
GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING 1

Mobile Vision Transformer-based Visual
Object Tracking

Goutam Yelluru Gopal
g_yellur@encs.concordia.ca

Maria A. Amer
amer@ece.concordia.ca

Department of Electrical and Computer
Engineering
Concordia University, Montréal
Québec, Canada

Abstract

The introduction of robust backbones, such as Vision Transformers, has improved
the performance of object tracking algorithms in recent years. However, these state-of-
the-art trackers are computationally expensive since they have a large number of model
parameters and rely on specialized hardware (e.g., GPU) for faster inference. On the
other hand, recent lightweight trackers are fast but are less accurate, especially on large-
scale datasets. We propose a lightweight, accurate, and fast tracking algorithm using
Mobile Vision Transformers (MobileViT) as the backbone for the first time. We also
present a novel approach of fusing the template and search region representations in
the MobileViT backbone, thereby generating superior feature encoding for target local-
ization. The experimental results show that our MobileViT-based Tracker, MVT, sur-
passes the performance of recent lightweight trackers on the large-scale datasets GOT10k
and TrackingNet, and with a high inference speed. In addition, our method outper-
forms the popular DiMP-50 tracker despite having 4.7× fewer model parameters and
running at 2.8× its speed on a GPU. The tracker code and models are available at
https://github.com/goutamyg/MVT.

1 Introduction

The two prominent paradigms of visual object tracking algorithms are Discriminative Cor-
relation Filters (DCFs) and deep Siamese Networks (SNs) [17]. The DCF-based trackers
[1, 9, 14] localize the target object based on the filter response generated by convolving the
features extracted from the search region with the filter coefficients learned from the tar-
get template. The SN-based trackers [5, 19, 30] perform the cross-correlation (or similar)
operation between features extracted from the template and search regions to generate the
response map for target localization and bounding box estimation. The explicit learning of
target-specific filter coefficients in DCF tracking increases their robustness against semantic
background regions compared to SN trackers; however, SNs are faster due to their sim-
pler model architecture supporting end-to-end evaluation on a GPU. With the adoption of
powerful backbones and effective feature fusion techniques, SN trackers have shown state-
of-the-art performance on various benchmarks [12, 15, 23].

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Javed, Danelljan, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Bhat, Danelljan, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Danelljan, Bhat, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{Henriques, Caseiro, etprotect unhbox voidb@x protect penalty @M {}al.} 2015

Citation
Citation
{Chen, Yan, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Lin, Fan, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Fan, Bai, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Huang, Zhao, and Huang} 2021

Citation
Citation
{Muller, Bibi, etprotect unhbox voidb@x protect penalty @M {}al.} 2018

https://github.com/goutamyg/MVT

2 GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING

Feature representation of the target object plays a crucial role in tracker performance
[28]. Most SN trackers use the ResNet [13] backbone for feature extraction, with ResNet-
50 and ResNet-101 being the popular choices. The more recent trackers use pre-trained
Vision Transformer (ViT) models [11, 29] as their backbone, surpassing the performance
of ResNet-based SN trackers. However, a notable disadvantage of ViT-based trackers is the
complexity of their backbone, both in terms of memory (a large number of model parameters)
and latency (low inference speed). By deploying these models, achieving high tracking speed
on an ordinary CPU or mobile device is challenging. This limitation severely restricts the
usage of such tracking algorithms for several resource-constrained applications.

On the other hand, most lightweight tracking algorithms deploy compact convolutional
neural network (CNN) backbones to minimize the model latency. The inductive biases of
convolutional blocks effectively model the spatially local information related to the target
object but fail to capture the global relations essential for accurate target state estimation
in tracking [30]. Such a lack of global association between the template and search region
in the backbone increases the burden on the feature fusion module (or the neck) to gener-
ate the fused encoding favorable for accurate and robust tracking. The self-attention-based
Transformers [27] as the backbone is effective at global contextual modeling and have been
excellent for tracking [7, 33]; however, they are computationally expensive.

In this paper, we are the first to investigate the usefulness of Mobile Vision Transformers
(MobileViTs) as the backbone for single object tracking to present a lightweight but high-
performance tracking algorithm, MVT. The recent MobileViTs [22] for image classification
are known for their low latency, lightweight architecture, and adaptability to downstream
tasks, e.g., object detection and semantic segmentation. In addition, while all the related
lightweight trackers independently compute the template and search region features in their
respective backbone, our MVT algorithm employs a hybrid feature extraction method where
template and search regions are blended in the backbone by our novel Siamese Mobile Vision
Transformer (Siam-MoViT) block.

