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Abstract

Adversarial training draws increasing attention as it can improve the robustness of
deep neural networks against adversarial examples. Recent research proposed to adap-
tively adjust the adversarial strategy for a better learning process. However, those ap-
proaches rely on cumbersome computations for getting the optimal adversarial strat-
egy. This paper offers a novel perspective on adversarial strategies by examining the
adversarial examples’ norm space. We show that cyclically altering the adversarial norm
space can significantly enhance the network’s robustness. Based on the observations, we
propose a simple yet effective Entropy-Guided Cyclical Adversarial Strategy (ECAS)
to explicitly adjust the norm space of the adversarial examples, forming an elastic-
perturbation mechanism in the adversarial training framework that adaptively perturbs
models based on entropy. Extensive experiments demonstrate that our proposed method
can achieve promising performances and substantially reduce computational time com-
pared to state-of-the-art methods. Moreover, we also show that ECAS can be directly
plugged into existing adversarial training methods to further boost performances. The
implementation of ECAS is at https://github.com/huizhg/ECAS.

1 Introduction

Deep neural networks have achieved impressive success in many fields. Despite their re-
markable performance, deep neural networks are found to be vulnerable to adversarial at-
tacks [7, 16], which can fool the network by adding crafted human-imperceptible perturba-
tions on clean input data. These attacks can pose severe threats to the security and reliability
of deep neural networks, especially in safety-critical applications. A large number of re-
search studies have been conducted to investigate the threat of adversarial attacks to deep
neural networks and to develop techniques to defend against them. These studies have pro-
posed various defense mechanisms, including adversarial training [6, 7, 11, 12, 18, 19, 20,
23, 24], certified defense [13], randomization-based defense [3], etc. Out of all the defense
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Figure 1: Adaptive entropy-guided adversarial norm space during adversarial training.

methods, adversarial training is considered one of the most effective methods because it sig-
nificantly improves the robustness of models against adversarial attacks without any complex
implementation.

Some recent works preliminarily prove that adjusting the adversarial strategies in adver-
sarial training can benefit the robustness of the final model. Initially, the pioneering methods
of adversarial training were with fixed adversarial strategies [12, 18, 20, 23] by default. In
those methods, the hyperparameters (e.g., the magnitude of the perturbation) of the attacks
are usually fixed during the whole training phase. More recent works use adaptive adver-
sarial strategies [9, 17, 21], leading to better performances against the adversarial samples.
For those variants with dynamic adversarial strategies during adversarial training, the attacks
keep altering adaptively during training, e.g., the adversarial strength gets stronger with the
increasing number of epochs. Although there are already some existing methods, how to
effectively and efficiently find the optimal hyperparameters of attacks in adversarial training
is still, to a large extent, an open problem.

Motivated by the recent works that attempted to automatically learn the adversarial strate-
gies, we investigate adversarial strategies from the new perspective of the norm space of the
adversarial examples. By analyzing models’ learning behavior with existing adaptive learn-
ing strategies, we propose the Entropy-Guided Cyclical Adversarial Strategy (ECAS). Figure
1 demonstrates how ECAS adaptively alters the norm space of the adversarial examples dur-
ing training. The contributions are summarized as follows:

• We focus on the adversarial training problem with adaptive adversarial strategies. We
empirically identify that cyclically changing the adversarial norm space can improve the
robustness of the network.

• A simple yet effective Entropy-Guided Cyclical Adversarial Strategy (ECAS) is intro-
duced to periodically adjust the norm space of the adversarial examples, forming an elastic-
perturbation mechanism in the adversarial training framework that adaptively perturbs
models. A customized entropy term is proposed to guide the change of the norm space
of the adversarial examples, leading to more adaptive and effective learning progress.

• Quantitative experimental results demonstrate that the proposed ECAS consistently im-
proves the adversarial robustness of state-of-the-art methods. Most importantly, our method
requires substantially less runtime than the compared methods. At last, we show that the
proposed ECAS can be directly plugged into other existing adversarial training methods.

2 Related work
Adversarial training is one of the most effective defense techniques against adversarial at-
tacks, and our proposed method ECAS is used to cooperate with it to boost its performance.
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The basic concept of adversarial attack and adversarial training and some recent studies of
them are introduced in this section.

