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Abstract

We focus on the task of soundscape mapping, which involves predicting the most
probable sounds that could be perceived at a particular geographic location. We utilise
recent state-of-the-art models to encode geotagged audio, a textual description of the au-
dio, and an overhead image of its capture location using contrastive pre-training. The
end result is a shared embedding space for the three modalities, which enables the con-
struction of soundscape maps for any geographic region from textual or audio queries.
Using the SoundingEarth dataset, we find that our approach significantly outperforms
the existing SOTA, with an improvement of image-to-audio Recall@100 from 0.256 to
0.450. Our code is available at https://github.com/mvrl/geoclap.

1 Introduction

Sound is one of the fundamental senses that helps us reason about our environment. There
exists an intricate relationship between the visual appearance and sound of a location [15,
16]. Learning about the type of sound at a geographic location allows one to understand
many high-level concepts of the area. For example, just by hearing the sound of traffic, we
can imagine the location to be an urban setting with a rush of cars and people, whereas the
sound of sea waves might elicit the beautiful scenery of a beach.

There have been several studies conducted on different cities around the world attempt-
ing to understand human perception of various types of environmental sound [1, 3, 15, 22,
28, 30]. Moreover, it has been established that there is a strong correlation between the phys-
iological and psychological health of a person and the environmental sound condition they
live in [8, 21, 33]. Therefore, understanding the soundscape for a given geographic area can
be of great importance to policymakers focused on urban planning and environmental noise
management. Soundscapes also serve value to the general public for whom environmental
sound plays a vital role in decisions such as buying a house or setting up a business.
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Most of the existing works on creating soundscape focus on crowd-sourcing human per-
ception of sound in their surroundings [1, 3, 22, 30, 40]. While serving as an important
tool for understanding the sound distribution of a region, such approaches have two major
limitations. First, the abstraction of sound into a fixed set of indicators and psycho-acoustic
descriptors limits our ability to have a complete picture of underlying physical factors as-
sociated with sound. Second, such soundscapes are usually created for only highly visited
places in the world, creating massive sparsity of soundscapes on a global scale. In order
to solve both of these limitations, we propose to leverage the intrinsic relationship between
sound and visual cues of the location and learn to directly predict the most probable sound
that could be heard at any given location. Specifically, we train a multi-modal deep learning
framework that learns a shared embedding space where the sound that is most likely to come
from a given location, is pulled closer while pushing other unlikely sounds farther apart. We
represent the location (latitude, longitude) by an overhead image of size H X W centered
around it. Once trained, our multi-modal embedding space and free availability of overhead
imagery makes it possible for us to create soundscape maps for any area in the world.

One of the successful approaches to learning shared embedding space between different
modalities is contrastive learning. In recent years, contrastive learning between image and
text [32]; image, text, and audio [17]; text, audio [9, 12, 38]; overhead image and audio [19]
has been an effective self-supervised training objective to learn a multi-modal embedding
space. Such a space has an understanding of the correspondence between the modalities that
can be transferred to various downstream tasks, where impressive results have been observed.
Motivated by these works, we also adopt contrastive learning as our pre-training strategy to
learn a multi-modal embedding space. However, unlike the prior works, we are interested
in incorporating geographic knowledge into the embedding space learned by audio-language
pre-training. We achieve this by adding an overhead image, capturing the geographic context
of a scene, as an additional modality in our contrastive learning framework. With the shared
embedding space that has knowledge of correspondence between audio and its corresponding
overhead image, we can then formulate the task of soundscape mapping as a cross-modal
retrieval problem, where the objective is to predict the most likely sound from a gallery of N
sounds given an overhead image.