2 Related Work
Multiple SN-based lightweight trackers have been presented in the last few years. LightTrack
[31] employed Neural Architecture Search [6] to present an efficient tracking pipeline. It de-
signed a search space of lightweight building blocks to find the optimal backbone and head
architectures with pre-set constraints on the number of model parameters. E.T.Track [2] in-
corporated Exemplar Transformers for tracking to achieve real-time speed on a CPU. It used
a stack of lightweight transformer blocks in the head module to perform target classifica-
tion and bounding box regression. FEAR [3] tracker deployed a dual-template representa-
tion to incorporate temporal information during tracking. With a compact backbone, FEAR
achieved over 200 frames-per-second (fps) speed on iPhone 11 with negligible impact on
battery level. Stark-Lightning [30] used a RepVGG [10] backbone and a transformer-based
encoder-decoder architecture in the neck module to model spatio-temporal feature depen-
dencies between the target template and search regions. HiFT [4] proposed a hierarchical
feature transformer-based approach for aerial tracking. It generated hierarchical similar-
ity maps from the multi-level convolutional layers in the backbone network to perform a
transformer-based fusion of shallow and deep features. SiamHFFT [8] extended the hierar-
chical feature fusion approach by [4] to model the inter-dependencies within the multi-level
features and achieve high tracking speed on a CPU.

Citation
Citation
{Wang, Shi, etprotect unhbox voidb@x protect penalty @M {}al.} 2015

Citation
Citation
{He, Zhang, etprotect unhbox voidb@x protect penalty @M {}al.} 2016

Citation
Citation
{Dosovitskiy, Beyer, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Wu, Xiao, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Vaswani, Shazeer, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{Cui, Jiang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Ye, Chang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Mehta and Rastegari} 2022

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Chen, Yang, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Blatter, Kanakis, etprotect unhbox voidb@x protect penalty @M {}al.} 2023

Citation
Citation
{Borsuk, Vei, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Ding, Zhang, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Cao, Fu, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Dai, Fu, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Cao, Fu, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING 3

Figure 1: The pipeline of the proposed MVT tracker and our Siam-MoViT block. The
backbone consists of MobileNetV2 [25] (or MV2) and Siam-MoViT blocks for feature
extraction. ↓2 indicates spatial downsampling by a factor of 2. Details of our Siam-MoViT
block can be found in Section 3.

Among the related lightweight trackers, LightTrack is closest to our work, having similar
neck and head modules but a different backbone. Stark-Lightning uses a transformer-based
neck module to fuse features from the template and search regions. In contrast, the pro-
posed MVT uses a simple, parameter-free cross-correlation operation in its neck module.
E.T.Track uses a transformer-based head module, while our MVT’s head module is built us-
ing a fully convolutional network. As a post-processing step, the related trackers LightTrack
and E.T.Track refine their predicted bounding boxes by penalizing significant changes in
bounding box size and aspect ratio between consecutive frames. Unlike these trackers, the
proposed MVT does not perform such heuristic-based bounding box refinements.

Most importantly, all the related lightweight trackers use a two-stream approach during
feature extraction, i.e., the backbone features from the template and search region are com-
puted independently. Such a two-stream computation limits the interaction between the tem-
plate and search regions to the neck module only, resulting in inferior tracking performance.
To alleviate this problem, we propose a hybrid feature extraction method where template and
search regions are blended in the backbone by our novel Siam-MoViT block, as shown in
Figure 1. The resulting entangled feature representation generated using our Siam-MoViT
block improves the tracker performance while maintaining high inference speed. Efficient
transformer architectures is an emerging research topic [26] and has been unexplored by pre-
viously proposed lightweight trackers. To our knowledge, we are the first to use MobileViT
as the backbone for object tracking. We are also the first to propose a tracking pipeline with
a joint feature extraction and fusion approach in the tracker backbone.

Our contributions in this paper are thus:

• A novel lightweight tracking algorithm using MobileViTs. We show that the proposed
MobileViT-based tracker performs better than related lightweight trackers.

• A hybrid feature extraction approach, intertwining the template and search regions
using our Siam-MoViT block, producing better features for target state estimation.

Citation
Citation
{Sandler, Howard, etprotect unhbox voidb@x protect penalty @M {}al.} 2018

Citation
Citation
{Tay, Dehghani, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

4 GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING

3 Proposed Mobile Vision Transformer-based Tracker
In this section, we discuss the pipeline of our MVT algorithm for single object tracking
(shown in Figure 1) and information related to model training.

