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Abstract

We investigate a new paradigm that uses differentiable SLAM architectures in a self-
supervised manner to train end-to-end deep learning models in various LiDAR based
applications. To the best of our knowledge there does not exist any work that leverages
SLAM as a training signal for deep learning based models. We explore new ways to
improve the efficiency, robustness, and adaptability of LiDAR systems with deep learning
techniques. We focus on the potential benefits of differentiable SLAM architectures for
improving performance of deep learning tasks such as classification, regression as well as
SLAM. Our experimental results demonstrate a non-trivial increase in the performance of
two deep learning applications - Ground Level Estimation and Dynamic to Static LiDAR
Translation, when used with differentiable SLAM architectures. Overall, our findings
provide important insights that enhance the performance of LiDAR based navigation
systems. We demonstrate that this new paradigm of using SLAM Loss signal while
training LiDAR based models can be easily adopted by the community.

1 Introduction
We investigate the impact of differentiable SLAM on training better deep learning-based
machine perception (DLMP) models through the methodology of fully differentiable back-
propagation. SLAM is a foundational component in mobile robotics. Robots build a map
of their environment while simultaneously determining their locations within the map. The
potential of using SLAM to help DLMP has been used on tasks such as learning observation
models for new modalities [35], object localization and tracking [21, 23], etc. State-of-the-
art SLAM systems are often not differentiable, presenting a challenge in integrating them
with deep learning approaches. While recent works such as GradSLAM [14] and GradL-
idarSLAM [8] have addressed this issue by proposing differentiable SLAM architectures,
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there has been little investigation into how these architectures impact the performance of
deep learning models. It is an open question whether differentiable SLAM architectures
can be effectively utilized to enhance the performance of deep learning models in various
LiDAR based applications. We propose a self-supervised framework that leverages a differ-
entiable SLAM architecture. It enable fully differentiable training of deep learning models
with SLAM error for various LiDAR applications. Our method is based on the principle of
minimizing the discrepancy between the output of the deep learning model and the ground
truth, including the trajectory error obtained from ground truth and predicted LiDAR scans.
Through extensive experimentation, we demonstrate that our approach outperforms existing
methods and achieves improvements in deep learning tasks. Our results highlight the po-
tential of utilizing differentiable SLAM architectures to enhance the performance of deep
learning models. Our main contributions are:

• We propose a new framework to train differentiable LiDAR-based SLAM using deep
learning-based machine perception (DLMP) tasks in a self-supervised manner.

• We demonstrate its effectiveness by applying it on two tasks - (1) Ground Plane Esti-
mation and Ground Point Segmentation (2) Dynamic to static LiDAR translation for
improved SLAM.

• Our experiments show that our proposed framework significantly improves the perfor-
mance of deep learning models on DLMP tasks.

1.1 Related Work
1.1.1 Differentiable SLAM

The idea of making SLAM differentiable has been investigated in some previous works [8,
14, 40]. Incorporating differentiable SLAM modules to help deep learning training has huge
potential. However, to the best of our knowledge it has not been implemented and well
studied. Several works on SLAM that integrate deep learning-based techniques have been
introduced in recent years - learning observation model for new modalities [35], learning
object pose tracking [21, 23], learning a compact scene representation [3, 43], learning a
CNN-based depth predictor as the front-end of a monocular SLAM system [36], etc. While
these works leverage learning techniques, they often focus only on specific modules within
the SLAM system. Furthermore, these methods are typically limited to visual odometry.
Sodhi et.a l. [35] attempt to optimize end-to-end tracking performance by learning observa-
tion models using energy-based methods for SLAM on novel modalities like tactile sensors.
They do not use trajectory error directly to optimize the observation model. They do not
conduct perception tasks explicitly (i.e. no perception based results are available). Different
from existing literature, we investigate the use of SLAM trajectory error in a fully differen-
tiable fashion to help LiDAR based deep learning tasks.

