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Abstract
Segmentation localizes objects in an image on a fine-grained per-pixel scale. Seg-

mentation benefits by humans-in-the-loop to provide additional input of objects to seg-
ment using a combination of foreground or background clicks. Tasks include photo-
editing or novel dataset annotation, where human annotators leverage an existing seg-
mentation model instead of drawing raw pixel level annotations. We propose a new seg-
mentation process, Text + Click segmentation, where a model takes as input an image,
a text phrase describing a class to segment, and a single foreground click specifying the
instance to segment. Compared to previous approaches, we leverage open-vocabulary
image-text models to support a wide-range of text prompts. Conditioning segmentations
on text prompts improves the accuracy of segmentations on novel or unseen classes.
We demonstrate that the combination of a single user-specified foreground click and a
text prompt allows a model to better disambiguate overlapping or co-occurring semantic
categories, such as “tie”, “suit”, and “person”. We study these results across common
segmentation datasets such as refCOCO, COCO, VOC, and OpenImages.

————————————————————————-

1 Introduction
Instance segmentation is the problem of labelling every single pixel that belongs to a known
set of categories. Deep-learning based methods have shown tremendous progress in recent
years with early works such as Mask R-CNN [18] and more recently with Cascade R-CNN
[2], SOLOv2 [33] and MaskFormer [9]. Although broadly applicable when we have a lot
of labeled data, fully supervised instance segmentation methods are limited to the set of
categories they are trained on. In this paper, we explore a model that can be more useful by
taking inputs from the user about what objects to segment. We ask for 2 inputs: (i) a single
click on the object to be segmented and (ii) a text description of the same object.
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(a) Input and click(•) (b) No-text baseline (c) Text = “Tie” (d) Text = “Person”

Figure 1: The benefit of text input for instance segmentation. The model in 1b struggles to guess the correct object
based on only the point input from 1a. Our approach, which takes both text and click as input is successfully able
to segment 1c and 1d. Both models are trained on OpenImages with 64 seen classes.

In isolation, each of these modalities is insufficient to unambiguously designate a single
instance to be segmented. For example, consider the click in Figure 1a. It is unclear what the
user wants to segment based on this one input. The user could mean they want to select the
whole person or just the tie or shirt. This lack of specificity is also reflected in a model trained
on single-click data, as seen in Figure 1b. Similarly, text input alone can also be ambiguous
— for example, using “car” as text input would be insufficient to describe a single instance if
there are multiple cars in an image. Though there are ways to address this ambiguity through
the use of referring expressions [7, 19, 25, 38], these approaches place a heavy burden on the
user to carefully construct perfectly unambiguous text phrases. Together however, a Click +
Text input mechanism is a simple low-effort way to unambiguously designate an instance in
an image to be segmented.

A similar framework was first delineated by the PhraseClick [12] paper, which proposed
an architecture that takes text as input using a bi-directional LSTM. Although PhraseClick
addresses the ambiguity problem, it does so in a class specific manner. Their approach only
learns to model the classes in their training dataset, and has no way to generalize beyond the
set of words that it sees during training.

Our model uses the same set of inputs as PhraseClick (Click + Text), but goes beyond
the fixed set of words it observes during training. To do so, we leverage the generalization
abilities of image-text models such as CLIP [28], which have demonstrated zero-shot gen-
eralization abilities by learning from web-scale image/text pairs. Specifically, our method
relies on saliency maps extracted from CLIP style models (e.g. using recent approaches such
as MaskCLIP [40] or Transformer Explainability by Chefer et al [3]). These “text saliency”
methods allow us to gauge the relevance of each pixel in an image to a given text-query.
Because models like CLIP [28] are trained on large, open-vocabulary datasets, approaches
like MaskCLIP [40] gives us a coarse, semantic-level understanding of a wide variety of
concepts (see heatmap examples in Appendix). And combined with a click from the user,
this gives us precise information about which instance they want to segment.

The benefit of using text and click can be seen in Figure 1c and 1d. Our model can
successfully use the input text to predict 2 different objects given the same input point, and
it is able to do so for text inputs beyond the categories it has seen during training time.

Our main contributions are as follows:
1. We propose to condition segmentation models on text by leveraging pre-trained CLIP

models using MaskCLIP to generate a per-pixel saliency that is used as input to our
model and show our approach to be effective for novel category generalization.