3.1 Proposed MVT Backbone and the Siam-MoViT block
The input to our MVT backbone is a pair of the target template and search region image
patches, Zin ∈ RWz×Hz×3 and Xin ∈ RWx×Hx×3, respectively. The tracker backbone consists
of cascaded MobileNetV2 [25] and the proposed Siam-MoViT blocks, as shown in Figure
1. These modules process the input image patches sequentially, with recurrent spatial down-
sampling operations to reduce the feature dimensionality. The proposed Siame-MoViT block
uses a modified MobileViT block [22], especially around the transformer encoder, to accom-
modate features from the template and search region.

Our Siam-MoViT block receives a pair of intermediate feature maps Z and X , belonging
to the template and search regions, respectively. We assume that Z and X have C channels.
Inside the Siam-MoViT block, first, we apply a 3× 3 convolutional filter to learn spatially
local feature representations. It is followed by a 1× 1 convolutional filter, projecting the
features onto a D-dimensional space as a linear combination of C input channels. Next,
we perform the unfold and concatenate operation (cf. Figure 1), where we divide the fea-
ture maps X and Z into N non-overlapping patches of size w× h. We then flatten these
patches to generate tokens of size P×N ×D, where P = w · h and N = W ·H

P . These tokens
are concatenated and passed through a series of L transformer blocks to encode the global
relationship between the template and search regions. Our implementation uses the stan-
dard multi-headed self-attention transformer encoder blocks [27]. This operation of learning
self-attention on the concatenated features facilitates the exchange of information between
template and search regions, thereby generating high-quality encodings for robust target lo-
calization. To restore the spatial ordering of feature maps, we split the output tokens from the
transformer and re-arrange them to obtain feature maps of size Hz×Wz×D and Hx×Wx×D,
shown as the split and unfold operation in Figure 1. Then, we re-map the number of chan-
nels from D to C by applying a 1×1 convolutional filter and concatenate the resulting feature
maps with the inputs to the Siam-MoViT block, i.e., Z and X . Finally, we apply a 3×3 con-
volutional filter on the concatenated feature maps to generate the output of our Siam-MoViT
block, denoted as Z̃ and X̃ , having the same size as Z and X , respectively. Note that all the
MobileNetV2 blocks in the backbone and the CNN blocks within the Siam-MoViT block are
applied separately to template and search regions, as shown in Figure 1, with shared weights.

3.2 Neck and Head Modules
The output from the last layer of the MVT backbone has feature maps corresponding to the
template and search region. We fuse these features in the neck module to generate an encoded

feature representation fzx ∈ R
Hz ·Wz

162 ×Hx
16 ×

Hx
16 for target state estimation. For this, we use a

simple pointwise cross-correlation operator [32] in the neck module, the same as LightTrack
[31]. We use a layer of batch-normalization (BN) [16] before performing cross-correlation.
We then apply a 1× 1 convolutional channel-adjust layer on fzx to match the number of
channels between fzx and the head module.

For classification and regression, we adopt the head module from [33], which uses a fully
convolutional network (FCN) to perform target classification and bounding box regression.

Citation
Citation
{Sandler, Howard, etprotect unhbox voidb@x protect penalty @M {}al.} 2018

Citation
Citation
{Mehta and Rastegari} 2022

Citation
Citation
{Vaswani, Shazeer, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{Yan, Zhang, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Ye, Chang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING 5

The FCN consists of a stack of five Conv-BN-ReLU blocks. The classification network
predicts a score map R∈ R

Hx
16 ×

Wx
16 , and the position of the maximum value in R is considered

as the target location. The regressor network predicts the normalized bounding box size (i.e.,
target width and height) and corresponding local offset values.

3.3 Loss Function for Training
During training, we use loss functions for the classification and regression output by the
head module of our MVT tracker. As in [33], we use the weighted focal loss Lcls to handle
the imbalance between positive and negative training examples for target classification. For
bounding box regression, same as [33], we use the ℓ1 and generalized IoU loss functions,
denoted by L1 and Lgiou, respectively. As in [33], we define the overall loss function as,

Ltotal = Lcls +λ1 ·L1 +λ2 ·Lgiou, (1)

where λ1 and λ2 are the hyperparameters controlling the relative impact of L1 and Lgiou on
the overall training loss.

4 Implementation Details and Experimental Results
This section discusses the implementation details of our MVT tracker and compares its re-
sults with related lightweight and state-of-the-art heavy trackers. We also discuss the ablation
study results for the proposed feature fusion and an attribute-based robustness analysis.

