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Abstract

Language-based fashion image editing allows users to try out variations of desired
garments through provided text prompts. Inspired by research on manipulating latent
representations in StyleCLIP and HairCLIP, we focus on these latent spaces for editing
fashion items of full-body human datasets. Currently, there is a gap in handling fashion
image editing due to the complexity of garment shapes and textures and the diversity of
human poses. In this paper, we propose an editing optimizer scheme method called Text-
Driven Garment Editing Mapper (TD-GEM), aiming to edit fashion items in a disentan-
gled way. To this end, we initially obtain a latent representation of an image through
generative adversarial network inversions such as Encoder for Editing (e4e) or Pivotal
Tuning Inversion (PTI) for more accurate results. An optimization-based Contrastive
Language-Image Pre-training (CLIP) is then utilized to guide the latent representation of
a fashion image in the direction of a target attribute expressed in terms of a text prompt.
Our TD-GEM manipulates the image accurately according to the target attribute, while
other parts of the image are kept untouched. In the experiments, we evaluate TD-GEM
on two different attributes (i.e., "color" and "sleeve length"), which effectively generates
realistic images compared to the recent manipulation schemes.

1 Introduction

Text-driven garment editing frameworks provide a convenient digital tool for end-users to
edit fashion items. The application of high-quality synthesized images for visualization of
not yet produced garments allows for a more sustainable online fashion industry, ultimately
decreasing the retailer’s costs and environmental carbon footprint [12]. Recently, Generative
Adversarial Networks (GANs) [7] have been used for generating photo-realistic images for
various datasets. It is extensively employed in Virtual Try-ONs (VTONs) [3, 18, 25, 29]
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Figure 1: Disentangled garment manipulation for prompt texts "lengthening sleeve",
"green", and "blue" using our proposed TD-GEM architecture. The resulting manipula-
tions visually have the same postures, shapes, and contours as the original image, preserving
fine-grained details.

and outfit generators [8]. Despite tremendous development in this domain, text-conditioned
human outfit editing has not yet been well explored.

Image attribute manipulation requires an accurate latent mapping between the text em-
bedding space and latent visual space of the synthesized image often implemented by
StyleGAN-based approaches [9, 10, 11, 23]. Recently, this has been done in pioneering
studies such as StyleCLIP [19] and TediGAN [32] to edit images based on a target text
prompt. They find the latent visual subspace aligned to the text embedding space. However,
StyleCLIP attains text-based semantic image editing through Contrastive Language-Image
Pre-training (CLIP) encoding [21]. To generate high-quality images, StyleGAN2 [29] has
shown great promise across various applications. The majority of research studies have fo-
cused on face, car, and building datasets despite limiting exploration in the domain of human
clothing [5]. Due to the diverse range of human poses and intricate textures and shapes of
garments, manipulating human outfits through generative models is a challenging task [13].
Thanks to work [5], a large-scale fashion image dataset called Stylish-Humans-HQ (SHHQ)
was collected and trained through the StyleGAN2 network.

This paper addresses image manipulation, including text-conditioned editing in the fash-
ion domain using the SHHQ dataset. We learn a mapping between text prompt embeddings
and latent representations of input images while generating disentangled output images based
on text descriptions. The proposed Text-Driven Garment Editing Mapper (TD-GEM) edits
attributes of the input image according to the input text, e.g. the sleeve length or color of the
garment, using a single mapper and inversion space. It successfully preserves the irrelevant
attributes of the input image. The primary contributions of this paper are

• We provide a text-driven image manipulation framework, TD-GEM, for full-body
fashion images using CLIP and GAN inversion.

• We improve the speed of the process by training a single network for each input text
rather than solving an optimization problem per image.

