combining multiple features
sharing higher mutual information. We study the analogies between the self-attention
maps and the human generated saliency maps, and conclude with a discussion on the
relationship to human visual attention such as feature integration theory.

1 Introduction
The last decade has witnessed the remarkable progress of saliency prediction, and many meth-
ods have been presented and achieved remarkable performances on the recently introduced
benchmarks, especially the deep learning based methods have yielded a boost in performance.
The success of deep learning on visual attention modelling has mainly relied on convolutional
neural networks (CNNs) [5, 31, 54]. The convolution operation has the inductive bias of
spatial equivariances, enabling impressive results on visual attention datasets. Notably, recent
studies pushed the frontiers on many critical computer vision tasks (i.e. Classification [20, 46],
Object Detection [14], Semantic Segmentation[59], etc) leveraging the Transformer neural
networks [63] at large scale in both model and dataset size. Interestingly, the attention block
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is universal and is shared between Vision Transformers (ViT), language [8, 19], audio [3, 56],
and many other modalities [70]. Different than convolution, the self-attention treats the input
sequences as a fully connected dense graph, and parse information across nodes. Hence, the
symmetries and structure are learned from the data, rather than explicitly incorporated using
image-specific inductive biases [17, 36, 57]. Also, Hybrid ViT-CNN models has become an
active area of research [14, 22, 46, 68].

This inductive-bias free nature of transformers raises a fundamental question: how does a
Vision Transformer’s learning paradigm relate to the feature integration theory [61] guiding
human visual attention? Do they inherently assign high attention mass to salient areas? If so,
are there methods to extract a saliency map from these self-attention maps? The focus of this
paper is to explore and analyze the analogies of the self-attention maps with saliency maps
and investigate ways in which ViTs can be used as of-the-shelf saliency models. Specifically,
our contributions are:

• By analyzing how local/global spatial information is utilised, we show that the the ViT
penultimate self-attention maps are similar to the saliency maps.

• Furthermore, we find that retrieving the salient attention maps using a tensor decompo-
sition method yields a rich tensor of saliency information, and is easily mapped to a
saliency map using a shallow convolutional neural network decoder.

• We study the main differences between ViT’s trained on a supervised classification
tasks, and a self-supervised regime, and find that the latter generalizes better to saliency,
whereas the former is prone to focus on the most salient objects in the scene.

2 Related works
The theory of feature integration [61], stands out as the pioneering work that identified the
visual features that guide human attention. Indeed, this theory served as the foundation for
many computational models of saliency, such as pioneers [32] which used center-surround
differences across multi-scale image features to derive bottom-up visual saliency. The model
produced conspicuity maps by linearly summing and normalizing three key features - color,
orientation, and intensity - and then averaging them to generate the final saliency map. Le
Meur et al. [44] proposed a more advanced bottom-up saliency approach that utilized
additional HVS features, including contrast sensitivity functions, perceptual decomposition,
visual masking, and center-surround interactions. Other static saliency models, such as
e.g. [9, 25, 38, 50, 51] , are mostly cognitive based models relying on computing multiple
visual features such as color, edge, and orientation at multiple spatial scales to produce a
saliency map. Bayesian models were also developed, building on top of cognitive models, to
incorporate prior knowledge (such as scene context or gist) using a probabilistic approach like
Bayes rule for combination [23, 52, 60, 69]. These models attempted to model the human
visual system in a principled manner, but their performance is still far from the "infinite
humans" baseline [35]. Refer to [5, 6] for a comprehensive review.