2.1 Adversarial attack
An adversarial attack is a malicious attack that attempts to perturb the clean data by adding
crafted human-imperceptible noise such that misleading the machine learning system to a
wrong prediction. The perturbed data is called adversarial examples [16] and the algorithms
used to generate adversarial examples are called adversarial attacks. Adversarial attacks can
be roughly divided into two categories, white-box attacks, and black-box attacks. For white-
box attacks, the attacker has access to all the information of the model, such as the param-
eters and structure of the network, which makes it easy to get the gradients. For black-box
attacks, the attacker has no knowledge about the model and therefore has to rely on external
observation and experimentation to gain information, which makes this kind of attack much
harder to implement. In this paper, we will mainly focus on the white-box attack because it
is considered more harmful, and it will be used for both adversarial training and robustness
evaluation of the networks in this work. Fast Gradient Sign Method (FGSM) [7] is a popular
and fast gradient-based white-box attack, which perturbs the clean data with only one step.
The Projected Gradient Descent (PGD) attack [12] is an iterative attack, which perturbs the
input data with multiple steps and projects the result from each step within a norm ball. The
variants of PGD are named after by the number of their iterations, for example, PGD-10,
and PGD-50. C&W attack [2] is an optimization-based attack, and the attack is generated
by searching for the smallest perturbation that leads to incorrect classification by the net-
work. AutoAttack (AA) [4] is one of the strongest adversarial attacks, that is parameter-free
and user-independent. AA is an ensemble of two extensions of PGD attack (APGD-CE [4],
APGD-DLR [4]) and two complementary attacks (FAB [5] and Square attack [1]).

2.2 Adversarial training
The existing adversarial training methods can be categorized into two types based on whether
they use adaptive adversarial strategies. We introduce some related work of both types of
training methods in this section.

Type 1: Adversarial training with fixed adversarial strategies Madry et al. proposed
the standard adversarial training method PGD-AT [12]. Many variants of standard adver-
sarial training improved the performance of [12] by strengthening the inner maximization
problem, i.e., the generation of the adversarial examples. Zhang et al. proposed TRADES
[23], which uses the Kullback-Leibler divergence between the model’s output on clean input
and perturbed input as a regularization term on the loss function to push the model’s deci-
sion boundary away from the adversarial example, thus improving the model’s robustness.
An improved version of [12] proposed by Rice et al. [14] utilizes early stopping to solve the
overfitting problem in adversarial training. Wang et al. proposed MART [18], an extension
of TRADES, improving the adversarial robustness by explicitly differentiating the misclas-
sified examples during training. Adversarial Weight Perturbation (AWP) [20], proposed by
Wu et al., boosts the adversarial robustness by flattening the weight loss landscape through
weight perturbation.

Type 2: Adversarial training with adaptive adversarial strategies Wang et al. [17]
proposed a training strategy that gradually increases the convergence quality of adversarial
examples during training. The convergence quality of adversarial examples also represents
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the attacking strength of the adversarial examples. Jia et al. [9] proposed a learnable adver-
sarial strategy adversarial training (LAS-AT) method, which employs a strategy network to
learn the optimal adversarial strategies. DAAT, proposed by Yang et al. [21], used a cali-
bration network to adjust the magnitude of the perturbation ball of each instance to avoid
adversarial example from crossing the decision boundary of the calibration network.

Although all of the type 2 methods can improve the performance of the standard adver-
sarial training methods, the additional computational costs from generating the adversarial
strategies were not considered. For example, both LAS-AT and DAAT used another network
to assist in generating the adversarial strategies, which significantly increases computational
complexity. To address this issue, we propose ECAS, an efficient approach to generate ad-
versarial strategies which can boost the existing adversarial training methods without adding
too much computational cost.

3 Method
In this section, we first define the problem of adversarial training and then investigate adap-
tive adversarial strategies from the perspective of norm space of the adversarial examples,
which leads to a clear observation that models’ robustness enjoys the benefit from cyclic
norm space changes. Based on this, we propose an Entropy-Guided Cyclical Adversarial
Strategy (ECAS) to explicitly change the norm space via the guidance of customized en-
tropy terms such that each instance has its own tailored norm space. Note that the type of
the norm is fixed to l∞ in this study, and changing the norm space does not include changing
the type of the norm space but only the magnitude.