• TD-GEM consists of a modulation network, acting in a disentangled semantic space,
that allows changes in e.g., color and sleeve length based on user requests.
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2 Related work

2.1 Text-Conditioned Image Editing

There is a vast array of studies on image editing in the literature [14] for various datasets,
but we focus on using text prompts as input in image manipulation here, like [22]. Start-
ing from [2] that employs natural language description to synthesize images conditioned on
the given text and image embeddings, several works [17, 27] enhance the quality of syn-
thesized images and disentangle visual attributes. To make it more concrete, [17] proposes
text-adaptive GAN, creating world-level local discriminators based on the text prompt to
represent a visual attribute. It leads to generating images that only modify regions asso-
ciated with the given text. Another line of work [27] focuses on semantic editing using a
novel GAN called ManiGAN to preserve irrelevant content in the input image. It entails two
modules to initially select regions relevant to the input text and then refine missing contents
of the synthetic image. It is worth noting that ManiGAN only applies to the CUB and COCO
datasets. InterFaceGAN [28] interprets a GAN model for disentangled and controllable face
representation and identifies facial semantics encoded in the latent space. Although a sim-
ple, effective approach for face editing, it aligns attributes with a linear subspace of the latent
space resulting in failure for long-distance manipulation.

An alternative perspective on this area of research is to manipulate the image using
visual-semantic alignment or image-text matching rather than word-level training feedback.
In this approach, semantics are mapped from text to images. Aligned to this strategy, Te-
diGAN [32] generates diverse and high-quality images using a control structure based on
style-mixing with multi-modal inputs such as sketches or text prompts. It can manipulate
images with particular attributes through the common latent space of input text and images.
Another improved approach to discovering semantically latent manipulation without using
an annotated collection of images is explored by StyleCLIP [19]. It develops a text-guided la-
tent manipulation for StyleGAN image manipulation, using CLIP in an optimization scheme
as a loss network. Benefiting from image text representation like StyleCLIP, human hair
editing is introduced by [30] referred to as HairCLIP. It trains a mapper network to map the
input references into embedded latent code and exploits the text encoder and image decoder
of CLIP. Recently, the latent mapping between the StyleGAN latent space and the text em-
bedding space of CLIP is designed in [34], introducing Free-Form CLIP (FFCLIP) to handle
free-form text prompts. It leverages input text with multiple semantic meanings to edit im-
ages. Nevertheless, it is worth noting that certain disentanglement challenges remain due to
the presence of human biases [6].

2.2 Image Synthesis and Editing in Fashion domain

Manipulating images in the fashion industry becomes increasingly complicated when deal-
ing with the full human body, compared to editing images of specific body parts, like the face
or hair. Typically, an image editing pipeline involves translating an input image into a latent
space representation using inversion techniques, followed by decoding the modified latent
representation to generate an output image [5]. In the context of the fashion domain, another
essential aspect to consider is establishing a proper mapping from the garment to the human
body while preserving the identity of humans and the rest of the fashion items in the original
images. The pioneering work of [33] known as FashionGAN approaches end-to-end virtual
garment display by training a conditional GAN [16]. FashionGAN trains an encoder using
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the real fabric pattern image, which results in the latent vector containing solely the material
and color information of the fabric pattern image. Afterwards, a supplementary local loss
module is integrated to regulate the texture synthesis process carried out by the generator.
Another concurrent work to FashionGAN, [24], provides a rich dataset, including extensive
annotations called Fashion-Gen applied for the text-to-image task. However, the quality of
synthesized images using the StackGAN method is blurry, especially for a face. Another
aforementioned dataset (SHHQ) collected by [5] is utilized for StyleGAN-based structures.
Their investigation focused on analyzing how various factors, such as the size of the data
set, the distribution of the data, and the alignment of the person in the image, influence the
quality of generated images. To validate editing techniques with this dataset, SOTA facial
StyleGAN-based architectures like InterFaceGAN [28], StyleSpace [31], and SeFa [26] are
evaluated. Text2Human [8] also uses the SHHQ dataset and generates synthesized images
by applying a human posture, a textual description of the garment’s texture and shape as
inputs. To encode the images, they implemented a hierarchical Vector-Quantized Variational
Autoencoder (VQVAE) framework [4] with a texture-aware codebook. In contrast to earlier
research, which constrains the verbal proficiency of the input text owing to sparsing the text
into a closed set of categories, a recent work named FICE [20] suggests a latent-code regu-
larization approach using a text-conditioned editing model. While the FICE model performs
high-quality image editing, experiments on full-body human images are not explored.