In the past decade, the use of deep learning techniques has led to significant improvements
in saliency prediction by adapting existing CNN architectures. These models are typically
trained end-to-end on large-scale datasets of static scenes, as described in studies such as [7,
11, 34]. The first CNNs to be used for saliency prediction were eDN and DeepFix, introduced
by the authors of [53] and [41], respectively. DeepFix incorporated VGG-16 weights
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to initialize the first 5 convolution blocks, then added two Location Based Convolutional
(LBC) layers to capture semantics at multiple scales. On the other hand, Pan et al. [54]
used Generative Adversarial Networks (GANs) [29] to develop the SalGAN model. The
generator model’s weights were learned through back-propagation computed from a binary
cross-entropy (BCE) loss over existing saliency maps. The resulting prediction was then
processed by a discriminator network trained to solve a binary classification task between the
saliency maps generated at the generative stage and the ground truth ones in a min-max game.
EML-NET proposed by [33] consists of a disjoint encoder and decoder trained separately.
Furthermore, the encoder can contain many networks extracting features, while the decoder
learns to combine many latent variables generated by the encoder networks. These deep
models achieve results closer to the human baseline results on the Salicon [34], MIT300 [10],
and CAT2000 [7] datasets.

It is clear from the above review that the deep learning based approaches targeting image
visual attention modeling have little in common with classical methods, and in fact diverged
from the initial cognitive motivations. Authors from [62] proposed Class-wise Jensen-
Shannon (JS) distance to produce an error-consistency metric that is very close to Cohen’s
κ [27]. This metric was used to measure whether CNN or ViTs correlate more with human
vision from an error consistency point-of-view. They concluded that ViTs have higher shape
bias and are largely more consistent with human errors. The work from [71] concluded that
except from brain’s ventral stream hierarchical correspondence that ViTs and CNNs reveal,
neither CNN nor transformer is an optimal model paradigm of the human visual system. The
contributions of this paper attempt to investigate whether ViT’s are inherent saliency learners
by exploring their analogies with saliency cognitive based models. We also study the effect of
supervised vs self-supervised ViTs on the saliency task.

3 Vision Transformers Visualisation
This has recently become an active research topic with many methods proposed. Treating
the pairwise attention values between the different patches as relevancy scores is the most
commonly used visualisation [14, 15, 66]. This can be obtained over the last layer, or by
combining multiple layers. This method suffers from a blurring effect, as well as over ampli-
fying the role of irrelevant tokens. The rollout method [1] is an alternative, which reassigns
all attention scores by considering the pairwise attentions and assuming that attentions are
linearly combined into subsequent contexts. The method seems to improve results over the
utilization of a single attention layer. Solving the issue of losing the relevancy when using
a Self-attention layer is a challenge since a naive propagation rule would lead to negative
contributions inducing noise in the relevancy map. The authors of [16] guided the relevancy
propagation with a rule that is applicable to both positive and negative attributions. They
compute the scores for all attention heads using the Layer-wise Relevance Propagation (LRP)
method [4], then to remove the negative contributions, the method incorporates both relevancy
and gradient information throughout the attention graph. We highlight the main methods:

Attention Rollout [1] Given the attention graph representing the flow of information
between positions in different layers as a series of edges, with weights representing the
proportion of information transferred. The attention rollout is calculated recursively by
multiplying attention weights matrices in all the layers below, and the input attention is
computed by setting the lower layer to be the input layer.

Partial LRP [64] was the first method to exploit the LRP [4], based on the observation
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Figure 1: Complete pipeline for training. The input image is processed with a Vision
Transformer model to get the self-attention maps tensor A. ϕβ serves as a medium to produce
the Salient Attention maps tesnor B by selecting top-k informative modes. Then, B is fed to
the Saliency Module to predict the visual saliency map.

that the mean attention heads is not optimal since the relevance of the attention heads in each
layer can vary [64]. However, the application of LRP was limited in that no relevance scores
were propagated back to the input, providing only partial information on the relevance of each
head. It should be noted that the relevance scores were not directly evaluated but rather used
for visualization of relative importance and for pruning less relevant attention heads.

Relevance LRP [16] propagates the relevance and gradients with respect to a specific
class. The two tensors are the input feature map and weights for layer n. Their relevance
propagation follows the Deep Taylor Decomposition [49], and satisfies the conservation rule
in [49] across two successive layers. It is worth mentioning that the result of rollout is fixed
given an input sample, regardless of the target class to be visualized. In addition, it does not
consider any signal, except for the pairwise attention scores. However, the relevance LRP
requires the classification logits, hence, can not be applied on self-supervised methods.