3.1 Problem definition
The adversarial training problem can be formulated as the following equation:

min
w

1
n

n

∑
i=1

max
||x′i−xi||p≤ε

l( fw(x′i),yi), (1)

where w represents the parameters of the model, n is the number of the training examples,
x′i is the perturbed data and the perturbation is bounded within lp ε-ball, yi is the true label
of example xi, fw(·) is the target model with parameters w, and l(·) is the loss function.
The inner maximization part represents the process of generating adversarial examples and
the outer minimization part is the same as the standard training procedure of deep neural
networks.

The perturbation budget ε in the inner maximization term of Eq. (1) represents the
magnitude of norm space of the perturbation. We denote the perturbation with δ , and δ =
||x′− x||. In this work, we use l∞ norm to measure the magnitude of the norm space, thus
every mentioned “norm” or its symbolic representation || · || in this paper refers to l∞ norm
by default. The goal of inner maximization in Eq.(1) is to search a δ in the norm space (an
l∞ norm ball, determined by ε) that maximizes the loss function l( fw(x′i),yi) in Eq. (1).

3.2 Cyclically changeable adversarial norm space
The evidence from [9, 17] demonstrates that increasing the magnitude of the norm space of
adversarial examples during training can potentially increase the robustness of the network.
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By analyzing the behaviors of the output strategies from LAS-AT [9], we find that norm
space is not continually expanding linearly but also has shrinking behaviors during training.
The findings inspire us to cyclically change the norm space of the adversarial sample to
mimic the learning pattern at a low computational cost instead of using an extra strategy
network which is computationally heavy and non-explainable.

The size of the norm space is altered according to Eq. (2),

εn =
εmax− εmin

α
×mod(

n
α
)+ εmin, (2)

where n is the index of the current epoch, εmax and εmin represent the upper bound and lower
bound of the size of the norm space, εn ∈ {εmin, ...,εmax} and α determine the number of
elements in this set and the gap between adjacent ε , and the mod(·) is a modulo operation.
The magnitude of the norm space is changed at every epoch following the scheduler in Eq.
(2) during training. In the experiment, we explore different schedulers to find the optimal
strategy for adjusting the magnitude of the norm space. Please refer to Section 4.1 for details.

3.3 Entropy-guided constraints on norm space
To make the magnitude of the norm space fit well for each instance, we further propose
the Entropy-Guided Adversarial Strategy, which is applied on top of the scheduler shown
in Eq. (2). The combination of them becomes Entropy-Guided Cyclical Adversarial Strat-
egy (ECAS). In information theory, entropy [15] is a measure of the uncertainties of the
information. The entropy of a discrete random variable X is calculated by Eq. (3)

H(X) :=−∑
x∈χ

p(x)logp(x), (3)

where χ includes all the possible values of the variable X . In our case, p(x) is the probability
of each class.

If the neural network is a classifier, its output is a probability distribution. The entropy
of the probability distribution indicates how much information the network can deliver. For
example, if the probabilities for all classes are the same, that means the network does not give
us any valuable information from its prediction. This case also means that the network has
not learned enough from the data or it has not had enough knowledge to give an affirmative
prediction. With this property from entropy, we can use it to measure the uncertainties of the
network’s prediction of each instance. We utilize the entropy of the probability distribution
of each instance to adjust the adversarial strength for attacking each of them.

The details of ECAS are shown in Algorithm 1. We compute the average entropy of the
outputs from an untrained model using the training data and denote it as h_high. Similarly,
h_low is calculated from the outputs of a well-trained model. The details for choosing h_low
and h_high are provided in the supplementary material. If the entropy of the output of an
instance is higher than h_high, which means the network is struggling with the classification
and the instance is close to the decision boundary. In this case, we should shrink the norm
space to avoid accidentally forcing the adversarial example across the decision boundary too
much which leads to decreasing accuracy on clean data. On the contrary, if the entropy of the
output of an instance is low, a wider norm space should be used. This is because the network
is confident of the prediction, and there is a high chance that the instance is not close to the
boundary, a larger perturbation would not only increase the robustness but also not hurt the
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accuracy of clean data. In Algorithm 1, we use a random ε among the three biggest epsilons
to avoid overfitting according to our empirical evidence. The epsilon_space in Algorithm 1
refers to the set of ε , εn ∈ {εmin, ...,εmax}, and it is defined in Section 3.2.