Our work builds upon a prior work [19] that introduced the SoundingEarth dataset con-
taining over 50k geotagged audios paired with their corresponding overhead image. The
objective of work by Heidler et al. [19] was to learn a good audio-visual embedding space
useful to be transferred for different downstream tasks in remote sensing. However, in the
interest of learning an embedding space to create accurate soundscapes, our work is focused
on improving the task of cross-modal retrieval. In this regard, we utilise weights of publicly
available modality-specific SOTA models. Moreover, unlike Heidler et al., who build an
embedding space capturing two modalities (overhead-image and audio), we propose to also
incorporate textual description of audio into the embedding space. This essentially creates a
tri-modal embedding space with richer understanding of three modalities: overhead-image,
audio, and text. We call our framework GeoCLAP: Geography-Aware Contrastive Language
Audio Pre-training. As demonstrated by our results adding the textual modality improves
the representational capability of both overhead-image and audio encoders. Moreover, with
an understanding of three modalities, we are now able to create soundscapes either from a
textual or audio query for any geographic region. The main contributions of our work are as
follows:

* We significantly improve the prior baseline on the task of cross-modal retrieval of

overhead image to sound and vice-versa.
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* We build a tri-modal embedding space that has an understanding of overhead image,
audio, and textual description of audio at a given location.

* We demonstrate a simple and scalable way of creating soundscape for any geographic
area using either a textual or audio query.

2 Related Work

2.1 Soundscape Mapping

The soundscape of a geographic region can be defined as the acoustic environment perceived
by individuals within its context [14]. There exists a large body of work focusing on the prob-
lem of soundscape mapping [1, 3, 13, 16, 22, 26, 28, 30, 40, 41]. In these works, soundscape
mapping is formulated as a framework containing three components: indicators, descriptors,
and a predictive model that maps indicators to descriptors. Indicators are psycho-acoustic
measures (for example, sound pressure level, loudness, spectral slope, etc.) which determine
the perceived value of descriptors (for example, pleasant, unpleasant, eventful, etc.). In this
paper, we refer to this line of work as perceptual soundscape mapping.

One of the common findings from the literature of perceptual soundscape mapping is
that there exists a strong correlation between the human perception of sound and the envi-
ronmental variables of the scene such as building, road category, etc. [15]. Utilising this
correlation between sound and visual cues, there have been a few works that use deep learn-
ing to learn a shared embedding space between sound and either ground level image [29]
or overhead image [20] of the scene. This multimodal learning approach leads to improved
performance on visual tasks such as aerial scene recognition [20], image classification [29],
and object detection [29]. Closer to our work, a few prior works [6, 25, 27, 39] focus on the
task of cross-modal image-to-voice retrieval. Such tasks require a dataset containing over-
head imagery paired with spoken audio captions, which is very limited. Moreover, instead
of learning from speech, we are interested in learning from free-form audio such as field
recordings, natural sounds, etc. which capture diverse concepts of the location. Another
closer work by Salem e al. [35], proposed learning a shared embedding space between au-
dio, overhead image, and ground level image, enabling them to predict a distribution over
sound clusters from an overhead image. The problem formulation of soundscape mapping
in our work is similar to [35]. However, the striking difference as well as the strength of
our work is that leveraging the power of contrastive language audio pre-training (CLAP), we
are able to create soundscape conditioned on any textual or audio query. In doing so, we
still retain the ability to create soundscape with desired set of sound categories in a zero-shot
manner.

2.2 Contrastive Learning

Radford et al., in their seminal work, CLIP [32], trained large image-text dataset using con-
trastive loss and demonstrated it’s impressive zero-shot performance on many computer vi-
sion tasks. AudioCLIP [17], extends CLIP to three modalities: image, text, and audio. Such
tri-modal embedding space enables one to perform query between three pairs of modalities.
Wav2clip [37], distilled the knowledge of CLIP embedding space by freezing the image en-
coder of CLIP and contrastively training an audio encoder to learn a new embedding space
shared by audio and a corresponding image. With similar training objective as CLIP, an-
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other work CLAP [12] performs contrastive learning between audio and natural language.
CLAP training has proven to be an effective strategy with impressive audio retrieval perfor-
mance [9]. Inspired by this, Wu et al. [38] further improved the CLAP’s performance by
training on large-scale data with effective audio feature fusion and text augmentation strate-
gies. We refer the work by Wu et al. [38] as L-CLAP in our paper and use the pre-trained
encoders from L-CLAP to embed audio and text for GeoCLAP pre-training.