2. We show that our approach matches or exceeds the performance of the PhraseClick
method [12] while generalizing to many more categories.
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3. We compare with the recent Segment Anything (SAM) [20] model and show that we
outperform it on the task of segmenting instances based on single click and text as
input, while training on a much smaller dataset.

We also experiment with truly open-vocabulary setting on queries far out of distribution
from academic datasets. As evident in Figure 2, our model performs well on classes that
were outside of seen or unseen sets within the training data, on images completely distinct
from our training or validation data.

(a) Our prediction for ‘Model globe’ and ‘Basket’

(b) Our prediction for ‘Kayak paddle’ and ‘Helmet’

(c) Our prediction for ‘Microscope’ and ‘Hairnet’
Figure 2: Open vocabulary queries demonstrated on images from the web. These categories include ‘Kayak Paddle’,
‘Basket’, and ‘Microscope’ which are never seen by the model.

2 Related Work
Semantic / Instance Segmentation. Semantic segmentation is the problem of assigning a
semantic label to each pixel in an image [27]. Because it requires a large dataset of dense
annotations however, it can be time-consuming and expensive to crowd-source. Training
segmentation models in new or niche domains therefore is constrained by data annotation
availability and cost. State of the art semantic segmentation techniques employ a fully con-
volutional architecture that combine low level and high level feature maps for accurate seg-
mentation masks [17]. Deeplab V3 [4] uses atrous convolutions to capture objects and fea-
tures at multiple scales spanning large and small and its successor DeeplabV3+ [5] remains a
strong SOTA segmentation architecture, adding a decoder module to Deeplab V3 to improve
segmentation quality along object boundaries. Another class of state of the art segmentation
models are based on Vision Transformers (or ViT) [14], and extend it to segmentation by
decoding image patch embeddings from ViT to obtain class labels (e.g., [32]) This family
includes SegViT [39] that proposes to better use the attention mechanisms of ViT to gener-
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ate mask proposals, as well as ViT-Adapter-L [8] that attempts to correct weak priors in ViT
using a pre-training-free adapter.

Interactive Object Segmentation. Interactive object segmentation seeks to utilize addi-
tional human inputs such as clicks or bounding boxes at inference time to guide/refine a seg-
mentation. Deep interactive object detection [36] use a novel strategy to select foreground
and background points from an image, which are transformed via Euclidean distance maps
in to channels that can be used as inputs into a convolutional network. PhraseClick[12] ex-
plores how to produce interactive segmentation masks using text phrases in a fully supervised
manner as an additional modality of input. They demonstrate that adding phrase information
reduces the number of interactions required to achieve a given segmentation performance, as
measured by mIoU.

Sofiiuk et al. [30] highlights the issue with other inference-time optimization procedures
in related works and proposes an iterative training procedure with a simple feedforward
model. Focal click[6] highlights how existing interactive segmentation models can perform
poorly on mask refinement when they destroy the correct parts; and proposes a new method
that refines masks in localized areas. SimpleClick [24] explores ViT in the context of in-
teractive segmentation, adding only a patch embedding layer to encode user clicks without
extensively modifying the ViT backbone.

Zero Shot Segmentation. ZS3Net[1] performs zero shot semantic segmentation by cor-
relating visual and text features using word2vec [26]. They also introduce a self-training
procedure using pseudo-labels for pixels of unseen classes. CAGNet [16] adds a contex-
tual module that takes as input the segmentation backbone output and predicts a pixel-wise
feature and contextual latent code per pixel. Their aim is to use more pixel-level informa-
tion with their feature generator whereas ZS3Net contains a feature generator that uses only
semantic word embeddings.

While traditional end-to-end segmentation features are grouped implicitly in convolu-
tional networks, GroupVIT [35] seeks to explicitly semantically group similar image regions
into larger segments to perform zero-shot segmentation. It achieves 52.3% mIoU for zero
shot accuracy on PASCAL VOC 2012. LSeg [22] trains an image encoder to maximize sim-
ilarity between the text embedding for a given query and the image embedding of the ground
truth pixel classes. SPNet [34] performs inference on unseen classes by utilizing semantic
word embeddings trained on a free text corpus such as word2vec or fast-text.