4.1 Implementation Details
We set the dimensions of the inputs to our MVT backbone, i.e., Zin and Xin from Section 3.1,
to 128×128 and 256×256, respectively. We divide our MVT backbone into five layers with
layer-ids for notation convenience, as shown in Figure 1. The number of channels in the
feature maps increases along these five layers as {3 → 16,16 → 32,32 → 64,64 → 96,96 →
128}. We set the number of transformer encoders for the proposed Siam-MoViT block in
layer-3 and layer-4 to 2 and 4, respectively. We set the parameters w = h = 2 for folding
and unfolding operations within our Siam-MoViT block. The number of upscaled channels
D in the Siam-MoViT block is set to 144 and 192 for layer-3 and layer-4, respectively.
The backbone has a stride of 16 (i.e., four downsampling operations, each by a factor of
two), resulting in feature maps of size 8×8 and 16×16 for the template and search regions,
respectively. The channel-adjust layer in the neck module, described in Section 3.2, upscales
the number of channels from 64 to 256.

We use the training split of the GOT10k dataset [15] to train our model. We use Adam-W
[21] as the optimizer with a weight decay of 10−4. We trained our model for 100 epochs
with 60000 image pairs per epoch, sampled from the training dataset. We use the validation
split of GOT10k to compute the values of Lcls, L1, and Lgiou from Eq. 1 during training to
examine the possibility of overfitting. We set the initial learning rate lr to 4×10−4 and use
cosine annealing [20] as the learning rate scheduler (without the warm restarts). We keep the
lr for the backbone module 0.1 times the lr for the rest of the network throughout training.
We use the data augmentation techniques horizontal flip and brightness jitter during training.
We initialize the backbone using the weights of the pre-trained MobileViT model provided
by its authors [22]. Like [22], we do not use positional embeddings for the transformer

Citation
Citation
{Ye, Chang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Ye, Chang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Ye, Chang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Huang, Zhao, and Huang} 2021

Citation
Citation
{Loshchilov and Hutter} 2019

Citation
Citation
{Loshchilov and Hutter} 2017

Citation
Citation
{Mehta and Rastegari} 2022

Citation
Citation
{Mehta and Rastegari} 2022

6 GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING

blocks in our MVT backbone. We set the hyperparameters λ1 and λ2 in Eq. 1 to 5 and 2,
respectively, as in [33]. We use a single Nvidia Telsa V100 GPU (32GB) for training and set
the batch size to 128.

Our choice of optimizer and hyperparameters is based on the training settings typically
used by the related trackers. We set our batch size based on the maximum number of images
that can be loaded onto the GPU used for training the model. We experimented using the
Ray-Tuner package in Pytorch [24] to search for the best set of hyperparameters jointly. First,
the hyperparameter search was time-consuming due to the sheer volume. Second, due to a
strong inter-dependency between some of the hyperparameters (e.g., batch size and learning
rate), it was challenging to find the optimal set using random search-based methods.

During inference, we define the search space at frame t by extracting an image patch
around the estimated target location at frame t −1, four times the area of the target template.
We apply a Hanning window on the classification score map R as the post-processing step.
After this multiplication, we determine the location of the highest value in R as the target
location, and we choose the corresponding bounding box as the tracker output. We define the
target annotation from the first frame as the template and do not perform any model update.
We generate the GPU-based inference results using an Nvidia RTX 3090 GPU.

4.2 Results and Comparison to Related Work
To demonstrate the effectiveness of the proposed MVT, we evaluate it using GOT10k-test
[15], TrackingNet-test [23], LaSOT-test [12], and NfS30 [18] datasets. GOT10k has 180 test
videos, with non-overlapping target classes from their training videos, to promote general-
ization during tracker development. TrackingNet has 511 challenging test videos with 15
attributes. GOT10k and TrackingNet datasets sequester the test set annotations and provide
an online evaluation server to submit the tracker results to ensure a fair evaluation. LaSOT
dataset has 280 test videos, with an average length of 2500 frames per video. NfS dataset has
100 videos captured at 240 and 30 fps; we use the 30 fps videos. GOT10k provides a train,
validation, and test split for its annotated videos, whereas TrackingNet and LaSOT provide
the train and test splits. NfS30 has only test videos in the dataset.