Algorithm 1 ECAS
Input: Current epoch epoch, epsilon space epsilon_space, entropy of a batch of inputs
H, lower entropy h_low, higher entropy h_high
Output: Adversarial strength for this batch at the current epoch epsilon_batch

1: function ECAS(epoch,epsilon_space, H, h_low, h_high):
2: big_epsilons← The three biggest epsilons from epsilon_space
3: epsilon_batch← Initialize the epsilons with ones
4: ε ← CYCLICAL_EPSILON(epoch,epsilon_space)
5: epsilon_batch← epsilon_batch× ε

6: epsilon_batch[H > h_high]← The smallest ε from epsilon_space
7: epsilon_batch[H < h_low]← Take a random item from (big_epsilons)
8: return epsilon_batch

3.4 Optimization
After we define the ECAS, we can start to conduct the adversarial training and demonstrate
how to use it to control the size of the norm space of the adversarial examples during training.
The adversarial example is generated by Eq. (4).

x′i = max
||x′i−xi||p≤εi

l( fw(x′i),yi), (4)

The only difference between Eq. (4) and the maximization part of Eq. (1) is that the ε in
Eq.(4) is generated by ECAS and it is instance-wise. The parameter of the network fw(·) is
updated by Eq. (5),

w← w−η
1
n

n

∑
i=1

∇wl( fw(x′i),yi), (5)

where w represents the parameters of the network, η is the learning rate, n is the number of
samples in a mini-batch, and ∇wl(·) is the gradient of the loss function.

4 Experiments
To evaluate the performance of ECAS, we conduct intensive experiments on two datasets,
CIFAR-10 [10] and CIFAR-100 [10], and both of them are popular benchmark datasets for
training deep neural networks for computer vision tasks. We chose these two datasets be-
cause they were commonly used by the adversarial training methods we compared [9, 14].

Experimental Settings. The proposed adversarial training strategy is tested on ResNet18
[8] and WideResNet34-10 (WRN34-10) [22]. The experiments are conducted on NVIDIA
Tesla V100. To make a fair comparison between ECAS and the state-of-the-art (SOTA) ad-
versarial training methods, such as LAS-AT [9], we use their original hyperparameters in
our settings. We apply our ECAS on AWP [20], TRADES [23], and the early stop version
of PGD-AT [14], and denote them with their own names with “ECAS-” prefix. Similarly,
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the methods that use the LAS-AT framework are named with the prefix “LAS-”, such as
LAS-AWP (refer to supplementary material for details).

Clean accuracy and robust accuracy. We evaluate both the “clean accuracy” and “ro-
bust accuracy” of all the models, where “clean accuracy” refers to the accuracy of the model
tested on unperturbed clean data, and “robust accuracy” refers to the accuracy of the models
on perturbed data. The perturbed data includes the adversarial examples generated by PGD
[12] (with iterations 10, 20, and 50 and perturbation budget 8/255), C&W [2], and AA [4].

4.1 Ablation study

Verification of different schedulers. As mentioned in Section 3.2, here we explore different
schedulers to change the magnitude of the adversarial norm space. The results are shown in
the first four rows of Table 1. “Fixed” is the baseline scheduler, which means the magnitude
of the norm space is fixed with ε set to a fixed value (8/255) during training. The “Linear”
scheduler updates ε linearly in every epoch. “Cyclic” alters ε cyclically in every epoch
following the definition from Eq. (2). We also verify the changing frequency of the norm
space by experimenting with “Cyclic-batch”, where we changes ε cyclically at every batch,
i.e., the same frequency as the weights update of the network. “Cyclic-batch” can be regarded
as a high-frequency variant of Eq. (2) if we change the number of current epochs to the
number of current batches.

It can be seen from Table 1 that “Linear” increases the robustness but reduces the clean
accuracy. “Cyclic-batch” does not affect the robustness much compared with the “Fixed”
scheduler. The failure of “Cyclic-batch” is caused by the high update rate of adversarial
strength which has already changed before the network has learned enough from the per-
turbed data with the adversarial strength from the last round. “Cyclic” scheduler obtains the
best performance compared to the other three schedulers (Fixed, Linear, and Cyclic-batch).
Therefore, we choose “Cyclic” as the scheduler for ECAS (see more details in the supple-
mentary materials).
Contribution of each component. The contribution made by each component is also
demonstrated in Table 1. The first row (“Fixed") is the set as the baseline where no compo-
nent is added. Starting from the baseline setting, the fourth row “+ Cyclic""shows that adding
the cyclic scheduler can effectively improve the results, e.g., from 0.8517 to 0.8634 for Clean
and from 0.5169 to 0.5325 for AA. On top of the cyclic scheduler, the last row of Table 1, “+
Cyclic + entropy” as our full method, shows that adding the component of the entropy-guided
constraints can further improve the performance of the models against adversarial samples.
Note that the Cleaning accuracy becomes slightly lower when the entropy-guided constraints
are added, which is because the entropy-guided algorithm is prioritized to improve the robust
accuracy and tends to increase ε when the condition is satisfied. The difference in running
time per epoch between different schedulers is negligible, approximately 0.3% (for example,
1 or 2 seconds difference out of 662s).