1.1.2 LiDAR based Deep Learning

Several works [4, 7, 10, 15, 26, 27, 37, 45] have explored generative modelling for LiDAR.
LiDAR based generative modelling was first introduced by Caccia et. al. [4]. They use deep
generative models - VAE, GANs to reconstruct as well as generate high quality LiDAR sam-
ples. Another work, DSLR [16], extended this idea to generate static structures occluded by
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dynamic objects for 3D LiDAR scene reconstruction in an adversarial setting. The work also
aims to improve SLAM performance with these static reconstructions. We therefore consider
DSLR as a suitable test bed for our work. Another work [26] focuses on alleviating the prob-
lem of dropped points on the LiDAR depth map by introducing measurement uncertainty in
the generative models. LiDAR data is a rich source of information for the 3D world of vital
use for autonomous navigation systems. There exists a good body of work on LiDAR based
segmentation [2, 6, 13, 17, 17, 24, 30, 42], object detection [12, 18, 33, 34, 38, 39, 41, 44],
ground elevation estimation [5, 19, 20, 28]. For tasks other than generative modelling, one of
the requirements for utilizing differentiable SLAM based error is that the output must be in
the form of a per point prediction/regression so that it can be mapped to the original LiDAR
points. A subset of points is then selected for SLAM. SLAM can then be performed between
the mapped predicted LiDAR and the input LiDAR for SLAM Loss back-propagation. How-
ever, multi-class (except binary) per-point classification based tasks(e.g. segmentation) re-
quire certain non differentiable operations (e.g. torch.isin(), torch.argmax(),
etc) to map the predictions to the original LiDAR based on a given criteria (e.g. only static
object classes) and cannot be integrated with differentiable SLAM. This is a limitation of the
differentiable SLAM module.

We choose a task that unifies binary classification as well as regression to show the
effect of differentiable SLAM on the selected task. Ground plane estimation and ground
point segmentation unifies both these modalities. We use this task to show the benefit of
differentiable SLAM. We use a well-known baseline GndNet [28] that has shown impressive
performance on the above mentioned task.

Our primary focus is to propose a highly accurate SLAM solution that can provide more
effective supervisory signals. Current DL-based supervised pose estimation methods may
introduce errors into deep learning perception models, while differentiable SLAM has shown
promising results and offers better accuracy for our task. Therefore we do not currently use
DL-based pose estimation methods for our work.

2 Problem Setup

2.1 Model
Our framework is composed of two primary components: a generic deep learning module
and a differentiable SLAM module. These are coupled together to allow training of the entire
architecture in an end-to-end fashion. We focus on optimizing the overall loss function - the
sum of the loss for the deep learning model and the SLAM module, denoted as

Loss = Lmodel + γLslam, (1)

where γ is a coefficient balancing the impact of the SLAM on deep learning. The loss
function for the deep learning model Lmodel is defined as

Lmodel =
1
n

n

∑
i=1

l( f (Xi;θ),Yi)+βR(θ), (2)

where n is the number of training samples, f is the deep learning model with parameters
θ , l is a loss function, Xi is the input to the model, Yi is the ground truth output, β is a
regularization parameter, and R(θ) is the regularization term.
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Figure 1: Our proposed framework for integrating differentiable SLAM into deep learning
task training. The framework includes a Deep Learning Task which takes the input scans
(Xi) and outputs the predicted scans (Ŷi). In the SLAM task, the trajectory error is calculated
between trajectories xi(calculated from predicted scans Ŷi) and xre f (calculated from target
scans Yi). The framework aims to optimize the combined loss of both Deep Learning loss
and SLAM (Absolute Trajectory Loss between trajectories) Loss.

The SLAM loss Lslam includes both translational and orientational errors. These are used
to calculate the SLAM loss between the trajectories, which is defined as

Lslam =
1
n

n

∑
i=1

||xi − xre f ||2, (3)

xi is the estimated way-point of the trajectory generated by the SLAM algorithm using the
predicted output of the deep learning model. xre f is the estimated ground truth way-point,
generated by estimating the trajectory from the input LiDAR sequence instead of using actual
ground-truth pose estimates that are available in the dataset. This enables the differential
SLAM framework to work in a self-supervised fashion. It makes our method practically
viable and efficient.