4 Salient Attention

In visual attention modelling, the salient regions in an image may correspond to the objects
or regions of interest within the image. Clearly however, the most salient regions are not
necessarily the objects in the image, but could rather be other features or patterns that catch
the viewer’s attention [6]. Existing methods for extracting the relevance map of ViTs focus
on classification models, thus, they consider only the [CLS] token, which summarizes the
self-attention tensor. Consequently, the relevance map is generated from the row C[CLS] ∈ Rs

that relates to the [CLS] token. Within this row, there is a score assigned to each token, which
assesses its impact in solving the downstream classification task.

Furthermore, as shown in Figure 1, we propose a simple token-agnostic attention map
approach to select the ViT’s self-attention maps of the salient locations. Let’s note the Vision
Transformer backbone (fθ ) that maps the input image x ∈ RC×H×W , to a representation Λ.
fθ processes the input image in patches xp ∈ 1 . . .N, where N is the total number of patches,
and xp ∈ RC×h×w. We can extract the last layer’s full self-attention tensor A ∈ Rnh×hw×h×w

(i.e. the [CLS] token is excluded as the full attention tensor would be of size h.w+1). The aim
is to select the salient positions along the second dimension, and retrieve their self-attention
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maps. To achieve this, we propose using a tensor decomposition method to identify the most
informative modes in A. Specifically, we apply the Candecomp-Parafac decomposition via
Alternating-Least Square [37], which decomposes A into a set of factor matrices that capture
its underlying structure as shown in Equation (1):

A≈
R

∑
r=1

a(1)r ⊗a(2)r ⊗a(3)r ⊗a(4)r (1)

where R is the rank of the decomposition, and a(1),a(2),a(3), and a(4) are factor matrices
of size nh ×R,h ∗w×R,h×R, and w×R, respectively. The symbol ⊗ denotes the outer
product of two vectors.

The ALS algorithm repeats these updates for each factor matrix until convergence or a
maximum number of iterations is reached. After convergence, the factor matrices can be
used to reconstruct the original tensor or to extract useful information about the underlying
structure of the data. By examining the factors, we can identify which modes contain the most
information about A , as these will have larger weights in the decomposition. We then select
the top-k informative modes based on their weights and use them for further analysis. This
approach allows us to reduce the dimensionality of the tensor and focus on the most relevant
information, that are highly likely salient locations, which can lead to a class independent
relevancy map. The final B ∈ Rk×h×w is obtained.

4.1 Obtaining the saliency maps from ViT Attention/Relevance maps
To obtain the saliency map, we train a tiny convolutional neural network (CNN) based saliency
module on top of the Attention/Relevance maps obtained using the various methods explained
earlier. The saliency module takes these maps as input and learns to predict the corresponding
saliency map, which highlights the most visually important regions in the input image.

Vision Transformer backbone (fθ ). This maps the input image x ∈ RC×H×W , to a
representation Λ. We select the ViT [20] model, which inherits a BERT-like architecture.
The input is a sequence of all non-overlapping patches of size 16× 16 of the input image,
followed by flattening and linear layers, to produce a sequence of embedding. Similar to
BERT, a classification token [CLS] is appended at the beginning of the sequence and used
for classification. We define (ϕβ ) that serves as a medium to extract the Attention/Relevancy
map B ∈ Rk×h×w (k is the k-modes in Salient Attention, and the number of heads for all
the other methods). ϕβ can be instantiated with any method from the pool of methods
explained earlier: [Raw Attention, Attention Rollout, Partial LRP, Relevance LRP, Salient
Attention]. These methods can be grouped in two folds: attention-maps, and relevance. Each
has different properties and assumptions over the architecture and propagation of information
in the network. We briefly describe each baseline in the following section and the different
experiments for each domain.

The attention-map baselines are class-agnostic by definition, and include rollout [1],
which produces an explanation that takes into account all the attention-maps computed along
the forward-pass. A more straightforward method is raw attention, i.e. using the attention
map of block 1 to extract the relevance scores. The proposed saliency based attention map
is an extension of the raw attention by retrieving the attention-maps for the salient locations
using the CP method, and is not necessarily tight to the salient object in the scene.