3 Fashion Image Editing using proposed TD-GEM
To achieve image manipulation, it is necessary to obtain a latent representation of the source
image within the latent space, which can be carried out by GAN inversion. Then images can
be edited using methodologies such as latent optimizer, StyleCLIP mapper, or our proposed
mapper network. Our approach involves a two-stage process for image editing, wherein
we explore the surrounding area of the latent code to identify a latent representation cor-
responding to the edited image through a loss function. Once this representation has been
determined, we input the code into the GAN architecture to generate the desired edited im-
age. Further information on GAN inversion and other editing platforms, including latent
optimizer and StyleCLIP mapper, can be found in the Supplementary Materials.

In this paper, we introduce TD-GEM as an innovative approach to manipulating garment
attributes using a single mapper network. We drew inspiration from the HairCLIP tech-
nique developed by [30], which enhanced previous works such as StyleCLIP. HairCLIP uses
additional loss functions and changes the mapper architecture to enable accurate attribute
manipulation while preserving irrelevant parts of the image.

TD-GEM extends HairCLIP’s capabilities by adapting the loss functions to the fashion
domain allowing for simultaneous editing of both the length of the sleeves and the color
of the clothing using a single mapper network. The mapper’s definition is expressed as
M = (Mc,Mm,M f ). The structure of the mapper is comprised of three distinct sub-modules,
each represented as Mc, Mm, and M f . These sub-modules correspond to the varying degrees
of detail present in the images that are generated (Figure 2). We inject information about the
form and shape of the clothing (ts) into all three sub-modules and color information (tc) into
the final one. This is in contrast to HairCLIP, where hairstyle information is injected into
the first two layers and color information into the last one. Our mapper receives the latent
code of an image through a GAN inversion operation, such as PTI, and text embeddings
obtained by feeding the textual description into the encoder of a pre-trained CLIP network.
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Figure 2: The TD-GEM architecture includes an input image that undergoes inversion via
PTI. The output is then passed through the mapper network to obtain a residual, ∆w. The
mapper network is composed of three parts, all of which receive text-conditioned input re-
lated to the clothing’s form and shape. The final part also receives color-conditioned in-
formation. The resulting latent code, w′, is subsequently fed into a pre-trained StyleGAN
generator to produce the edited image. The loss function is designed to modify the image’s
attributes as described in the text while preserving the irrelevant parts.

Based on this methodology, the mapper produces a residual latent code ∆w. This code is
then added to the original latent code of the image, resulting in w′ = w+∆w, and provided
to the StyleGAN architecture to generate the edited image.

Each sub-mapper consists of five layers, each consisting of a pixel-norm, fully connected
layer, modulation layer, and leaky ReLU activation. The modulation layer of the network
encodes the text input information and receives the information from text embeddings and
the previous fully connected layer [30]. It processes the text input:

y′ = 1+ fγ(e)
y−µy

σy
+ fβ (e) (1)

where y′ in the output of the modulation network, e refers to the text embedding obtained
from the input text t, and the parameters µy and σy represent the mean and standard deviation
of the intermediate feature y. The neural networks fγ and fβ consist of a fully connected layer
with layer normalization and leaky ReLU activation, and another fully connected layer. The
modulation layer provides semantic alignment and its architecture is illustrated in Figure 2.

To enhance the manipulation accuracy and encourage disentanglement during the editing
process, the following loss function is utilized for training the TD-GEM mapper network.