2.2 Learning with SLAM
To enhance the performance of deep learning by optimizing SLAM errors, it is necessary for
the SLAM to be fully differentiable. Our differentiable SLAM module takes two branches
of input and predicts one trajectory for each of them. First - the outputs of the deep learning
model (e.g. generated LiDAR scan, predicted segmentation mask) are input to the differen-
tiable SLAM as input and the differentiable SLAM predicts a trajectory based on deep learn-
ing’s output. Second - ground truth LiDAR information (e.g. LiDAR scan with only static
points annotated, ground truth segmentation masks) are input to the differentiable SLAM,
and the differentiable SLAM predicts a ground truth trajectory using them.

Classical SLAM systems [25] are non-differentiable. A common technique in these sys-
tems - the non-linear optimization is based on the Levenberg-Marquardt algorithm [22]. It
switches the damping factor discretely at each iteration of the optimization process. This
stops the gradient from backpropagating to the nodes when we unroll the optimization iter-

Citation
Citation
{Mur-Artal, Montiel, and Tardós} 2015

Citation
Citation
{Madsen, Nielsen, and Tingleff} 2004



KUMAR ET. AL.: DIFF-SLAM HELPS DL-BASED LIDAR PERCEPTION TASKS 5

Figure 2: Left: Setup of DSLR with Differentiable SLAM Loss. Right: Setup of GndNet
with Differentiable SLAM Loss.

ations to build the computational graph [14]. We use the generalized logistic function [32]
for soft switching of the damping factor as well as the optimization update [14]

λ = λmin +
λmax −λmin

1+De−σ(r1−r0)
, (4)

xt+1 = xt +
δt

1+ e−(r1−r0)
, (5)

λmax and λmin are damping coefficient bounds in Levenberg-Marquardt solvers. r0 and r1
represent error norms at the current and lookahead iterates. D and σ are tunable parameters.

3 Differentiable SLAM Integration
We now discuss the methodology of integrating SLAM into DLMP training tasks. In general,
differentiable SLAM can be backpropagated as additional information in a deep learning
model to help train the model for better performance. To this end, we study three LiDAR-
related tasks - Ground v/s non-Ground Segmentation, Ground Elevation Estimation, the Dy-
namic to Static LiDAR translation, and Generative modelling for LiDAR.

3.1 Ground Elevation Estimation and Ground Segmentation
3.1.1 GndNet

Ground Elevation Estimation for LiDAR scans is crucial for tasks like navigable space de-
tection, registration, to name a few. GndNet [28] estimates the ground elevation information
as well as segments the LiDAR points into ground and non-ground (object/obstacle) points.
We adapt their models to train with differentiable SLAM error along with the existing loss
function. The goal is to achieve better estimates of ground plane elevation and classification
into ground v/s non-ground points, using differentiable SLAM error. GndNet discretizes the
raw point cloud into a evenly spaced x−y grid, without binning the z-dimension (here the x,
y, z direction refer to orientation of the LiDAR points in 3D coordinates), thereby creating a
set of pillars [18]. Next, PointNet [29] is used to generate features for every non-empty pillar.
Then, these pillar features are placed on the x−y grid leading to a psuedo-image. Finally,
a convolutional encoder-decoder network learns features from this image and regresses the
ground elevation per cell in the grid. This regression output is compared against the groun-
truth elevation to compute Lmodel . Further based on the elevation, points above a threshold

Citation
Citation
{Jatavallabhula, Iyer, and Paull} 2020

Citation
Citation
{Richards} 1959

Citation
Citation
{Jatavallabhula, Iyer, and Paull} 2020

Citation
Citation
{Paigwar, Erkent, Sierra-Gonzalez, and Laugier} 2020

Citation
Citation
{Lang, Vora, Caesar, Zhou, Yang, and Beijbom} 2019

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017



6 KUMAR ET. AL.: DIFF-SLAM HELPS DL-BASED LIDAR PERCEPTION TASKS

are classified as obstacle/object/above ground, while points below threshold are classified as
ground points, thereby segmenting into ground and obstacle class.