Our work takes motivation from the proven performance of contrastive learning as an
effective pre-training strategy. The focus of our work is soundscape mapping. The embed-
ding space for such tasks should have an understanding of geography of a location where
the sound is coming from [4]. Therefore, we propose to learn an embedding space trained
contrastively on three modalities: overhead image, text, and audio.

2.3 Pretrained Models

Auvailability of modality specific pre-trained models trained with various self-supervision
objectives have proven to be crucial in bringing performance improvement in various tasks
in remote sensing [36]. In the recent years, masked auto-encoders (MAE) [18] based models
trained on satellite imagery have demonstrated to be a good starting checkpoints to be fine-
tuned for various downstream tasks [7, 34]. In our work, we start with the pre-trained weights
of Vision Transformer (ViT) [11] encoder of SATMAE [7] as the overhead-image encoder
for GeoCLAP. SATMAE [7] was pre-trained on large-scale (over 700K) satellite imagery
of the world. To learn representations for audio and text, we use L-CLAP’s pre-trained
encoders. It uses HTSAT [5] as the audio encoder and RoBERTa [23] as the text encoder.
HTSAT is a swin-transformer [24] based model with SOTA performance on various audio
classification tasks. ROBERTa is a powerful transformer-based language model trained with
improved design choices than BERT [10]. L-CLAP [38] was contrastively pre-trained on
over 630K audio-text paired dataset.

3 Approach

We present a detailed description of our approach, including the high-level problem for-
mulation, a description of our primary evaluation dataset, and a detailed description of the
network architecture and training procedure for our method, GeoCLAP.

3.1 Problem formulation

The objective of our work is to learn a shared embedding space that allows us to predict
the most probable sounds that can be heard at a given geographic location. This can be
represented as s* = max, P(s|/) where P(s|!) represents the conditional distribution of sounds
for a given location / and s* is the most likely sound. Unfortunately, direct conditioning on
location does not generalize to regions without a large number of training samples, which
means truly global mapping wouldn’t be possible. On the other hand, overhead imagery has
a strong correlation to the type of sound at a given location and is freely available across
the globe. Therefore, in our work, we represent the location indirectly, using an overhead
image (/) of the location. We learn a conditional distribution P(s|I(/)), which is able to
make high-resolution predictions even for regions without training samples.
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3.2 Dataset

We use the SoundingEarth dataset to train and evaluate our method. The dataset contains
more than 50k geotagged audio recordings from 136 countries and overhead image pairs.
The overhead images have size of 1024 x 1024 collected from Google Earth with an ap-
proximate ground-sample distance (GSD) of 0.2 meters (m). Audio data in the dataset was
collected from the project Radio Aporee:::Maps [2], which hosts an online platform dedi-
cated to creating a global soundmap. It contains diverse audio recordings from urban, rural
and natural environments, published under the creative commons license. For our project,
we remove the audio files with a sampling frequency less than 16k. This yields a dataset size
of 50792 samples.

The high-resolution Google Earth imagery is not available to be used freely. Therefore,
in order to have the ability to globally scale soundscape mapping, we augment the exist-
ing SoundingEarth dataset by including freely available lower-resolution images. Specifi-
cally, we use the RGB bands of the Sentinel-2 cloudless imagery with 10m GSD. For each
location, we download a 256 x 256 image tile with the coverage radius of 512m centered at
that location.

3.3 GeoCLAP

Figure 1 represents the overall framework of GeoCLAP. Given a geotagged audio X}, textual
description of the audio X}, and an overhead image at a given location X, I where X “,X,ﬁ X ,ﬁ) is
one audio-text-image triplet. We obtain embeddings for each modalities by passing through
modality-specific encoder and linear projection layer, yielding embeddings with the same
dimension for audio, text, and overhead image, respectively.

Sound
.Illlllll Q— ......
“sound of sea —_ EJ;’S -
waves”

Figure 1: GeoCLAP: A tri-modal contrastive learning framework to learn shared embedding
space between overhead image, sound, and textual description of the corresponding sound.