Zegformer [13] achieves impressive results on zero-shot segmentation by “decoupling”
the segmentation task into two stages: grouping pixels into likely segments in a class-
agnostic manner, and assigning classes to grouped pixels. MaskCLIP [40] achieved SOTA
transductive zero-shot semantic segmentation by utilizing a pre-trained CLIP[28] model.
They also showed that they can generate psuedo-labels of unseen categories and use it to train
a semantic segmentation model. Although this approach can generalize to many classes, it
necessitates training a new model for each set of new classes which is costly.

3 Method
Our main objective is to create a model capable of open vocabulary segmentation on novel
classes. Figure 3 summarizes our approach to this problem. We take as input to our seg-
mentation model an RGB image, a single foreground click, and a text prompt and produces
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Figure 3: Our model architecture: we take as input a guided foreground click, the RGB image, and a text category.
Then, the image-text saliency model (MaskCLIP here) produces a text-weighted feature map helping to localize the
instance of interest. Finally, the original RGB image, clickmap, and saliency map are concatenated and fed into a
modified fully convectional segmenation model, that accepts as input a 5 channel array.

(a) Input Image (b) “Ball” heatmap (c) “Shirt” heatmap

Figure 4: Example of text saliency heatmaps produced by MaskCLIP [40]. The heatmaps give us a rough estimate
of where the input text is localized, while supporting the large vocabulary learnt by CLIP [28].

a class agnostic segmentation mask as output. While there are many possible ways to in-
corporate click and text cues into such a model, we take a simple but effective approach of
encoding both side inputs as additional channels to be concatenated with the original input
image, then fed to a standard segmentation network (e.g., DeepLabV3+, which we use in
our experiments). Specifically, our foreground click is passed through a Euclidean distance
transform to create a map with a continuous range of values normalized to [0, 1]. This is a
standard technique in the interactive segmentation literature [36].

In order to convert a text prompt to a single channel image, we passed the text prompt
through a text-saliency model to produce a spatially sensitive guess (i.e., a saliency heatmap)
of what pixels are similar to a given text query. In our experiments, we use the MaskCLIP
text-saliency model model [40] which allows us to effectively incorporate a textually-sensitive,
spatial saliency map that takes as input any open vocabulary text prompt. We note that
MaskCLIP builds on the CLIP vision-language model that learns to align similar images and
text queries via its massive web-scale dataset of image-caption pairs and contrastive learning
scheme. In Figure 4 we visualize the output of this method.

In our experiments, we have informally tried several saliency methods such as GradCAM
[29], Generic Transformer Interpretability [3], and MaskCLIP [40]. From qualitative exper-
iments, we observed the best results from MaskCLIP, and it also represents a strong baseline
that is easy to implement with a few changes to the encoder layer of CLIP.

Our choice of converting a text prompt to a single channel image is nonstandard; how-
ever, we argue that it has a number of benefits. In using a powerful text-saliency model, we
significantly lessen the burden on our own segmentation network since its task can now be
viewed as that of refining a (admittedly) rough initial segmentation into a clean segmenta-
tion given the image and click. Moreover, since this saliency heatmap representation is itself
class agnostic, our network should conceptually generalize well to classes that it did not get
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to see at training time (and we show that this is indeed the case in our experiments).
As a contrast, the PhraseClick paper [12] embeds text inputs with Word2Vec and uses

a bidirectional LSTM to model contextual relations between words in a phrase. However
their image and text vector representations are not explicitly aligned; the image embedding
vector is simply produced from a global pooling operation. Moreover, their model is not
open-vocabulary, it is limited to a fixed set of prompts introduced during training.

4 Experiments
To measure our model’s ability to generalize to novel classes, we train our model on a subset
of all classes in the dataset (which we call “seen classes”), but at test time evaluate the trained
model on the remaining classes (called “unseen classes”) as well as all classes present in the
dataset. Where available (with the exception of OpenImages) we follow the standard zero-
shot segmentation literature splits of “seen” and “unseen” classes in our experiments.

In our experiments, we modify the first layer of a DeepLabv3+ model (with ResNet
backbone) to accept a 5 channel image as input, and train all layers from scratch. We modify
the number of output classes in the mask prediction module to 2 (to delineate foreground/
background) as we perform inference on each individual instance, and not all instances in a
given image. We use standard hyperparameters (based on the MMSeg implementation [10])
for DeeplabV3+ and train on 2 Nvidia A40 GPUs with a batch size of 32. Our heatmaps and
clickmaps are normalized per instance, to scale values between [−1,1].