Lt = λCLIPLCLIP +λ2Lnorm +λIDLID +λcolorLcolor +λBGLBG (2)

The CLIP and identity loss functions, LCLIP,LID, are as prescribed in [19]. The locality of
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the edit is ensured by the Lnorm loss as

Lnorm = ∥M(w,ECLIP(t))∥2, (3)

The color composition of the clothing is maintained by introducing a color loss Lcolor. A pre-
trained parsing network P [1] is employed to segment the human instance into foreground
and background parts. The foreground area of the image comprises the shirt, dress, coats,
neck, and arms, and the rest is assumed as the background. The color loss is only applied to
the foreground as

Lcolor = ∥avg(G(w′) ·P(G(w′)))−avg(G(w) ·P(G(w)))∥1, (4)

where ∥ · ∥1 is the L1 norm, G(w) is the original image, G(w′) is the edited image, G() ·P()
is the foreground and avg is the mean value for each channel. The image is first transformed
from RGB color to XY Z and then to LAB coordinates to obtain the average.

To ensure that irrelevant parts of the image are kept untouched, a background loss is
applied. It is defined as

LBG = ∥(G(w′)−G(w)) · (¬P(G(w′))∩¬P(G(w)))∥2. (5)

where ∥ · ∥2 denotes the L2 norm. During training, we obtain foreground masks for both the
original and edited images at each iteration. We combine these masks to obtain a union,
which represents the editable area, while the rest of the image constitutes the background.
Mathematically, we express the background as ¬(P(G(w′))∪P(G(w))), which is equivalent
to ¬P(G(w′))∩¬P(G(w))). By applying the L2 norm in the background loss, we ensure that
the original and edited images are similar for the areas included in the background.

4 Experiments

4.1 Dataset
We employ the SHHQ dataset for the experiments in this paper. It consists of high-quality,
full-body fashion, human-centric images. It contains 230K fashion images in diverse poses
and textures, with a resolution of 1024×512 pixels. However, only 40K images are presently
accessible to external researchers. We have selected 2200 samples with mostly short-sleeved
or sleeveless attributes to either lengthen sleeves or change the color. The dataset is split into
a 90/10 ratio for training and testing, using 2000 samples for training and 200 for testing.

4.2 Implementation Detail
For this experiment, the development is carried out within a dockerized environment utilizing
a NVIDIA GeForce 3090 GPU with 24GB VRAM. The code is implemented using PyTorch
1.9.1 and Cuda 11.4. In this work, we train a mapper, M, to manipulate images, leveraging
a pre-trained StyleGAN2-ADA generator G [11], a pre-trained CLIP model [21], and a pre-
trained parsing network, P [1].

4.3 Comparisons and Evaluation
This section presents the results of TD-GEM for the manipulation of full-body human images
in the fashion domain. To assess the preservation of the shape and patterns of the clothing,
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Figure 3: The TD-GEM network is employed to alter the length of the sleeves and the color
of the clothing to blue and green.

several samples are presented in Figure 3. The last two experiments are conducted where the
color is changed to blue and green, respectively (last two rows). The body configurations,
faces, and hairs are well preserved, while the garment color is changed to blue. The degree
of color saturation varies, but the color attribute is successfully modified in all images. Color
leakage is observed in one image, where the trousers are painted green (Figure 3b). The
results indicate that the patterns of garments are well-preserved, even for complicated pat-
terns with more detailed garments, as seen in Figure 3(d-h), where the garment has a more
complicated shape and wrinkles.

A quantitative comparison is made between different approaches, including the latent
optimizer, StyleCLIP mapper, and TD-GEM, all in the context of sleeve lengthening. The
outcomes of this comparison, using four distinct measures, are presented in Table 1.