Unlike attention-map based methods, the relevance propagation methods consider the
information flow through the entire network, and not just the attention maps. These baselines
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Table 1: Comparative performance study on: Salicon and MIT300. Supervised denotes
initializing the ViT with classification weights on ImageNet, whereas unsupervised stands for
using DINO self-supervised weights. Our approach using Salient locations achieves favorable
gains across different settings.

Models Salicon MIT300
SIM s-AUC CC NSS KLD SIM s-AUC CC NSS KLD

ITTI [32] 0.37 0.61 0.20 – – 0.46 0.13 0.44 1.11 0.95
GBVS [30] 0.44 0.63 0.42 – – 0.48 0.62 0.47 1.24 0.88
Salicon [34] – – – – – 0.51 0.73 0.56 1.70 0.78
CASNet [24] – – – – 0.58 0.73 0.70 1.98 0.58
EML-NET [33] 0.79 0.74 0.89 2.05 0.52 0.74 0.67 0.78 2.48 0.84
MSI-Net [40] 0.80 0.74 0.90 2.01 0.67 0.74 0.77 2.30 0.42
TranSalNet [48] – – – – – 0.68 0.74 0.80 2.41 1.01
SalGAN [54] 0.75 0.76 2.47 - 0.63 0.73 0.67 1.86 0.75
UNISAL [21] 0.77 0.73 0.87 2.45 - 0.67 0.78 0.78 2.36 0.41
DeepGaze [43] – – – – – 0.66 0.77 0.77 2.33 0.42

Supervised Relevance LRP 0.72 0.71 0.75 2.01 0.59 0.61 0.71 0.73 1.94 0.70
LRP 0. 57 0.68 0.72 1.41 0.84 0.53 0.63 0.71 1.6 0.78
Partial LRP 0.70 0.68 0.71 1.86 0.64 0.58 0.69 0.70 1.75 0.64
Raw attention 0.55 0.66 0.61 1.58 0.98 0.54 0.70 0.72 1.39 0.81
Rollout 0.58 0.69 0.67 1.45 0.80 0.55 0.72 0.73 1.42 0.75
Salient Attention 0.71 0.69 0.73 2.12 0.57 0.62 0.72 0.70 2.14 0.72

Unsupervised Raw attention 0.73 0.71 0.81 2.24 0.61 0.63 0.72 0.71 2.06 0.71
Salient Attention 0.78 0.74 0.86 2.41 0.42 0.65 0.74 0.76 2.38 0.51

include the partial application of LRP that follows [2]. It is arguable whether these techniques
might be practically class-agnostic, authors from [16] proved that LRP method’s visualiza-
tions remain roughly constant for distinct target classes. The Relevance LRP [16] is the most
effective class-specific methods as it relies on the propagation rule that considers both positive
and negative contributions, hence, provides fine-grained class specific visualizations.

Saliency module (Ωw) is a non-linear mapping Ωw : Bk×w×h 7→ Sp parameterised by ω ,
where Sp ∈ RH×W , is the predicted saliency map. The architecture of the saliency module
consist of 4 blocks of [Conv2d → ReLU → Upsample].

Saliency loss function. The saliency task can be seen as a distance measure between
the predicted saliency distribution Sp ∈ [0,1]W×H , and the continuous ground truth SGT ∈
[0,1]W×H . The objective function must be designed to maximise the in-variance of predictive
maps and give higher weights to locations with higher fixation probability. Thus, the saliency
module (Ωw) is trained to minimize the Kullback-Leibler Divergence (KLD), widely adopted
for benchmarking saliency models [13], the KLD between Sp and SGT is given by:

LKLD(SGT ,Sp) =
W×H

∑
i=1

SGT i log
(

ε +
SGT i

ε +Spi

)
(2)

5 Experiments

Training. We experiment with the ViT-base/16 [20] model trained in a supervised way on
ImageNet [18], and in a self-supervised setting (i.e. DINO [15]). To evaluate the proposed
framework, we train the CNN saliency module on the 10k/5k train/validation splits of the
image saliency dataset Salicon [34]. We use the aformentioned methods to obtain a final
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Table 2: Results on the CAT2000 validation set.