To generate clicks for training, we sample a random point within the ground-truth seg-
mentation mask boundary. Building off of standard interactive segmentation literature [36],
positive points are selected to be at least some minimum distance from the object border, and
a minimum distance from other positive points. Negative points are sampled using a variety
of strategies: first, from points near the border of the object mask boundary; second, from
points in other object instances in the same image that we are not trying to segment.

We train separate models for the Pascal VOC [15], COCO [23], refCOCO [38], and
OpenImages datasets [21]. We train models in two configurations: zero-shot segmentation,
and fully-supervised segmentation. In the former, the model has access only to instances in
the limited set of seen-classes and RGB images that contain instances of those seen-class
sets. For VOC, we use the 5 seen-class set defined in the ZS3 [1] out of 20 total classes.
For refCOCO and COCO, we use the standard 20/60 split of segmentation classes proposed
in prior zero-shot segmentation literature. For our OpenImages experiments, we found no
prior standard split for zero-shot segmentation, and there are 350 total segmentation classes.
Thus, we use the intersection of the COCO classes and OpenImages segmentation classes as
our seen set, resulting in 64 seen classes for training (∼ 20% of total classes). All results are
reported at 90K iterations unless otherwise stated.

4.1 Novel class generalization
In Table 1 we show that across all 4 datasets studied, conditioning on text-saliency improves
overall mIoU across the board; and that this improvement mostly comes from larger im-
provements on the set of unseen classes. For example, on COCO, our heatmap-based model
achieves 1.72 mIoU greater than baseline on seen classes, but 6.98 mIoU greater than base-
line on unseen classes. In other words, the model is able to use the heatmaps to noticeably
improve the quality of unseen class segmentations.
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(a) RGB Input + Click (b) Baseline (c) Ours

(d) RGB Input + Click (e) Baseline (f) Ours

(g) RGB Input + Click (h) Baseline (i) Ours

Figure 5: Inference examples on unseen classes for baseline versus our model for (a) “Cheese” and “Knife”, (d)
“Roller Skates” and “Woman”, and (g) "Keyboard" and "Mouse". Conditioning on text saliency improves novel
class segmentation and removes ambiguity. Model trained on OpenImages with 64 classes set as seen, compared to
the click-only baseline without heatmaps.

Dataset Text Input mIoU

Overall Seen Unseen

refCOCO 3 66.02 (+3.03) 70.30 (+1.86) 56.35 (+5.68)
refCOCO 62.99 68.44 50.67

VOC 3 57.76 (+4.52) 59.31 (+3.2) 50.73 (+10.45)
VOC 53.24 56.11 40.28

COCO 3 38.42 (+3.89) 42.06 (+1.72) 33.45 (+6.98)
COCO 34.53 40.34 26.47

OpenImages 3 57.05 (+4.40) 67.03 (+3.35) 53.92 (+4.74)
OpenImages 52.65 63.68 49.18

Table 1: Results for Text+Click model on seen and unseen classes. We used one click for all models and trained
using only seen classes. For OpenImages we use 64 seen classes. We convert text input to a heatmap using Maskclip.

Moreover, the smaller the seen class set, the greater the benefit of conditioning the seg-
mentation network on text saliency. We study this effect in Table 2, where we vary the
fraction of classes designated as “seen” in the OpenImages dataset. Here we see that the
improvement increases as number of seen classes decreases; this intuitively makes sense as
our technique of converting to a saliency map places the main burden of novel class general-
ization on the pretrained CLIP model rather than the segmentation network itself.
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Seen Classes Text Input mIoU

Overall Seen Unseen

64 3 57.05 (+4.4) 67.03 (+3.35) 53.92 (+4.74)
64 52.65 63.68 49.18

34 3 55.10 (+5.82) 62.03 (+5.19) 52.95 (+6.12)
34 49.28 56.84 46.83

23 3 53.65 (+7.89) 61.64 (+8.38) 51.14 (+7.62)
23 45.86 53.26 43.53

Table 2: Difference in performance as the number of seen classes in OpenImages changes. Note that gap between
our approach (Text+Click) and the click-only baseline increases with a smaller set of seen classes. We convert text
input to a heatmap using Maskclip.