GOT10k uses Overlap Ratio (OR) and Success Rate (SR) at a threshold of 0.5 and
0.75 (i.e., SR0.50 and SR0.75) to quantify the tracker performance. Metric OR is equiv-
alent to Area Under the Curve (AUC) [34]. SR measures the fraction of frames where
the Intersection-over-Union (IoU) between groundtruth and predicted boxes is higher than
a threshold. TrackingNet uses AUC, Precision (P), and Normalized-Precison (Pnorm) for
tracker performance. Precision P measures the distance between centers of groundtruth
and predicted bounding boxes, whereas Pnorm computes the same metric using normalized
bounding boxes. For LaSOT and NfS30, we use the AUC and Failure Rate (FR) as the per-
formance metrics. FR calculates the fraction of frames where the tracker has drifted away,
i.e., its bounding box prediction has no overlap with the groundtruth (i.e., IoU score is zero).

We compare the results of the proposed MVT with the related lightweight trackers: Light-
Track [31], Stark-Lightning [30], FEAR-XS [3], and E.T.Track [2], evaluated using the pre-
trained models provided by their authors. From Table 1, we can see that our MVT outper-
forms all other lightweight trackers on the server-based test set of GOT10k and TrackingNet.
No related tracker scores second best constantly for these datasets. On GOT10k-test, our
tracker is better by at least 3.7%, 4.6%, and 7.3%, than the second best tracker in terms of
OR, SR0.50, and SR0.75, respectively. Recall that GOT10k-test has unseen object classes; this
indicates a higher generalization ability of MVT towards tracking novel object classes than

Citation
Citation
{Ye, Chang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Paszke, Gross, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Huang, Zhao, and Huang} 2021

Citation
Citation
{Muller, Bibi, etprotect unhbox voidb@x protect penalty @M {}al.} 2018

Citation
Citation
{Fan, Bai, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Kianiprotect unhbox voidb@x protect penalty @M {}Galoogahi, Fagg, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{…ehovin, Leonardis, and Kristan} 2016

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Borsuk, Vei, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Blatter, Kanakis, etprotect unhbox voidb@x protect penalty @M {}al.} 2023

GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING 7

Tracker GOT10k [15] (server) TrackingNet [23] (server) NfS30 [18] LaSOT [12] fps
OR ↑ SR0.50 ↑ SR0.75 ↑ AUC ↑ Pnorm ↑ P ↑ AUC ↑ FR ↓ AUC ↑ FR ↓ (GPU)

LightTrack [31] (CVPR’21) 0.582 0.668 0.442 72.9 79.3 69.9 0.582 0.146 0.524 0.116 99
Stark-Lightning [30] (ICCV’21) 0.596 0.696 0.479 72.7 77.9 67.4 0.619 0.111 0.585 0.151 205

FEAR-XS [3] (ECCV’22) 0.573 0.681 0.455 71.5 80.5 69.9 0.487 0.207 0.508 0.273 275
E.T.Track [2] (WACV’23) 0.566 0.646 0.425 74.0 79.8 69.8 0.589 0.172 0.597 0.162 53

MVT (ours) 0.633 0.742 0.551 74.8 81.5 71.9 0.603 0.085 0.553 0.137 175

Table 1: Comparison of related lightweight SN trackers with our MVT on server-based
GOT10k-test and TrackingNet-test, and groundtruth available NfS30 and LaSOT-test
datasets. The best and second-best results are highlighted in red and blue, respectively.

the related trackers. It also highlights the impact of feature fusion in our tracker backbone
compared to other two-stream-based lightweight trackers. We observe a similar behavior us-
ing the TrackingNet dataset, where our MVT performs better by approximately 2% in AUC,
P, and Pnorm than its competitor, LightTrack. No single tracker constantly performs better
in AUC or FR for the NfS30 and LaSOT datasets with groundtruth available for the test
sets. For NfS30, our tracker is better by 2.6% in FR than the second-best Stark-Lightning
while lower by 1.6% in AUC. For LaSOT, our tracker is lower by 2.1% than the second best
LightTrack in FR and by 4.4% than the best E.T.Track in AUC.

Across all the datasets and performance metrics, we can see that our tracker scores the
best in most cases (7/10) while being second best in 2/10 cases. Our closest competitor,
Stark-Lightning, scores the second-best 5/10 times and the best only once. Regarding speed,
our MVT runs 175 fps during GPU-based evaluation, that is, 15% slower than its competitor
Stark-Lightning, as shown in Table 1. It is because Stark-Lightning computes the template
region features only once during inference due to its two-stream tracking pipeline. In con-
trast, our MVT requires evaluation of the template features at every frame due to the entan-
glement of the template and search regions in its backbone, which impacts tracking speed.