Models CAT2000
SIM s-AUC CC NSS KLD

SalGAN 0.54 0.63 0.56 1.46 0.93
DeepGaze 0.68 0.64 0.79 1.96 0.38

Unsupervised Raw attention 0.62 0.60 0.75 1.84 0.69
Salient Attention 0.65 0.62 0.76 1.90 0.63

Attention/Relevancy map 1, that is fed to the CNN saliency module. It is worth mentioning
that the ViT encoder weights were not fine-tuned on the saliency task; only the randomly
initialized saliency module is trained on top of the frozen encoder. The motivation for this
is to set a robust evaluation procedure and to prevent the encoder adapting its parameters to
saliency specific requirements. See Section A.1 in supplementary for other ViT variants.

Evaluation setting. We compare against the SoTA methods listed in [65] and add newer
models with available implementations [42]. Moreover, we test on the MIT300 benchmark
[35] that is more challenging than the Salicon test set. As suggested in [12, 42], we use
the following evaluation metrics: Similarity Metric (SIM), shuffled AUC (s-AUC), Linear
Correlation Coefficient (CC), Normalized Scanpath Saliency (NSS), and the Kullback Leibler
Divergence (KLD) [12]. We adopt the more recent metrics formulation from [42].

Technical details. We adopt the implementations of ViT [20] from the official DINO
repository2. For the saliency module, we consider 4 blocks with 32 input convolution filters
(59k parameters). This module is trained on the 10k images of Salicon. The saliency module
is implemented in PyTorch [55] and trained using a single NVidia RTX3090 24GB GPU. All
the variants are trained for 30 epochs using the AdamW [47] optimizer. We employ a warmup
of 6 epochs and a cosine learning rate scheduler with maximum lr set to 10−3.

5.1 Results
State-of-the-art comparison. Here we compare the proposed approach to SoTA image
saliency models on both the Salicon, MIT1300 and CAT2000 validation sets. Table 1 and
Table 2 shows the performance comparison in terms of the five metrics for the respective vali-
dation sets. We observe that our method performs favorably against existing approaches across
different attention/relevancy extraction methods. For the supervised setting, the relevance LRP
and the salient locations-based approach shows the best performance, followed by partial LRP,
LRP, and Rollout. The raw attention-based approach shows the worst performance among
supervised models. Surprisingly, initializing the ViT backbone with self-supervised weights,
and training the saliency module on both the Raw Attention and Salient Locations maps
exhibits scores on par with end-to-end methods such as SalGAN [54] and EML-NET [33].
This is likely due to the ViT encoder adapting the parameters to fit the classification task,
hence, corrupting the raw attention maps, for complete comparison between supervised and
unsupervised raw attention visualisation, see Section A.2 in supplementary.

Saliency for Low-level features images. SoTA saliency models capture high level
features such as cars, humans, etc. However, these kinds of approaches may fail to adequately

1https://github.com/hila-chefer/Transformer-Explainability
2https://github.com/facebookresearch/dino
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Table 3: Impact of the number of selected modes k. Performance comparison when k is varied.
32 modes is the optimal number for the saliency task.

Models Salicon MIT300
SIM s-AUC CC NSS KLD SIM s-AUC CC NSS KLD

Salient Locations k=16 0.73 0.70 0.76 2.12 0.52 0.61 0.71 0.73 1.94 0.70
k=32 0.78 0.74 0.86 2.41 0.42 0.65 0.74 0.76 2.38 0.51
k=64 0.70 0.69 0.72 1.90 0.60 0.57 0.69 0.70 1.75 0.64
k=128 0.71 0.68 0.73 1.93 0.59 0.55 0.70 0.73 1.84 0.61
k=256 0.68 0.62 0.67 1.55 0.71 0.51 0.66 0.65 1.33 0.78

capture a number of other crucial features that describe aspects of human visual attention
that have been extensively investigated in psychology and neuroscience. Visual search,
often couched in relation to Feature Integration Theory (FIT), is one of the most prominent
processes shaping human attention [39, 61]. This is where a subject’s brain parallel processes
regions that differ significantly in one feature dimension i.e. Color, Intensity, Orientation.
These correspond to low level features, that operate as the basic mechanisms of the Human
Visual System. We conducted evaluations of the performance of UNISAL, and our ViT based
approaches on samples of low level attention using images from a recently proposed dataset
[39]. The aim is to understand the main differences on how saliency exploration is performed
when the self-attention mechanism promotes global connectivity between the image patches.
See Section A.3 in supplementary for more details.