4.2 Running time analysis

Our ECAS method improves the clean and robust accuracy of the baseline methods (refer to
Table 4), reaching a comparable level to LAS-AT without significantly increasing computa-
tional complexity. We compare the extra cost of the training time for the first epoch of each
tested training method, and the results are shown in Table 2 and Table 3. The running time
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Scheduler Clean PGD-10 PGD-20 PGD-50 C&W AA
Baseline (Fixed) 0.8517 0.5607 0.5508 0.5488 0.5391 0.5169
+ Linear 0.8351 0.5704 0.5587 0.5548 0.5497 0.5273
+ Cyclic (batch) 0.8682 0.5648 0.5482 0.5451 0.5495 0.5243
+ Cyclic 0.8634 0.5766 0.5670 0.5637 0.5567 0.5325
+ Cyclic + entropy 0.8632 0.5780 0.5680 0.5648 0.5589 0.5343

Table 1: Performance comparison of models (WRN34-10) trained by PGD-AT [14] with
different schedulers on CIFAR-10. Results in bold are from our methods.

for the first epoch is chosen because we want to compare the running time under the most
time-consuming case, and the first epoch takes longer time than the rest epochs.

“+L:" and “+Ours:” in the first column of Table 2 and Table 3 indicates what framework
(LAS-AT or ECAS) is used on top of the baseline methods. Besides the extra running time
(1st and 2nd rows), we also include comparisons of clean accuracy (shown in 3rd and 4th
rows of Table 2 and Table 3) and robust accuracy (shown in 5th and 6th rows) of the base-
line methods when integrating with LAS-AT or ECAS framework. The robust accuracy is
evaluated by AA [4].

From Table 2 and Table 3, we can see that the performance improvement from LAS-AT
is achieved by sacrificing the training time, and the extremely long time is caused by brute
force parameter searching. ECAS is more lightweight, and it enhances the performance of
the baseline methods without increasing too much of the training time (less than 200s for
one epoch).

CIFAR-10 CIFAR-100
Framework PGD-AT TRADES AWP PGD-AT TRADES AWP
+L: runtime 681.0s 6048.4s 5587.6s 428.3s 6051.4s 1081.2s
+Ours: runtime 89.4s 52.0s 59.7s 150.5s 166.0s 149.3s
+L: clean 0.8623 0.8524 0.8774 0.6180 0.6062 0.6489
+Ours: clean 0.8632 0.8399 0.8817 0.6116 0.5869 0.6477
+L: robust 0.5358 0.5415 0.5552 0.2903 0.2812 0.3077
+Ours: robust 0.5343 0.5202 0.5454 0.2883 0.2824 0.2978

Table 2: Comparison of the extra running time (1st and 2nd rows) (tested on CIFAR-10 and
CIFAR-100 with WRN34-10) when integrating the LAS-AT (“+L:" in the table) or ECAS
(“+Ours:") to the baseline methods, and their clean accuracy (3rd and 4th rows) and robust
accuracy (5th and 6th rows).