3.1.2 Differentiable SLAM based GndNet

We insert our differentiable SLAM module after the regression of ground elevation per cell.
Using the elevation output, we extract the corresponding points in the LiDAR scan that are
classified as above ground (via a threshold parameter used by GndNet). We consider this
as a predicted LiDAR scan (L̃ ) generated based on thresholding of the elevation output of
the model. Given that the dataset also has groundtruth elevation information, we generate a
groundtruth LiDAR scan (L), by thresholding the LiDAR points with groundtruth elevation
information (using the same threshold parameter). Given we have a batch of contiguous
groundtruth and predicted LiDAR using the above strategy, we can use the differentiable
SLAM error module to estimate the trajectory for both the batches. Thereafter, we evaluate
the rotational and translation trajectory error between both the trajectories (Lslam). This is
our SLAM error that can be successfully backpropagated through the network owing to the
differentiable SLAM module. For a visual description, refer Figure 2.

3.2 Dynamic to Static LiDAR Translation
3.2.1 DSLR

We choose a generative modelling application to show the effect of the differentiable SLAM
on a generative modelling task. Dynamic to Static Translation of LiDAR point cloud [16]
translates a LiDAR scan with occlusions due to dynamic objects, to a fully static scan with all
dynamic occlusions replaced by static background. DSLR uses a 3-module based model - an
Autoencoder, Pair Discriminator and an Advesarial Module to achieve the translation. Given
a set of dynamic scans X = (X1,X2...Xn) and corresponding static scans Y = (Y1,Y2...Yn), the
autoencoder simple learns to reconstructs a LiDAR scan. The pair discriminator module
classsfies a LiDAR scan pair into 2 classes based on the below equation.

DI ((l1),(l2)) =
{

1 l1 ∈ X , l2 ∈ X
0 l1 ∈ X , l2 ∈ Y

}
(6)

The adversarial modules trick the discriminator to predict 1 for a pair that should be labelled
as 0, thus generating the adversarial loss (Lmodel), which helps to achieve static translation
for a dynamic LiDAR scan.

3.2.2 Differentiable SLAM based DSLR

We modify the adversarial module of DSLR in order to plug differentiable SLAM. Given a
dynamic scan(di) as input, the output of the adversarial module is a reconstructed static scan
(s̄i) with the dynamic occlusions replaced by the actual static background. We also have the
groundtruth static scans (si) to compare the generated scans against. Given that we have a
batch of contiguous reconstructed static scans ((s̄i)), as well as the groundtruth static scans
(si), we can use the differentiable SLAM error module to calculate the trajectories for both
the sets and calculate the error between the two (Lslam), that can be backpropagated using
the deep learning model. For a visual description, refer Figure 2.
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3.3 Conditional LiDAR Generation (AElidar)

We demonstrate the benefit of our differentiable SLAM module on a standard LiDAR au-
toencoder which serves as backbone for multiple downstream tasks. We use Caccia et. al.
[4] to reconstruct LiDAR scan using range-image based LiDAR representation. The encoder
and decoder architectures are adapted from Radford et. al. [31]. We train AElidar with and
without differentiable SLAM. For the differentiable SLAM variant, we calculate the SLAM
loss between the reconstructed output LiDAR and the input LIDAR scan. The SLAM loss
along with the reconstruction loss is back-propagated to ensure that the model learns from
the SLAM error as well. The pipeline for this task is similar to DSLR (Figure 2(left)).