As shown in Figure 2, Unisal produces high quality saliency maps consistent with the
ground truth maps for natural images on Salicon, high-level features such as: human faces, bus,
monument, etc; are dominant in these images (3rd ,4th,5th rows in the Figure 2). The human
visual system combines the bottom-up with top-down features to solve the attention task. This
behaviour might not be reflected in the fixation/saliency datasets. Hence, End-to-end deep
learning based models might learn a good saliency, but violates its subtle definition. Early
computational approaches for the visual human system e.g. [9, 25, 26, 28, 38, 50, 51, 58]
were mostly cognitive based models relying on computing multiple visual features such as
color, edge, and orientation at multiple spatial scales to produce a saliency map. Moreover,
could self-supervised ViTs bridge this gap, by reasoning over the reccuring features and
drawing dependencies/similarities?

In fact, Unisal fails to respond to simple features. For example, considering colour
(2nd row in Figure 2), Unisal [21] did not capture the red flower as the most salient object,
whereas the ViT succeeded in doing so, as this pattern is solved with the global nature of the
self-attention mechanism. Also, Unisal do not discriminate the larger shape (1st row in figure).
Furthermore, a differently shaped object to others should capture the viewer’s attention, but
all of the approaches fail to do so. This suggests that ViTs do not only correlate with the gaze
data, but also incorporate characteristics of the visual system as important priors induced by
the self-attention mechanism.

5.2 Ablation study
In this section we justify the choices by ablating key features of the procedure.

The effects of the number of Salient Locations. Table presents the performance of the
Salient Locations based framework when the number of top k-modes is varied. We observe
that 32 is the optimal value and higher values degrade the performance since the added modes
do not carry any useful information that and may act as noise.
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Figure 2: Qualitative results of the different models on sample images from Salicon and O3
datasets. It can be observed that the proposed approach is able to handle various challenging
scenes well and produces consistent saliency maps

Is the saliency module required? Research in cognitive science (e.g. [45, 67]) indicates
that low-level saliency in both humans and animals happens early in the primary visual
cortex. Clearly however, SoTA approaches mostly follow a supervised learning paradigm. We
attempt to produce the saliency map from the [CLS] token raw-attention of the self-supervised
ViT. Furthermore, the raw attention map is converted into a discrete fixation map F with
a threshold λ = 0.9 to keep the most relevant attention nodes. Then, we smooth it with a
Gaussian-filter, where each pixel value is replaced by a weighted average of its neighboring
pixels according to the Gaussian distribution. The amount of smoothing is controlled by the
value of σ , to obtain the predicted continuous saliency map Gp. This fully unsupervised
approach resulted in a visually appealing saliency maps, however the scores were still far
from the baselines on the Salicon validation set [KLD: 1.12, NSS: 1.46].

6 Discussion
Limitations: This study still need supervision to learn the saliency module. While we have
achieved baseline scores across the metrics, more fine-grained methods may be able to solve
the task in a fully unsupervised way. Similar to the Relevance LRP [16], this will require
designing propagation rules, and conservation laws specific for the saliency task.
Conclusion: We investigate how the emerging properties of Vision Transformers could serve
for Visual Attention Modelling with little supervision. We examine the existing visualisation
methods for ViTs, and introduce a class-agnostic approach for selecting the ViT’s self-
attention maps of the salient locations, which allows the identification of informative modes
within the attention tensor. The qualitative and quantitative results have demonstrated the
competitiveness of the approach. We believe these findings may uncover the analogies
between ViT’s learning dynamics and the human visual system.
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