The scores for the background represent the degree of disentanglement in the image
manipulation. In the TD-GEM case, the background is preserved with the same quality as the
StyleCLIP mapper case, with the Fréchet Inception Distance (FID) score of O(10−2) for both
cases. Although the FID score in TD-GEM is worse than the StyleCLIP mapper case, the
Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) scores
show an improvement. The color composition in both cases is almost the same, where the
better results belong to the TD-GEM network. The evaluation of the image manipulation in
the foreground is performed based on the qualitative results, as the metrics do not accurately
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reflect the editing quality occurring in the foreground.
We also investigate the advantages of incorporating semantic injection into the fine mod-

ule, as presented in Table 2. This approach enhances the preservation of background details
in the edited image, as indicated by the improvement across all metrics. For a more detailed
analysis, please refer to the supplementary materials.

A comparison between the TD-GEM and supervised and unsupervised editing methods
by [5] is shown in Figure 4. Two samples from the test dataset are edited using four ap-
proaches, and the results are illustrated in the top and bottom rows. InterFaceGAN radically
changes the shape and form of the garment, while StyleSpace provides a better solution but
still has some issues with the form of the clothing. SeFa presents promising results, but the
disentanglement property is not successfully enforced. The shape of the shoes is not pre-
served, as can be seen in Figure 4b. On the other hand, the TD-GEM performs the best by
successfully lengthening sleeves up to the wrist and keeping the other unrelated attributes un-
touched. The quantitative scores for TD-GEM are compared with the three aforementioned
methods in Table 3. FID scores show an order of magnitude better performance for TD-GEM
in the background region. The SSIM and PSNR scores are also substantially higher for our
proposed approach. Furthermore, ACD scores in TD-GEM are superior to InterFaceGAN
and SeFa, and similar to StyleSpace. It’s important to highlight that our measurement scores
may not provide a precise assessment of the quality in the foreground; hence the comparison
was conducted using the outcomes of qualitative analysis. As per our analysis, the approach
we proposed yields superior outcomes when compared to the baseline methodologies.

5 Discussion and Conclusion
This paper has presented a novel approach for full-body human fashion image editing
through textual input descriptions. The image manipulation process involves two stages:
firstly, obtaining a latent representation of the image in the latent space of a pre-trained net-
work, and secondly, editing the image by navigating semantically along with the relevant
directions using a pre-trained language model CLIP. To this end, we employed PTI as a
GAN inversion technique, given its accurate result. To proceed with attribute editing, our
proposed TD-GEM can manipulate the sleeve length and color of a garment, integrating new

Table 1: Comparison of different networks in the context of lengthening sleeves

Methods Sec. FID ↓ SSIM ↑ PSNR ↑ ACD ↓
Latent Optimizer [19] Back. 0.126 0.853 17.059 0.278

StyleCLIP Mapper [19] Back. 0.021 0.919 24.293 0.165

TD-GEM Back. 0.030 0.935 27.543 0.146

Table 2: The quantitative scores for the case with and without injection in the fine module
for the lengthening sleeves

Method Sec. FID ↓ SSIM ↑ PSNR ↑ ACD ↓
TD-GEM Back. 0.030 0.935 27.543 0.146

w/o fine injection Back. 0.089 0.925 26.883 0.209
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Figure 4: The figure compares various methodologies for manipulating human clothing, in-
cluding InterFaceGAN, StyleSpace, SeFa, and the TD-GEM network. The first three meth-
ods are based on the work by [5]. Two samples from the testing dataset are shown in the two
rows (a) and (b).

Table 3: The quantitative comparison through lengthening sleeves. TD-GEM exhibits supe-
rior performance in both foreground and background areas.