4.3 Comparison to State-of-the-art trackers
In Table 2, we compare the proposed MVT to state-of-the-art (SOTA) heavyweight trackers
on server-based GOT10k and TrackingNet test datasets. We take the values of evaluation
metrics for these trackers from the respective papers; however, we compute their fps values
on a GPU (i.e., Nvidia RTX 3090) and a CPU (i.e., 12th Gen Intel(R) Core-i9 processor),
as shown in the last column of Table 2. As we can see, in comparison to the popular DCF-
based DiMP-50 [1], the deployment of transformers for feature fusion [5, 30] and as the
backbone [7, 33] has improved the tracker performance, but at the cost of increased compu-
tational complexity and lowered tracking speed due to higher number of model parameters.
In contrast, proposed MVT surpasses the performance of the popular DiMP-50 on GOT10k
and TrackingNet datasets with 4.7× fewer parameters while running at 2.8× and 2× its
speed on a GPU and CPU, respectively. Compared to the best-performing SOTA tracker
MixFormer-L [7] in Table 2, proposed MVT has 33.43× fewer model parameters and higher
fps, i.e., 3.87× on GPU and 5.88× on CPU, but has a lower AUC of 10.7% on average
across the two datasets. Our tracker provides a tradeoff between accuracy and complexity
for real-time applications with resource constraints.

4.4 Ablation Study
To analyze the effectiveness of the proposed feature fusion technique deployed in our MVT
backbone, we evaluate the performance of our tracker trained without the concatenation of

Citation
Citation
{Huang, Zhao, and Huang} 2021

Citation
Citation
{Muller, Bibi, etprotect unhbox voidb@x protect penalty @M {}al.} 2018

Citation
Citation
{Kianiprotect unhbox voidb@x protect penalty @M {}Galoogahi, Fagg, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{Fan, Bai, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Borsuk, Vei, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Blatter, Kanakis, etprotect unhbox voidb@x protect penalty @M {}al.} 2023

Citation
Citation
{Bhat, Danelljan, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Chen, Yan, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Cui, Jiang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Ye, Chang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Cui, Jiang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

8 GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING

Tracker GOT10k TrackingNet #params ↓ fps
OR ↑ SR0.50 ↑ AUC ↑ Pnorm ↑ (in millions) GPU ↑ CPU ↑

DiMP-50 [1] 0.611 0.717 74.0 80.1 26.1 61.5 15.0
TransT [5] 0.671 0.768 81.2 85.4 23.0 87.7 2.3

STARK-ST101 [30] 0.688 0.781 82.0 86.9 47.2 80 7.8
OSTrack-384 [33] 0.740 0.835 83.9 88.5 92.1 74.4 4.4
MixFormer-L [7] 0.756 0.857 83.9 88.9 183.9 45.2 < 5

MVT (ours) 0.633 0.742 74.8 81.5 5.5 175.0 29.4
Table 2: Comparison of our MVT with the state-of-the-art heavyweight trackers on server-
based GOT10k and TrackingNet test datasets. Best and second best results in accuracy and
complexity (i.e., # of parameters and fps) are highlighted in red and blue, respectively.

feature fusion GOT10k TrackingNet NfS30 LaSOT
in backbone OR ↑ SR0.50 ↑ AUC ↑ Pnorm ↑ AUC ↑ FR ↓ AUC ↑ FR ↓

✗ 0.600 0.703 74.9 80.0 0.566 0.122 0.544 0.163
✓(ours) 0.633 0.742 74.8 81.5 0.603 0.085 0.553 0.137

Table 3: Ablation study results related to the proposed feature fusion in our MVT backbone.
Best results are highlighted in red.

the template and search region features inside the proposed Siam-MoViT block (cf. Fig-
ure 1). Table 3 summarizes the ablation results on the four datasets discussed in Section
4.2. We can see that the proposed feature fusion improves the OR (or the equivalent metric
AUC) by 1.9% on average across all the datasets. It also increases the robustness of our
MVT tracker by reducing the FR on NfS30 and LaSOT datasets by 3.7% and 2.6%, respec-
tively. Learning self-attention on the concatenated features using the transformer blocks in
our MVT backbone facilitates the global relational modeling within and between the template
and search regions, thereby generating superior features for accurate target localization and
robust tracking.