4.3 Comparisons with SOTA methods

In this section, we compare the performance of our method ECAS with the SOTA method,
LAS-AT, which is the same type of framework as ours that is used together with other ad-
versarial training methods. We also make comparisons with various adversarial training
methods, PGD-AT [14], TRADES [23], FAT [24], MART [18], and AWP [20]. We choose
to compare our method ECAS with LAS-AT on the base method AWP because LAS-AT
achieves its best performance when combined with AWP. It can be seen from Table 4 that

Citation
Citation
{Rice, Wong, and Kolter} 2020

Citation
Citation
{Croce and Hein} 2020{}

Citation
Citation
{Rice, Wong, and Kolter} 2020

Citation
Citation
{Zhang, Yu, Jiao, Xing, Elprotect unhbox voidb@x protect penalty @M  {}Ghaoui, and Jordan} 2019

Citation
Citation
{Zhang, Xu, Han, Niu, Cui, Sugiyama, and Kankanhalli} 2020

Citation
Citation
{Wang, Zou, Yi, Bailey, Ma, and Gu} 2020

Citation
Citation
{Wu, Xia, and Wang} 2020



KUURILA-ZHANG ET AL.: ADAPTIVE ADVERSARIAL NORM SPACE FOR EFFICIENT AT 9

CIFAR-10
Framework PGD-AT TRADES AWP
+L: runtime 129.0s 1127.3s 982.8s
+Ours: runtime 27.8s 22.6s 21.5s
+L: clean 0.8199 0.8204 0.8261
+Ours: clean 0.8139 0.7861 0.8316
+L: robust 0.4974 0.4975 0.4986
+Ours: robust 0.4994 0.4883 0.4964

Table 3: Comparison of the extra running time (1st and 2nd rows) (tested on CIFAR-10 with
ResNet18) when integrating the LAS-AT (“+L:" in the table) or ECAS (“+Ours:") to the
baseline methods, and their clean accuracy (3rd and 4th rows) and robust accuracy (5th and
6th rows).

Method Clean PGD-10 PGD-20 PGD-50 C&W AA
PGD-AT [14] 0.8517 0.5607 0.5508 0.5488 0.5391 0.5169
TRADES [23] 0.8572 0.5675 0.5610 0.5590 0.5387 0.5340
FAT [24] 0.8797 0.5031 0.4986 0.4879 0.4865 0.4748
MART [18] 0.8417 0.5898 0.5856 0.5806 0.5458 0.5110
AWP [20] 0.8557 0.5892 0.5813 0.5792 0.5603 0.5390
LAS-AWP [9] 0.8774 0.6109 0.6016 0.5979 0.5822 0.5552
ECAS-AWP (ours) 0.8817 0.6038 0.5910 0.5875 0.5750 0.5454

Table 4: Test result on CIFAR-10 with WRN34-10, the best performance is shown in bold,
and the second best is marked underlined

both LAS-AT and ECAS improve both the clean and robust accuracy of the base method,
and ECAS reaches a comparable level as LAS -AT in terms of robust accuracy and surpasses
LAS-AT on the clean accuracy.

4.4 Visualization of the norm space learned by ECAS
We explore how the distribution of the magnitude of the norm space (ε) changes when we
apply ECAS to it. The result is demonstrated in Figure 2, which is done with PGD-AT inte-
grated with ECAS (ECAS-PGD-AT). The purple bars on the top refer to the percentages of
the ε after the entropy-guided adjustment, and the bars under them represent the percentages
of the ε that are not adjusted but following the cyclical scheduler. The different colors rep-
resent the different values of the magnitude of ε , and the range of ε is from 3 to 12. It can
be seen that the percentage of the adjusted ε has a sudden rise at epoch 99, which is because
the learning rate decreases ten times after epoch 99, and the network’s robustness has a sharp
improvement. This leads to a sudden decrease in the entropy of the network’s output, and if
it is lower than the lower bound h_low, ε is adjusted to be larger.

5 Conclusion
We propose an entropy-guided cyclical adversarial strategy to adaptively alter the magnitude
of the norm space of the adversarial examples at an instance-wise level, such that both the
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Figure 2: The percentage distribution of the adjusted and not adjusted magnitude of the norm
space in ECAS-PGD-AT during training on the CIFAR-10 dataset

clean accuracy and robust accuracy of the network are improved. It is well-known that there
is a trade-off between clean accuracy and robust accuracy in adversarial training. Increas-
ing the epsilon norm ball size would raise the robust accuracy but lower the clean accuracy.
Altering the norm ball size cyclically will result in a phenomenon that the peaks of clean
accuracy and robust accuracy appear alternatively and we believe that this can help the opti-
mization process jump out of the local minima and search for a better solution that balances
both the clean and robust accuracy. The extensive experiments show that our method is easy
to integrate with other adversarial training methods and improves their performance to a
comparable level as the SOTA method without adding too much extra cost to the computa-
tion as the SOTA method does.
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