Method Sec. FID ↓ SSIM ↑ PSNR ↑ ACD ↓
TD-GEM Back. 0.030 0.935 27.543 0.146

InterFaceGAN [28] Back. 0.199 0.864 16.794 0.712

StyleSpace [31] Back. 0.102 0.898 22.725 0.137

SeFa [26] Back. 0.176 0.882 20.540 0.244

loss functions that accomplish full-body human image editing. We discovered that incorpo-
rating semantic injection into the fine-mapper enhances image editing outcomes, while the
impact on identity loss remains relatively insignificant. Extensive experiments demonstrate
that our solution can achieve high-quality fashion image editing results. It outperforms com-
peting methods, including the latent optimizer and the StyleCLIP mapper network, in terms
of accuracy and reduction of computational complexity. This is achieved by training only
one network for color or sleeve-length textual descriptions. Nonetheless, text-conditioned
fashion image editing still requires further exploration, particularly with complex pattern
clothing. Furthermore, the findings from our study will serve as a benchmark for future pro-
cesses involving full-body human fashion image editing. This foundation can be expanded
upon using large text-image fashion datasets, incorporating diverse textual prompts such as
"shortening sleeve length," "adding stripes," and "incorporating patterns," among others.
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Supplementary Material

A Explanation editing

A.1 GAN Inversion
A crucial aspect of an effective inversion approach is its ability to balance the trade-off
between distortion and editability. Specifically, the method should be capable of preserving
the original appearance of an image (i.e., low distortion) while enabling convincing attribute
modifications (i.e., high editability). One such method that claims to achieve this goal is PTI,
as introduced by [23]. This technique employs an off-the-shelf encoder, such as e4e, to
derive a latent code for the StyleGAN architecture. However, the encoder’s output can result
in distortion in the reconstructed image compared to the original, which is known as the
identity gap. To address this issue, they fine-tuned the generator to preserve the image’s
identity. The process of adjustment can be analogized to the act of aiming a dart towards a
target and subsequently realigning the board to account for a near-miss.

In this paper, we utilized a pre-trained e4e encoder for the inversion, as provided by [5],
with further fine-tuning of the generator based on a specific loss term. The loss function
L(θ) was defined as the sum of the learned perceptual image patch similarity loss function
(LLPIPS) and the pixel-wise mean square error (L2),

L(θ) = 1
N

N

∑
i=1

LLPIPS(xi,G(wi : θ))+λ2L2(xi,G(wi : θ)), (A1)

with a hyperparameter λ2 set to 1. The aim of the optimization is to determine the optimal
parameters θ ∗ for the generator G, based on the output of the e4e encoder wi for each image
xi in the dataset of size N. We used the AlexNet network to calculate the perceptual loss, with
the learning rate set to 5×10−4, a maximum number of iterations, 3500, and a convergence
tolerance of 10−4.

A.2 Latent optimizer
The latent optimizer framework is an image manipulation approach that relies solely on
solving a direct optimization problem [19]. This framework uses the GAN inversion to
first invert an image into a latent code. Then, an optimization problem is solved using a
loss function to find the latent code residual. The residual is added to the original latent
representation and fed into the StyleGAN to obtain the edited image (Figure A1).

The loss function is as follows:

Lt =λCLIPLCLIP +λ2∥∆w∥2 +λIDLID (A2)

The clip loss LCLIP is designed to guide the optimization process toward achieving the
attribute described in the input text. To accomplish this, the embeddings of both the input
text (t) and the generated image (G(w′)) are obtained in a shared space using the pre-trained
CLIP encoder, and their cosine similarity is considered in the loss function:

LCLIP = 1− cos(ECLIP(G(w′)),ECLIP(t)), (A3)
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Figure A1: The manipulation of garments through lengthening sleeves via the use of the
latent optimizer approach.

The term ∥∆w∥2 ensures exploration within the vicinity of the original latent representa-
tion. This term guarantees a localized manipulation of the initial image.

To preserve the identity of the original image, an identity loss term LID is used. It calcu-
lates the mean square error between the features of the original and edited images obtained
from the last layer of a pre-trained ConvNeXt network.

LID = MSE(R(G(w)),R(G(w′))). (A4)

where MSE is the mean square error, R is the pre-trained ConvNeXt network [15], and
R(G(w)) and R(G(w′)) are the features of the ground truth and generated images, respec-
tively.