4.2 Qualitative examples
In Figure 5 we provide several qualitative examples of our inference results. In all of the
examples, we click on unseen classes (e.g., “cheese”, “knife”, “roller skates”, etc). Here we
use a model trained on OpenImages with 64 classes set as seen, and compare to a simpli-
fied click-only baseline (same architecture) but without text saliency heatmaps as input. In
the cheese and knife image for example, the baseline aims to separate object instances by
features, but is confused by the overlapping textures from the cheese and knife instances.
However, our model conditioned on text is able to clearly distinguish the separate cheese
instances and separate them from the knife.

4.3 Comparison with SAM

Dataset SAM 1-Click Ours

CLIP Conf.

COCO 36.43 39.31 36.82 47.17
refCOCO 47.07 52.48 66.16 68.07

Table 3: Comparing mIOU of our model with
SAM[20]. SAM outputs 3 predictions and we
choose one using SAM’s confience (Conf.) or CLIP
score(CLIP). Our models trained on all classes in
COCO and refCOCO outperform SAM.

Dataset Model mIoU

Overall Seen Unseen

COCO Ours 38.42 42.06 33.45
COCO SAM 39.31 41.73 37.59

refCOCO Ours 66.02 70.30 56.35
refCOCO SAM 52.48 61.18 48.64

OI Ours 57.05 63.68 53.92
OI SAM 63.88 63.60 64.47

Table 4: Comparison with SAM while our model only
trains on a subset of classes. Note that we outperform
SAM on refCOCO. We use SAM’s confience score to
rank proposals in this experiment because it showed
better results in Table 3. OI=OpenImages.

The Segment Anything Model (SAM) [20] is a model that was trained with 1.1 billion masks
from the SA-1B dataset. SAM can work with a combination of positive/negative clicks and
text prompts and showed impressive segmentation results with user-input. In Table 3 we
compare with SAM while taking as input a single class name and a click. In spite of our
smaller capacity and limited data, we out-perform SAM when training on all examples from
COCO, refCOCO and OpenImages.

Note that a perfect apples-to-apples comparison is difficult here since SA-1B masks
are not class-annotated so we are not able to separate seen from unseen masks, given the
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(a) RGB Input + Click (b) SAM (c) Ours

(d) RGB Input + Click (e) SAM (f) Ours

Figure 6: Example comparisons to SAM for (a) “Mobile phone”, and (b) “Chest of drawers”. Model trained on
OpenImages with 64 classes set as seen, compared to SAM baseline using highest confidence prediction.

SAM mode an unfair advantage in some ways. SAM outputs 3 predictions which we rank
either by CLIP scores or SAM’s own confidence scores. For CLIP scores we used the
ViT-L/14@336px model, which SAM used for open-vocabulary training.1

In Table 4 we compare our approach with SAM while only training on a subset of classes.
Note that even when we further limit our training set and evaluate our model on a set of
classes that our model is guaranteed to have not seen, we still outperform SAM on refCOCO.
It is important to note that because of SAM’s compute requirement, we could not re-train
SAM and only evaluated the pre-trained model trained on SA-1B.

5 Conclusion
We set out to explore improved instance segmentation through the use of a single click and
a text prompt. A single click is insufficient to specify what part of an instance to segment;
a single text prompt can still be ambiguous unless carefully crafted. We have demonstrated
that a single click combined with a text prompt outperforms a click-only baseline across a
variety of datasets. We also show that a model conditioned on text-saliency can generalize
much better to novel categories. We use saliency maps from MaskCLIP to produce rough
localizations for any category. A separate segmentation model is trained on the concatenated
input, and segments in a class-agnostic manner, while still retaining class-specific informa-
tion from the MaskCLIP module. The recent SAM model is class-agnostic and struggles to
disambiguate user intent on the overall part vs subpart from a single click. Open vocabulary
interactive segmentation is a novel task that has numerous applications, from reducing dense
image annotation costs to improving background object removal in photo editing. We hope
that the new text and click segmentation task will improve the accuracy of segmentations
that require user interaction, while constraining the amount of interaction required. Future
research directions could include automatically detecting the best category present around a
user’s foreground click, to remove the necessity of an additional text input. Our work also
intersects with research on how to produce refined segmentation masks from a rough or low
quality input (bounding box, point, low quality mask).

1The text based open-vocabulary model was not made publicly available.
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