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Abstract

Traditional photometric stereo approaches, although valuable in various applications,
have faced limitations due to lack of considering accurate shadow estimation under dif-
ferent object geometry and varying lighting conditions. To address this issue, we propose
a fast and accurate shadow estimation algorithm based on a dynamic programming-based
sampling method with a differentiable temperature function. The proposed method can
be easily used to improve existing photometric stereo methods for better estimation of
shadow estimation results. In addition, we further improve the performance with our
proposed higher-order derivation loss configuration. To assess the effectiveness of our
method, we conduct comprehensive experiments and compare our results with diverse
unsupervised and supervised approaches. The results demonstrate that our method con-
sistently outperforms other state-of-the-art unsupervised methods in terms of mean an-
gular error (MAE) while remaining competitive with supervised techniques.

1 Introduction

Photometric stereo requires reconstructing geometrical information from images under vary-
ing lighting conditions. This technique has proven valuable in cases where traditional meth-
ods struggle, such as when objects are partially occluded or have complex surfaces. Pho-
tometric stereo has applications in various fields, including object recognition, scene recon-
struction, medical imaging, face reconstruction, and surface inspection.

The primary goal of photometric stereo is to extract geometrical information from im-
ages. While surface normal estimation maps are a standard output, depth information is
often of higher interest. In some cases, multi-view data is used for triangulation or repre-
senting scenes as Neural Radiance Fields (NeRF) [18] applications. However, uncalibrated
photometric stereo cannot determine normal and depth from a nearly Lambertian surface
without considering additional factors such as specular effects and shadows [2]. This high-
lights the need for a comprehensive approach when reconstructing geometrical information
from photometric stereo.
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Traditional photometric stereo studies have attempted to construct depth maps by inte-
grating or solving difference equations based on surface normal inference [28]. However,
this approach has faced limitations due to the predicted normal vector field not being a con-
servation vector field. Previous work has introduced a novel formulation that integrated
depth, normal, and re-rendered images using the rendering equation to address this chal-
lenge. Despite achieving state-of-the-art results, this approach has limitations, including a
tradeoff between accuracy vs sampling number and the lack of end-to-end differentiability.

In this paper, to address the tradeoff issue between the speed and mIOU accuracy, we
propose a Dynamic Programming Shadow Estimation (DPSE), which optimizes the photo-
metric stereo shadow estimation by using a line sweeping algorithm and parallel prefix [7].
Moreover, we further develop a differentiable version of DPSE (DDPSE), resulting in a more
accurate solution for the surface normal estimation by approximating the step function with
an asymptotic exponential function with a temperature hyperparameter in the denomina-
tor. Our framework improves upon existing formulations by explicitly predicting multiple
aspects of the output, such as lighting direction and intensity, surface normal estimation,
shading and attached/cast shadow of the image, a depth map of the image, Bidirectional Re-
flectance Distribution Function (BRDF) material at each pixel and the re-rendered image.
The proposed approaches achieve promising improvement in terms of speed and shadow
estimation accuracy for the cast shadow rendering during the inference time.

Our main contributions are summarized as follows:

1. We introduce a novel parallel prefix-based shadow estimation algorithm, resulting in
faster and more accurate shadow estimation than prior methods.

2. We further develop the formulation of the algorithm using a temperature function,
which is proven to improve the accuracy of both normal and depth prediction. The
proposed approach achieves state-of-the-art performance in photometric stereo.

3. We demonstrate the potential of shadow estimation in enhancing depth estimation
through direct evidence in our experiments, introducing an aspect rarely addressed
in previous photometric stereo studies.

Our framework offers a multi-purpose solution for photometric stereo that balances speed
and shadow/normal estimation accuracy, making it suitable for real-time applications with
geometrical output. By addressing current limitations in the field, our method represents a
significant advancement in photometric stereo research and has the potential to expand its
applications in various domains further.

2 Related Work

In this section, we briefly review the recent relevant works related to photometric stereos,
including supervised deep photometric stereo, neural inverse rendering-based photometric
stereo, and NeRF-based photometric stereo.

Supervised Deep Photometric Stereo: Woodham [26] was the first to introduce the photo-
metric stereo problem. This work assumes a linear relationship between the cosine similarity
of the surface normal and the direction of the light source, which is referred to as a Lam-
bertian surface in subsequent work. However, this unrealistic assumption poses challenges
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for real-world data, as it does not account for non-Lambertian surfaces or complex lighting
effects. This leads to further investigations where the non-Lambertian BRDF(Bidirectional
Reflectance Distribution Function) [9, 27] is considered. Santo ef al. [20] pioneered the ap-
plication of deep neural networks to the realm of photometric stereo, but their method was
limited to a fixed number of observations under various lighting conditions, thereby losing
the flexibility adopting to applications where the number of lighting directions varies. Ike-
hata et al. [8] overcame this limitation by introducing the innovative observation map encod-
ing information into an CNN-readable image, which enabled normal map prediction without
relying on a fixed number of observations. Chen et al. then took the torch, developing a suite
of CNN-based techniques [4, 5, 6] that catered to both calibrated and uncalibrated photomet-
ric stereo. They introduced lighting space discretization for calibration tasks in uncalibrated
photometric stereo and effectively leveraged the power of max-pooling to aggregate features
from multiple observed images and directions. However, these methods still relied on the
availability of ground truth for normal and lighting calibration, which is not always feasible
for real-world data.