Image
Encoder

E]? = Saudio (faudio (X/?)) ()
E]i = 8text (ftext (X]i)) 2)
E]lc = &image (fimage (X]é)) (3)

where (faudio;gaudio)v (flextvgtexl)’ (fimagevgimage) are (encoder, linear pI‘OjCCtiOl’l layef) pairs
producing [2-normalized d dimensional embeddings: E{, E,t( and E,’( for audio, text, and
overhead image respectively.

GeoCLAP is trained on embedding triplets using contrastive learning objective similar
to CLIP [32] for all three pairs of embeddings:
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1 exp(EF.EL/T exp(EL.Ef/T
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where, N is the training batch size and 7,4, 7,4, and 7;; are learnable temperature parameters
used to scale logits in loss computation for each pairs of embeddings.
Combining equations 4, 5, and 6, the final loss for which GeoCLAP is trained is as
follows:
L=Ly+ L+ Ly @)

4 Experimental Details

4.1 Data Preprocessing

For audio preprocessing, we convert each audio sample into mel-spectrogram using the de-
fault settings: { feature_size=64, sampling_rate=48000, hop_length=480,
max_length_s=10, fft_window_size=1024} provided in the HuggingFace-
wrapper:ClapProcessor for the pre-trained L-CLAP model clap-htsat—-fused.

In the SoundingEarth dataset, most of the audio recordings (except 6333 samples) are
also accompanied by a brief description and a title uploaded by the contributor. In order
to have textual description for all audio recordings as well as to further encode geographic
information in text, we use a python client, geopy to obtain the address of the location
and append an additional sentence, “The location of the sound is:{address}.” to the textual
description of each sample. For example, for the geolocation (52.509663,13.376481), the
added sentence would be “The location of the sound is: Potsdamer Platz, Tiergarten, Mitte,
Berlin, 10785, Germany”. Following L-CLAP, we use RobertaTokenizer with the
parameter max_length set to 77.

For overhead imagery, we adopt the same data augmentation as SATMAE [7]. We per-
form RandomResizedCrop with parameters: { input_size=224, scale=(0.2,1.0)},
followed by a RandomHorizontalFlip, during training. During inference, we extract a 224 x
224 center crop of the image.

4.2 Implementation and metrics

We implement our code in Pytorch and utilise HuggingFace for loading L-CLAP en-
coders and their respective data pre-processing wrappers. We split the dataset with ratio
70:10:20 yielding a total of 35554, 5079, and 10159 samples into training, validation, and
test split, respectively. For experiments regarding the baseline, we ran the publicly available
code for [19] using the data splits of our study. We used the experimental setting for their
best reported results on cross-modal retrieval task, which is as follows: {batch_size=256
encoders=ResNetl18, latent_dim=128, loss=SymmetricCL, tau=0.2}.
The baseline was trained for 300 epochs with Adam optimizer and learning rate of le — 3.
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4.2.1 Encoders

We use the pre-trained model clap-htsat-fused [38] to encode audio and text. The
audio encoder used in our study, HTSAT, has 4 swin-transformer blocks with hidden feature
dimension of 768. The text encoder ROBERTa from [38] used in our study, has 12 trans-
former blocks with hidden feature dimension of 768. For both audio and text encoders, we
take the output of their respective L-CLAP’s projection layer producing 512-dimensional
embeddings. For encoding overhead image, we use the pre-trained vit_base_patchl6
encoder of SATMAE [7]. It processes input as a sequence of 16 x 16 image patches passing
through 12 layers of transformer blocks. In order to match dimension with audio and text
embeddings, we pass the output from SATMAE encoder to a ReLU activation followed by
a 512-dimension linear layer. Starting from weights of these pre-trained encoders, we con-
duct two set of experiments. First, we allow only the overhead-image encoder to train while
freezing L-CLAP. Second, we allow fine-tuning of all encoders in our framework.