A.3 StyleCLIP Mapper
The latent optimizer framework is not efficient in terms of image editing due to the need
to solve an optimization problem for each image. To address this issue, [19] introduced a
mapper network that can infer the manipulated image based on a given input text, making
the process more efficient. The mapper network is first trained on the training dataset. It
is then used to edit new images from the testing dataset. The architecture of the mapper
is designed with three distinct sub-modules, each responsible for different aspects of the
generated image (Figure A2). These sub-modules are divided into coarse, medium, and
fine clusters, which control the corresponding structures in the image. A more detailed

Figure A2: The StyleCLIP mapper network is utilized to increase the length of sleeves.
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description of the architecture can be found in [19]. The input image is first inverted during
editing, and the resulting latent code is fed into the mapper to obtain a residual latent code.
This residual latent code is then added to the original latent code and passed through the
pre-trained StyleGAN generator to produce the edited image. The loss function is defined
as:

Lt =λCLIPLCLIP +λ2∥Mt(w)∥2 +λIDLID (A5)

where Mt(w) is the output of the mapper designed for the input text, t. The clip and identity
losses are the same as described in section A.2.
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B Detailed evaluation

B.1 Pivotal Tuning Inversion (PTI)
This section presents the results of PTI, one of the GAN inversion approaches. Figure B3 dis-
plays a selection of sample images obtained using PTI. The method successfully preserves
fine-grained details, such as facial features and hair, while maintaining the correct configu-
ration of the human body, including the posture of hands, legs, and shoes. Additionally, the
clothing attributes, including the shape, color, and patterns, are accurately preserved, with no
missing fashion items in the inverted results. These findings demonstrate the effectiveness
of PTI in achieving high-quality GAN inversion with a faithful representation of the input
images’ attributes. The quantitative analysis further supports the superiority of the PTI ap-
proach over e4e, as shown in Table B1. The FID scores decrease significantly from 0.245
to 0.005 compared to e4e, while SSIM scores improve by 11.3% from 0.836 to 0.943. The
PSNR score also increases from 19.136 to 32.013, demonstrating a 40.2% improvement. Fi-
nally, color composition scores exhibit significantly enhanced performance, improving from
0.108 to 0.007.

B.2 Latent optimizer
In this section, we present the outcomes of image manipulation using the latent optimizer ap-
proach. Figure B4 displays a collection of sample images obtained by lengthening the sleeves
of the garments using this approach. The text prompt for this operation is "A long sleeve."
The generated images demonstrate successful attribute modification, with the sleeves appear-

Figure B3: This is a collection of qualitative outcomes for PTI single-mode inversion, where
the top row displays the original image, and the bottom row exhibits the corresponding in-
verted ones.

Table B1: The quantitative results for PTI inversion are compared with e4e using different
metrics.

Method FID ↓ SSIM ↑ PSNR ↑ ACD ↓
e4e 0.245 0.836 19.136 0.108
PTI 0.005 0.943 32.013 0.007
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Figure B4: The result for manipulating garments by lengthening sleeves with latent opti-
mizer.

ing longer in all cases. However, extensive distortion is observed in the results. The shape
of the heads and faces are changed in all images of Figure B4(a-h), and the body configu-
ration, including the posture of hands, feet, and main body, is not conserved. For example,
in Figure B4(a), the angle of the hands and the posture of the legs are different from the
original image. In Figure B4(g), the shape of the shoes deviates from the original ones, and
the pattern of the clothing is not similar. Nonetheless, the color composition in all images is
successfully maintained.

It is possible to improve the quality of the results of the latent optimizer by introducing
more losses. However, the main disadvantage of the method is that an optimization problem
must be solved for each individual image, which is practically inconvenient. Therefore, we
examine other methodologies that do not have this limitation in the next sections.