4 Experiments

4.1 Experimental Setup

For all the deep learning models used in our paper: DSLR[16], GndNet [28] and AElidar[4]
we follow the experimental setting of the respective models as used in their work, except a
minor change for GndNet. GndNet uses every fourth contiguous LiDAR scan for training.
However, we require finer contiguity as we compute SLAM error between contiguous scans.
Therefore, we use every second contiguous scan for training GndNet and run the experiments
with and without the SLAM module using this setting to report the results.

SLAM error module is time consuming. Thus, we do not calculate SLAM error for every
epoch - we calculate SLAM error after every kth epoch, where k is a hyperparameter. More
details in the Appendix (Section 1.2).

4.2 Datasets

CARLA-64: CARLA-64 [16] is an extensive simulated LiDAR dataset. It mimics the exact
settings of a VLP-64 LiDAR sensor. The dataset consists of 8 sequences for training and 6
for testing. It has 4 sequences for testing on SLAM.
ARD-16: ARD-16 [16] is a real-world sparse industrial dataset collected using a VLP-Puck
LiDAR sensor. It is 4× sparse compared to CARLA-64 and KITTI.
SemanticKITTI: SemanticKITTI [1][9] is a well known LiDAR dataset with semantic seg-
mentation labels. It has 11 sequences(00-10) for which semantic labels are available.
For more details on the datasets, please refer to the Appendix (Section 1.1).

4.3 Results

Ground Elevation Estimation and Segmentation We, for the first time show the possibil-
ity of integration of a differentiable SLAM module into a regression task (ground elevation
estimation) and segmentation (into ground v/s non-ground points) based downstream task.
We compare the results of the GndNet with and without differentiable SLAM error as ex-
plained in Section 3. The model performs 2 task - regressing the ground elevation of the scan
points, and segmenting the points into ground and above ground points. The performance
of the model is shown in the Table 1. Our variant comfortably surpasses the MSE (Mean-
Squared Error) estimate while regressing the elevation of the points with an improvement of
0.04 on MSE. Also our model fares better than GndNet on recall - increase of 3% and makes
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Figure 3: SLAM using (1) static output scans of DSLR(left) and (2) with static output from
DSLR+Differentiable SLAM Error model (right). Red boxes indicate regions where the
trajectory generated from our framework is better than the baseline. Differentiable SLAM
helps to reduce the drift accumulated while navigation.

less false positive mistakes. This improvement is gained by using the differentiable SLAM
module for only 27 epochs out of the total 150 epochs. (Refer 4.1) .

Method Frames MSE mIOU Prec Recall
GndNet 6554 0.76 0.81 0.85 0.94

GndNet+Diff SLAM 6554 0.72 0.81 0.83 0.97
Table 1: Comparison of the Differentiable SLAM module on ground elevation estimation
task and segmentation. For MSE, lower the better, for the rest, opposite.

4.3.1 Dynamic to Static LiDAR Translation for SLAM

In this section we for the first time show the application of differentiable SLAM for a genera-
tive modelling task - Dynamic to Static Translation for LiDAR scan for effective SLAM [16].
In this task, we evaluate the relative benefit of using differentiable SLAM over plain DSLR.
We also compare the reconstruction quality of the static translations with the ground truth
static scan using Chamfer’s Distance[11]. As we see in Table 2, with differentiable SLAM
the Chamfer Distance is always better. Here we would like to point that we add SLAM error
as a loss term only for 7 interleaved epochs (Section 4.1) which gives a meaningful reduction
in the error. For results on all the six CARLA test sequences, please refer to Table 1 in the
Appendix.
We further investigate the effect of integrating the differentiable SLAM module in DSLR on
downstream SLAM. As we see in Table 3 and Figure 3, using static reconstructions obtained
from differentiable SLAM integrated DSLR gives reduced navigation error on all the four
LIDAR SLAM sequences for CARLA-64.