4.2.2 Training

We train GeoCLAP using the contrastive loss objective presented in Equation 7. We ini-
tialize all three learnable temperature parameters to 0.07. We also run experiments with
and without using fext in our framework. While using text, we further experiment the im-
pact of adding an additional sentence describing detailed address of the location to the text.
For experiments where we use overhead image and audio only, we train our model with
image-audio contrastive loss represented by Equation 5. Moreover, for experiments using
overhead image, audio, and text, while keeping the L-CLAP encoders frozen, we train with
Loss = Lg; + Ly;. We use a training batch size of 256 for the baseline, and our experiments
with frozen L-CLAP, while using batch size of 128 for experiments allowing fine tuning
of L-CLAP. We use the Adam optimizer and set the initial learning rate to 5e —5. We use
weight_decay=0.2 and betas= (0.9, 0.98). We use cosine annealing learning rate
scheduler with number of warm up iterations set to 2000. We set max_epochs to 100 for
experiments with frozen L-CLAP and 30 for experiments allowing fine tuning of L-CLAP.

4.2.3 Metrics

Following Heidler et al. [19], we use Recall@100 and Median Rank (Median-R) of the
ground-truth as the evaluation metrics of our approach. We use the test set containing 10159
samples as the gallery for both image-to-sound and sound-to-image retrieval evaluation.

5 Evaluation

5.1 Experiments with SoundingEarth data

Table 1 shows the results of our experiments with the SoundingEarth dataset while using the
original overhead imagery of 0.2m resolution. One of the interesting results from this table is
that by just using frozen pre-trained audio encoder from L-CLAP [38], while allowing only
overhead-image encoder to be fine-tuned, we already get about 10 points improvement in
cross-modal retrieval. This highlights the advantage of leveraging rich representation space
of pre-trained models like L-CLAP. However, when we introduce text modality into train-
ing, while still keeping both text and audio encoders frozen, the image-to-sound Recall@ 100
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Method Image2Sound Sound2Image
Experiment Image Encoder ~ Text-Audio Encoder ~ Text  Address R@100  Median-R R@100  Median-R
Baseline [19] ResNet18 ResNet18 X X 0.256 814 0.250 816
ours SATMAE L-CLAP-frozen X X 0.352 360 0.348 369
ours SATMAE L-CLAP-frozen v X 0.328 428 0.325 428
ours SATMAE L-CLAP-frozen X v 0.298 546 0.295 544
ours SATMAE L-CLAP-frozen v v 0.317 439 0.311 443
ours SATMAE L-CLAP X X 0.384 230 0.385 237
ours SATMAE L-CLAP v X 0.423 172 0.419 175
ours SATMAE L-CLAP X v 0.432 166 0.431 167
ours SATMAE L-CLAP v v 0.434 159 0.434 167

Table 1: Cross-modal retrieval performance for models using 0.2m GSD overhead imagery.

drops to 0.32. L-CLAP was trained on large corpus of text-audio pairs where textual descrip-
tion of audio have relatively high quality. However, the primary focus of the SoundingEarth
dataset has been to collect geotagged audio from all around the world and associate them
with high-resolution overhead imagery. We observed that the textual descriptions of audio in
the SoundingEarth dataset are noisy and do not reflect the type of textual prompts L-CLAP
models were trained on. In our experiments, we use three different types of texts: textual
description of audio, only address of the audio, and text containing both description and
address of the audio. We observed that for any type of text, learning with frozen representa-
tion lowers the performance when compared to learning with frozen representation of audio
alone. With this observation, we decided to allow fine-tuning of L-CLAP encoders. Accord-
ingly, the performance of our approach noticeably improves to image-to-sound Recall@ 100
of 0.384 while learning with overhead image and audio. The performance further improves
to Recall@100 of 0.423 with Median Rank of 172 when we learn with overhead image, au-
dio, and text. This performance is further improved to Recall@100 of 0.434 with Median
Rank of 159, when we add address of the audio location in the text. This is an absolute
improvement of the baseline performance by 0.178 points in image-to-sound Recall@ 100
and 655 in Median Rank. We see similar trends on sound-to-image retrieval task.