B.3 StyleCLIP

The StyleCLIP mapper network is evaluated, and the results show that the images are edited
successfully, with the shape and configuration of hairs and faces maintained during editing
(Figure B5). However, there are some small deviations, such as the shape of the fingers in
the left hand not being the same as in the source image (Figure B5b). The color composi-
tion and pattern preservation are problematic, with the pattern of the clothing disappearing
in some images and differences in color between the source and edited images being ob-
served. The quantitative analysis reveals that the StyleCLIP mapper network has improved
the background presentation (Table 1), with better FID, SSIM, PSNR scores, and color com-
position compared to the latent optimizer scheme. However, there are dramatic changes in
the foreground in ACD scores, indicating inferior preservation of the color composition.

B.4 TD-GEM

The quantitative comparison of color and sleeve manipulations using TD-GEM is provided
in Table B2. The scores for the background region are almost the same for both colors. The
SSIM and PSNR values are also very close. The ACD scores in the foreground indicate
a significant change in the color attribute, which shows the color attribute is successfully
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Figure B5: The StyleCLIP mapper network is utilized to extend the length of the sleeves.

Table B2: TD-GEM network by editing sleeve and color

Text Sec. FID ↓ SSIM ↑ PSNR ↑ ACD ↓
sleeve Back. 0.030 0.935 27.543 0.146

blue Back. 0.017 0.956 31.607 0.191

green Back. 0.030 0.956 31.608 0.294

modified. However, a higher value of the color score for the green color in the background
could be related to the color leakage effect.
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C Implementation details
Table C3 presents the coefficients for the loss function employed in this study. Notably,
these coefficients differ when editing sleeve length and garment color, with a higher back-
ground coefficient used during color editing. The training process utilizes 100k steps (e.g.,
50 epochs) and a learning rate of 5×10−4 with a “Ranger" optimizer.

C.1 Ablation Study
This section investigates the efficacy of two key assumptions: identity loss and semantic
injection across all layers.

We first analyze the impact of incorporating semantic injection into all three mappers
while editing the sleeve length, as demonstrated in Figure C6. In scenario (a), the image
generated without fine injection exhibit artificial vertical straw compared to the ground truth.
However, this artifact disappears when all three mappers are employed. In scenario (b), the
presence of all three mappers leads to better preservation of the wrinkle.

Next, we conduct a second ablation study focusing on the role of identity loss. Generally,
identity loss has a minor influence on the outcomes. Its significance becomes more apparent
during the color editing process. Figure C7 displays edited images both with and without the

Table C3: Coefficients corresponding to various terms within the loss function.

Case λCLIP λ2 λID λcolor λBG

sleeve 1.0 1.0 1.0 5×10−3 0.3
color 1.0 1.0 1.0 5×10−3 1

Figure C6: The effect of semantic injection into the fine mapper in lengthening the sleeves.
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Figure C7: The effect of identity loss in editing the color.

identity term, taking into account the input description that specifies color alterations to either
blue or green. When the identity loss is omitted, the color change appears muted in both
scenarios (a) and (b). Conversely, the inclusion of identity loss results in more noticeable
color variations.
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D Additional Examples
Figure D8 shows a set of qualitative results from this method. The degree of disentanglement

Figure D8: The images are edited by TD-GEM network; the length of sleeves is increased.

in the generated images is quite acceptable, with preserved details in the person’s configu-
ration, including hands, legs, and main body, which have the same postures, shapes, and
contours as the original images. In contrast to the previous StyleCLIP mapper network, the
finger details are well preserved in the edited images, as seen in Figure D8b. Additionally,
the faces and hair in the manipulated images are indistinguishable from the original images
due to interpolation between the original and edited images, which improves the quality of
those regions. The color composition in the TD-GEM network is remarkably better than the
previous StyleCLIP mapper network, as seen in Figure D8h, where only slight deviations
between the original yellow and edited yellow are observed.