Dataset Run DSLR with Diff. SLAM DSLR without Diff. SLAM
CARLA-64 Avg [9..14] 6.96 7.85

ARD-16 3 0.31 0.34
KITTI 8 5.00 5.23

Table 2: Relative Comparison of Static Translation(using Chamfer Distance) for DSLR with
and without Differentiable SLAM. Lower the better.
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Run With Diff SLAM Without Diff SLAM
ATE RPE ATE RPE

Trans Rot Trans Rot
CARLA-64 Dataset

0 2.37 0.440 0.09 4.73 0.440 0.11
1 1.3 0.400 0.070 2.9 0.400 0.070
2 0.76 0.567 0.07 1.36 0.571 0.15
3 4.09 0.399 0.081 4.4 0.395 0.104

ARD-16 Dataset
3 1.94 4.81 0.186 2.05 4.81 0.188

Table 3: Relative Comparison of Static Translation for DSLR with and without Differen-
tiable SLAM on CARLA-64 and ARD-16 dataset. We use Chamfer Distance metric.

CARLA-64 Chamfer Distance with SLAM Chamfer Distance without SLAM
Avg[9..14] 2.83 3.03

Table 4: Comparison of a general purpose generative autoencoder, AElidar wiith and without
differentiable SLAM using Chamfer’s Distance metric.

4.3.2 LiDAR Reconstruction using AElidar

We demonstrate the effect of our differentiable SLAM on a general purpose simple genera-
tive model in Table 4. Our result demonstrates that such general purpose model that is used
in several complex models as a backbone can benefit from differentiable SLAM. For detailed
results on all the CARLA test sequences, please refer to Table 2 in the Appendix.

5 Discussion and Limitations
Certain limitations of Differentiable SLAM are discussed in the Appendix (Section 1.4).

LiDAR based applications has seen significant progress with the development of new
techniques and technologies that have revolutionized the field. One such technique is SLAM,
which is a popular approach to map an unknown environment and localize a robot within it.
In this paper, we propose a novel method that uses differentiable SLAM to improve the
performance of deep learning tasks such as binary segmentation, generative modeling, and
regression. Our core idea lies in the fact that SLAM prefers certain properties over others,
such as static structures/non-ground points over dynamic/ground ones. We assume that the
reference trajectory provided to SLAM is close to the ground truth, which enables us to
minimize SLAM loss in a way that is equivalent to minimizing with ground truth poses.
By doing so, we encourage DSLR to give more static-like predictions, and segmentation
models to make clear distinctions between ground and non ground objects. Additionally,
we use SLAM to improve elevation regression so that ground points can be deleted, which
improves SLAM performance. Our approach is based on a two-step reasoning process - we
first assume that the reference trajectory provided to SLAM is close to the ground truth, and
then we exploit the properties that SLAM prefers to improve deep learning tasks. We argue
that SLAM preferences can be used to improve the performance of deep learning tasks. We
present empirical results that demonstrate the effectiveness of our approach. Overall, we
believe that our approach has the potential to significantly advance the field of robotics and
open up new avenues for research in this exciting area.



10 KUMAR ET. AL.: DIFF-SLAM HELPS DL-BASED LIDAR PERCEPTION TASKS

References
[1] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stach-

niss, and Jurgen Gall. Semantickitti: A dataset for semantic scene understanding of li-
dar sequences. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9297–9307, 2019.

[2] Daan Bloembergen and Chris Eijgenstein. Automatic labelling of urban point clouds
using data fusion. arXiv preprint arXiv:2108.13757, 2021.

[3] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger, and Andrew J.
Davison. Codeslam - learning a compact, optimisable representation for dense visual
slam. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2560–2568, 2018. doi: 10.1109/CVPR.2018.00271.

[4] L. Caccia, H. v. Hoof, A. Courville, and J. Pineau. Deep generative modeling of lidar
data. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5034–5040, 2019.

[5] Kang Chen, Yu-Kun Lai, Yu-Xin Wu, Ralph Martin, and Shi-Min Hu. Automatic
semantic modeling of indoor scenes from low-quality rgb-d data using contextual in-
formation. ACM Transactions on Graphics, 33(6), 2014.