5.2 Experiments with Sentinel data

Table 2 shows the results of our experiments with Sentinel-2 cloudless imagery with 10m GSD.
We found that performance in all of our experiments noticeably improved while using lower-
resolution overhead imagery. This choice brought in 12.89% relative improvement in the
baseline Recall@100 performance as well. We believe the reason for this improvement is
the larger coverage of geographic area in a single overhead image with 10m GSD. Moreover,
the lower-resolution sentinel imagery is inherently blurry offering some regularization effect
during training, leading to improved generalizability of our models. Following similar trends
as in Table 1, an absolute Recall@100 improvement of about 10 points is observed, when
using a pre-trained frozen audio encoder from L-CLAP. Similarly, the retrieval performance
improves to 0.396 when the audio encoder is allowed to be fine-tuned. We also observe gain
in performance of fine-tuned GeoCLAP models trained with text containing address. The
best performance for GeoCLAP trained with all three modalities, yields (Recall@ 100, Me-
dian Rank) of (0.450,143) and (0.447,144) for image-to-sound and sound-to-image retrieval,
respectively. Compared to the baseline, this is a relative gain of 55.71% and 57.95% for
Recall@100 on tasks: image-to-sound and sound-to-image retrieval, respectively.
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Method Image2Sound Sound2Image
Experiment Image Encoder ~ Text-Audio Encoder ~ Text  Address R@100 Median-R | R@100  Median-R
Baseline [19] ResNet18 ResNet18 X X 0.289 620 0.283 635
ours SATMAE L-CLAP-frozen X X 0.384 274 0.381 271
ours SATMAE L-CLAP-frozen v X 0.340 369 0.338 367
ours SATMAE L-CLAP-frozen X v 0.311 453 0.304 461
ours SATMAE L-CLAP-frozen v v 0.337 378 0.331 370
ours SATMAE L-CLAP X X 0.396 199 0.396 205
ours SATMAE L-CLAP v X 0.441 152 0.441 155
ours SATMAE L-CLAP X v 0.441 153 0.440 156
ours SATMAE L-CLAP v v 0.450 143 0.447 144

Table 2: Cross-modal retrieval performance for models using 10m GSD overhead imagery.

5.3 Zero-Shot Soundscape Mapping

Utilising the rich representation space of our best-performing GeoCLAP model, we demon-
strate zero-shot soundscape mapping using both text and audio queries. Soundscape maps,
in our work, are the similarity-score heatmaps for a given query. Specifically, we use the
appropriate encoder from GeoCLAP to produce an embedding of the query and embeddings
for a dense set of overhead images in the region of interest. Then, the cosine similarity
score between the query embedding and all overhead image embeddings is overlaid on the
corresponding region to yield a soundscape map (Figure 2). In Figure 3, we demonstrate
a country-scale soundscape map for the Netherlands. For this, we compute soundscape for
three prompts: {This is a sound of car horn; This is a sound of chirping birds; This is a sound
of animal farm} and overlay them together to create a composite pseudo-color map. We
compare this soundscape with ESRI’s Sentinel-2 land cover classes. We observe a strikingly
high correlation between the related land-cover classes with the category of sound likely to
be heard at the location. More such soundscape maps can be found in the supplemental
material of this paper.

Figure 2: Soundscape maps along with reference overhead image for two regions. Sound-
scape created for queries: (a) A textual prompt: This is a sound of sea waves; (b) randomly
selected sound from the class chirping_birds from ESC50 database [31] (green: more
probable, white: less probable).
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Sound Categories
Sentinel-2 Land Cover

Animal Farm

Land Cover Classes
I Water

I Trees

I Fiooded Vegetation

I Crops.
I Bt
— Rangeland

Figure 3: Comparison of (a) Soundscape map of the Netherlands with (b) Sentinel-2 land
cover classes. The soundscape map was created by querying GeoCLAP with textual prompts
for three sound categories: car horn, chirping birds, and animal farm.

6 Conclusion

We proposed GeoCLAP, a contrastive-learning framework capable of embedding the modal-
ities of overhead imagery, audio, and text into a common space. Our approach significantly
improves the state of the art for cross-modal retrieval between overhead imagery and audio.
We utilise the learned, multi-modal representation space for soundscape mapping, demon-
strating a simple and scalable way to create soundscape maps for any geographic area using
only satellite imagery and audio or textual queries. With this approach, we can construct
global, high-resolution soundmaps with minimal effort.
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