4.5 Robustness Analysis

To analyze the robustness of the proposed MVT tracker against various challenging factors
(or attributes), we compute its FR for attributes annotated under the LaSOT dataset, namely
Aspect Ration Change (ARC), Background Clutter (BC), Camera Motion (CM), Deforma-
tion (DEF), Fast Motion (FM), Full Occlusion (FOC), Illumination Variation (IV), Low
Resolution (LR), Motion Blur (MB), Out-of-View (OV), Partial Occlusion (POC), Rotation
(ROT), Scale Variation (SV), and Viewpoint Change (VC). From Figure 2, we can see that
our MVT is most robust to target deformation (DEF) and appearance changes (VC). It is least
robust to attribute FM since we use a Hanning window on the classification score map during
target localization. However, not using the Hanning window deteriorates the robustness of
our tracker against BC and increases the overall FR, as we observed from our experiments.
Also, our MVT has a higher FR for videos under the attribute LR. These videos contain small,
texture-less target objects such as volleyball and yo-yo, which are generally fast-moving (i.e.,
FM) and are sensitive to BC. SOTA trackers address the challenges of FM, LR, and BC with
deep features and larger search area to avoid target loss, but these improvements come at the
expense of higher model complexity and memory footprint, as shown in Table 2.

Citation
Citation
{Bhat, Danelljan, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Chen, Yan, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Yan, Peng, etprotect unhbox voidb@x protect penalty @M {}al.} 2021{}

Citation
Citation
{Ye, Chang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

Citation
Citation
{Cui, Jiang, etprotect unhbox voidb@x protect penalty @M {}al.} 2022

GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING 9

Figure 2: Analyzing the robustness of our MVT based on its failure rate FR for different
attributes on the LaSOT test dataset. The average FR is 0.137.

5 Conclusion and Future Work

In this paper, we proposed MVT, our visual object tracking algorithm that uses, for the
first time, the Mobile Vision Transformers as the backbone. We also proposed the Siam-
MoViT block to model the global interactions between template and search regions in the
tracker backbone, thereby enhancing the quality of feature encodings for target localization.
Our simulation results showed that the proposed tracker performed better than the related
lightweight trackers on the large-scale GOT10k and TrackingNet datasets, showcasing the
effectiveness of the proposed tracking method. Despite having 4.7× fewer model parame-
ters, our MVT performs better than the popular DCF-based DiMP-50 tracker, while running
at least 2× its speed during CPU and GPU-based evaluation. Our ablation studies highlighted
the importance of the proposed feature fusion on our tracker performance.

In our future work, we plan to explore lightweight vision transformer backbone archi-
tectures to enhance the quality of encoded features further. Effective feature fusion in the
backbone can make the neck module redundant for lightweight tracking, simplifying the
tracking pipeline. We also plan to deploy and test our models on low-memory embedded
devices, such as smartphones.

References

[1] Goutam Bhat, Martin Danelljan, et al. Learning discriminative model prediction for
tracking. In Proc. IEEE Int. Conf. Computer Vision, pages 6182–6191, 2019.

[2] Philippe Blatter, Menelaos Kanakis, et al. Efficient visual tracking with exemplar trans-
formers. In IEEE Winter Conf. App. Computer Vision, pages 1571–1581, 2023.

10 GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING

[3] Vasyl Borsuk, Roman Vei, et al. FEAR: Fast, efficient, accurate and robust visual
tracker. In Proc. European Conf. Computer Vision, pages 644–663. Springer, 2022.

[4] Ziang Cao, Changhong Fu, et al. HiFT: Hierarchical feature transformer for aerial
tracking. In Proc. IEEE Int. Conf. Computer Vision, pages 15457–15466, 2021.

[5] Xin Chen, Bin Yan, et al. Transformer tracking. In Proc. IEEE Conf. Computer Vision
Pattern Recognition, pages 8126–8135, 2021.

[6] Yukang Chen, Tong Yang, et al. Detnas: Backbone search for object detection. Ad-
vances in Neural Information Processing Systems, 32, 2019.

[7] Yutao Cui, Cheng Jiang, et al. Mixformer: End-to-end tracking with iterative mixed
attention. In Proc. IEEE Conf. Computer Vision Pattern Recognition, pages 13608–
13618, 2022.

[8] Jiahai Dai, Yunhao Fu, et al. Siamese hierarchical feature fusion transformer for effi-
cient tracking. Frontiers in Neurorobotics, 2022.

[9] Martin Danelljan, Goutam Bhat, et al. ECO: Efficient convolution operators for track-
ing. In Proc. IEEE Conf. Computer Vision Pattern Recognition, pages 6638–6646,
2017.

[10] Xiaohan Ding, Xiangyu Zhang, et al. Repvgg: Making vgg-style convnets great again.
In Proc. IEEE Conf. Computer Vision Pattern Recognition, pages 13733–13742, 2021.