[6] Xieyuanli Chen, Shijie Li, Benedikt Mersch, Louis Wiesmann, Jürgen Gall, Jens
Behley, and Cyrill Stachniss. Moving object segmentation in 3d lidar data: A learning-
based approach exploiting sequential data. IEEE Robotics and Automation Letters, 6
(4):6529–6536, 2021.

[7] George Eskandar, Janaranjani Palaniswamy, Karim Guirguis, Barath Somashekar, and
Bin Yang. Glpu: A geometric approach for lidar pointcloud upsampling. arXiv preprint
arXiv:2202.03901, 2022.

[8] Aryan FNU, Dheeraj Vattikonda, Erqun Dong, and Sabyasachi Sahoo. Grad-lidar-
SLAM: Fully differentiable global SLAM for lidar with pose-graph optimization. In
IROS 2022 Workshop Probabilistic Robotics in the Age of Deep Learning, 2022.

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driv-
ing? the kitti vision benchmark suite. In 2012 IEEE conference on computer vision
and pattern recognition, pages 3354–3361. IEEE, 2012.

[10] Benoît Guillard, Sai Vemprala, Jayesh K Gupta, Ondrej Miksik, Vibhav Vineet, Pascal
Fua, and Ashish Kapoor. Learning to simulate realistic lidars. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 8173–8180.
IEEE, 2022.

[11] Hao-Su. 3d deep learning on point cloud representation (analysis), 2017. URL
http://graphics.stanford.edu/courses/cs468-17-spring/
LectureSlides/L14%20-%203d%20deep%20learning%20on%
20point%20cloud%20representation%20(analysis).pdf.

http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/L14%20-%203d%20deep%20learning%20on%20point%20cloud%20representation%20(analysis).pdf
http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/L14%20-%203d%20deep%20learning%20on%20point%20cloud%20representation%20(analysis).pdf
http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/L14%20-%203d%20deep%20learning%20on%20point%20cloud%20representation%20(analysis).pdf


KUMAR ET. AL.: DIFF-SLAM HELPS DL-BASED LIDAR PERCEPTION TASKS 11

[12] Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng Hua, and Lei Zhang. Struc-
ture aware single-stage 3d object detection from point cloud. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 11873–
11882, 2020.

[13] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki
Trigoni, and Andrew Markham. Randla-net: Efficient semantic segmentation of large-
scale point clouds. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11108–11117, 2020.

[14] Krishna Murthy Jatavallabhula, Ganesh Iyer, and Liam Paull. Gradslam: Dense slam
meets automatic differentiation. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 2130–2137, 2020. doi: 10.1109/ICRA40945.2020.
9197519.

[15] Hyun-Koo Kim, Kook-Yeol Yoo, and Ho-Youl Jung. Color image generation from
range and reflection data of lidar. Sensors, 20(18):5414, 2020.

[16] Prashant Kumar, Sabyasachi Sahoo, Vanshil Shah, Vineetha Kondameedi, Abhinav
Jain, Akshaj Verma, Chiranjib Bhattacharyya, and Vinay Vishwanath. Dynamic to
static lidar scan reconstruction using adversarially trained auto encoder. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 1836–1844, 2021.

[17] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation
with superpoint graphs. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4558–4567, 2018.

[18] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Bei-
jbom. Pointpillars: Fast encoders for object detection from point clouds. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12697–12705, 2019.

[19] Seungjae Lee, Hyungtae Lim, and Hyun Myung. Patchwork++: Fast and robust
ground segmentation solving partial under-segmentation using 3d point cloud. In 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
13276–13283. IEEE, 2022.

[20] Hyungtae Lim, Minho Oh, and Hyun Myung. Patchwork: Concentric zone-based
region-wise ground segmentation with ground likelihood estimation using a 3d lidar
sensor. IEEE Robotics and Automation Letters, 6(4):6458–6465, 2021.

[21] Ziqi Lu, Yihao Zhang, Kevin Doherty, Odin Severinsen, Ethan Yang, and John
Leonard. Slam-supported self-training for 6d object pose estimation. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2833–2840.
IEEE, 2022.

[22] Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. Methods for non-linear least
squares problems. 2004.

[23] Nathaniel Merrill, Yuliang Guo, Xingxing Zuo, Xinyu Huang, Stefan Leutenegger,
Xi Peng, Liu Ren, and Guoquan Huang. Symmetry and uncertainty-aware object slam
for 6dof object pose estimation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14901–14910, 2022.



12 KUMAR ET. AL.: DIFF-SLAM HELPS DL-BASED LIDAR PERCEPTION TASKS

[24] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss. Rangenet++: Fast
and accurate lidar semantic segmentation. In 2019 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 4213–4220. IEEE, 2019.

[25] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. ORB-SLAM: a versatile and
accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–1163,
2015. doi: 10.1109/TRO.2015.2463671.

[26] Kazuto Nakashima and Ryo Kurazume. Learning to drop points for lidar scan syn-
thesis. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 222–229. IEEE, 2021.

[27] Kazuto Nakashima, Yumi Iwashita, and Ryo Kurazume. Generative range imaging
for learning scene priors of 3d lidar data. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 1256–1266, 2023.

[28] Anshul Paigwar, Özgür Erkent, David Sierra-Gonzalez, and Christian Laugier. Gndnet:
Fast ground plane estimation and point cloud segmentation for autonomous vehicles.
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2150–2156, 2020. doi: 10.1109/IROS45743.2020.9340979.

[29] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652–660, 2017.

[30] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum pointnets
for 3d object detection from rgb-d data. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 918–927, 2018.

[31] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[32] Francis J Richards. A flexible growth function for empirical use. Journal of experi-
mental Botany, 10(2):290–301, 1959.

[33] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal
generation and detection from point cloud. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 770–779, 2019.

[34] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From
points to parts: 3d object detection from point cloud with part-aware and part-
aggregation network. IEEE transactions on pattern analysis and machine intelligence,
43(8):2647–2664, 2020.

[35] Paloma Sodhi, Eric Dexheimer, Mustafa Mukadam, Stuart Anderson, and Michael
Kaess. Leo: Learning energy-based models in factor graph optimization. In Con-
ference on Robot Learning, pages 234–244. PMLR, 2022.

[36] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. Cnn-slam: Real-
time dense monocular slam with learned depth prediction. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6565–6574, 2017.



KUMAR ET. AL.: DIFF-SLAM HELPS DL-BASED LIDAR PERCEPTION TASKS 13

[37] Larissa T Triess, Christoph B Rist, David Peter, and J Marius Zöllner. A realism metric
for generated lidar point clouds. International Journal of Computer Vision, 130(12):
2962–2979, 2022.

[38] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection.
Sensors, 18(10):3337, 2018.

[39] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd: Point-based 3d single stage
object detector. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11040–11048, 2020.

[40] Brent Yi, Michelle A Lee, Alina Kloss, Roberto Martín-Martín, and Jeannette Bohg.
Differentiable factor graph optimization for learning smoothers. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1339–1345.
IEEE, 2021.

[41] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection
and tracking. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11784–11793, 2021.

[42] Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue, Zerong Xi, Boqing Gong,
and Hassan Foroosh. Polarnet: An improved grid representation for online lidar point
clouds semantic segmentation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9601–9610, 2020.

[43] Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and Andrew J. Davison.
Scenecode: Monocular dense semantic reconstruction using learned encoded scene
representations. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 11768–11777, 2019.

[44] Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping Shi, and Dahua Lin. Ssn: Shape
signature networks for multi-class object detection from point clouds. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXV 16, pages 581–597. Springer, 2020.

[45] Vlas Zyrianov, Xiyue Zhu, and Shenlong Wang. Learning to generate realistic lidar
point clouds. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XXIII, pages 17–35. Springer, 2022.