[11] Alexey Dosovitskiy, Lucas Beyer, et al. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

[12] Heng Fan, Hexin Bai, et al. LaSOT: A high-quality large-scale single object tracking
benchmark. Int. J. Computer Vision, 129:439–461, 2021.

[13] Kaiming He, Xiangyu Zhang, et al. Deep residual learning for image recognition. In
Proc. IEEE Conf. Computer Vision Pattern Recognition, pages 770–778, 2016.

[14] João F. Henriques, Rui Caseiro, et al. High-speed tracking with kernelized correlation
filters. IEEE Trans. Pattern Anal. Machine Intell., 37(3):583–596, 2015. doi: 10.1109/
TPAMI.2014.2345390.

[15] Lianghua Huang, Xin Zhao, and Kaiqi Huang. GOT-10k: A large high-diversity bench-
mark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Machine Intell.,
43(5):1562–1577, 2021. doi: 10.1109/TPAMI.2019.2957464.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

[17] Sajid Javed, Martin Danelljan, et al. Visual object tracking with discriminative filters
and siamese networks: A survey and outlook. IEEE Trans. Pattern Anal. Machine
Intell., pages 1–20, 2022. doi: 10.1109/TPAMI.2022.3212594.

https://openreview.net/forum?id=YicbFdNTTy

GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING 11

[18] Hamed Kiani Galoogahi, Ashton Fagg, et al. Need for speed: A benchmark for higher
frame rate object tracking. In Proc. IEEE Int. Conf. Computer Vision, pages 1125–
1134, 2017.

[19] Liting Lin, Heng Fan, et al. Swintrack: A simple and strong baseline for transformer
tracking. Advances in Neural Information Processing Systems, 35:16743–16754, 2022.

[20] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm
restarts. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=Skq89Scxx.

[21] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In
International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=Bkg6RiCqY7.

[22] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose,
and mobile-friendly vision transformer. In International Conference on Learn-
ing Representations, 2022. URL https://openreview.net/forum?id=
vh-0sUt8HlG.

[23] Matthias Muller, Adel Bibi, et al. Trackingnet: A large-scale dataset and benchmark for
object tracking in the wild. In Proc. European Conf. Computer Vision, pages 300–317,
2018.

[24] Adam Paszke, Sam Gross, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems, 32, 2019.

[25] Mark Sandler, Andrew Howard, et al. Mobilenetv2: Inverted residuals and linear bot-
tlenecks. In Proc. IEEE Conf. Computer Vision Pattern Recognition, pages 4510–4520,
2018.

[26] Yi Tay, Mostafa Dehghani, et al. Efficient transformers: A survey. ACM Computing
Surveys, 55(6):1–28, 2022.

[27] Ashish Vaswani, Noam Shazeer, et al. Attention is all you need. Advances in Neural
Information Processing Systems, 30, 2017.

[28] Naiyan Wang, Jianping Shi, et al. Understanding and diagnosing visual tracking sys-
tems. In Proc. IEEE Int. Conf. Computer Vision, pages 3101–3109. IEEE, 2015.

[29] Haiping Wu, Bin Xiao, et al. CvT: Introducing convolutions to vision transformers. In
Proc. IEEE Int. Conf. Computer Vision, pages 22–31, 2021.

[30] Bin Yan, Houwen Peng, et al. Learning spatio-temporal transformer for visual tracking.
In Proc. IEEE Int. Conf. Computer Vision, pages 10448–10457, 2021.

[31] Bin Yan, Houwen Peng, et al. LightTrack: Finding lightweight neural networks for
object tracking via one-shot architecture search. In Proc. IEEE Conf. Computer Vision
Pattern Recognition, pages 15180–15189, 2021.

[32] Bin Yan, Xinyu Zhang, et al. Alpha-refine: Boosting tracking performance by precise
bounding box estimation. In Proc. IEEE Conf. Computer Vision Pattern Recognition,
pages 5289–5298, 2021.

https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=vh-0sUt8HlG
https://openreview.net/forum?id=vh-0sUt8HlG

12 GOPAL, AMER: MOBILE VISION TRANSFORMER-BASED VISUAL OBJECT TRACKING

[33] Botao Ye, Hong Chang, et al. Joint feature learning and relation modeling for tracking:
A one-stream framework. In Proc. European Conf. Computer Vision, pages 341–357.
Springer, 2022.

[34] Luka Čehovin, Aleš Leonardis, and Matej Kristan. Visual object tracking performance
measures revisited. IEEE Trans. Image Process., 25(3):1261–1274, 2016. doi: 10.
1109/TIP.2016.2520370.