Neural Inverse Rendering in Photometric Stereo: To tackle missing ground truth in
datasets, self-supervised techniques through inverse rendering have gained prominence in
photometric stereo. Taniai and Maehara [22] initially introduced reprojection-based guid-
ance. They were followed by Kaya ef al. [10], who considered inter-reflections. Tiwari and
Raman then developed LERPS [24] using GAN loss and DeepPS2 [23] for self-calibration
with two images.

NeRF Based Methods on Photometric Stereo: NeRF [18] represents a cutting-edge deep
learning technique for capturing a scene as a dataset. Unlike traditional deep learning frame-
works that strive to generalize, a NeRF model’s objective is to encode by fitting a particular
scene for improved rendering performance. NeRF-based approaches have produced state-
of-the-art results in normal estimation, eliminating the requirement for ground truth during
training in the context of photometric stereo. In a recent development, Li [12, 13] adapted
the NeRF concept, training a MLP network on a scene under diverse lighting conditions.
Building on this foundation, subsequent research by Yang er al. [29] merged the advantages
of NeRF with those of multi-view stereo. While optimization using NeRF-based methods
typically takes just a few minutes on GeForce RTX 30 Series, these approaches have signif-
icantly impacted the photometric stereo field, opening new possibilities for future research
and applications.

3 Method

In this section, we introduce the details of the proposed DPSE and DDPSE algorithms.

3.1 Problem Formulation

We model the image rendering process using the approaches presented in previous works [3,
4,5,6,8,9, 10, 12, 14, 22]. Here we assume the light intensity is a constant by normalizing
the observed images. Consider a set of photometric stereo images X (0 x(1) ... x (=1
while each image X() € RE*¥*W has C channels and dimensions H,W. Each image is
associated with a point light source placed an infinite distance away, having direction / 0 e
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Rendering Equation for Reconstruction Loss
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Figure 1: This diagram provides an overview of our contributions. Our system begins by
processing input data through a Photometric Stereo module, which outputs normal, BRDF,
and depth mappings. These depth mappings are utilized to compute shadows using our
method. By inferring this information, we can render a predicted image for the process of
inverse rendering.

S?. A dense normal mapping is denoted as Ny € S?, where xy is the pixel index. We assume
Nyy and [ (@) are of unit norm.

We account for the shadowing effect caused by geometric constraints, denoted by s)(fy) €
{0,1} [10, 12, 14]. A value of O indicates that the location (x,y) is occluded by shadow.
The effect of the BRDF (Bidirectional Reflectance Distribution Function, parameterized by
0) pg, which depends on the pixel’s material, is also considered. The observed image is
modeled as Figure 1.

3.1.1 Photometric Stereo Module

Photometric stereo networks, as highlighted in several studies [10, 12, 13, 29], leverage both
global and local features for reverse rendering. With these works, we start with a model
designed to predict the normal map n,, = N(x,y) and the depth map d,, = f(x,y), based on
the stereo coordinate (x,y). Additionally, for each light direction / (i), the model is assumed

to predict the BRDF as p)g) = pg ("xyvl(i)>~

Our methodology distinguishes itself, especially from Li’s [12] approach, by the syn-
ergistic application of these features. Rather than manually setting a threshold for shadow
labeling, we incorporate these features in an end-to-end framework, enabling the model to
autonomously determine shadow pixel labeling.
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3.1.2 Shadow Estimation Module

With a lighting direction ! = (Iy,ly,1;), the shadow term sj(c'y) = s(x,y) is the occlusion along

the light direction:

s(x,y) = step (min floy) +Lt = flx+ Lty + lyf)) (D
teRy

where f(x,y) is the depth map and step(-) represents the Heaviside step function. The
shadow term s(x,y) is determined by identifying any occlusion along a trajectory that starts
from f(x,y) and follows the lighting direction /.

3.1.3 Optimization Loss

Geometric Constraint and Autograd Losses. Given the predicted normal map n and pre-
dicted depth map d = f(x,y), we define a loss Lg, to align these two outputs. To convert
the normal map from a depth map, we use finite difference with step A to obtain the esti-
mated normal vector. We also employ higher-order differentiation [1] loss Layiograd On the
network’s output f to take advantage of automatic differentiation frameworks available in
popular deep learning packages.

A +A7 - 9 9 +A - )
ﬁgw:l—nT<f(x yA) fxy) [y A) f(xy)

) 7£autograd =1- ﬁTVf 2

Reprojection Loss. In the case of inverse rendering, given light direction /, we employ
Li’s [12] models to calculate 71, p,d. We then evaluate § using our shadow estimation algo-
rithm with L1 loss.

Lrepej = X = spmax (21,0 3)

Here, X represents the ground truth image, p refers to the BRDF, and § is the shadow map
estimated by our dynamic programming-based method. The overall loss is the weighted sum
of all the individual losses:

L= )”reproj £repr0j + lgeoﬁgeo + )vautogradﬁautograda “4)

where Areproj; Ageo, Aautograd are the weighting coefficients that control the relative importance
of each loss term.

3.2 Closed-form Differentiable Shadow Estimation

The shadow estimation Eq. 1 can be accelerated using dynamic programming techniques,
such as a line sweeping algorithm [11] on a discretized sample over the real line #. A naive
approach in one dimension would take linear time based on the sample space size.

As our contribution, we present a technique to embed a parallelized line sweeping al-
gorithm into a convolutional neural network. This shadow estimation module estimates the
cast shadow from the depth map and lighting direction. Furthermore, this module component
is independent of photometric stereo and is differentiable with only one parameter, making
optimizing within a deep neural network easier.
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3.2.1 Shadow Estimation from Depth Map

The shadow casting as shown in Eq. | of a given pixel v(0) = (x,y) and lighting direction
! = (Iy,ly,1;) can be modeled as a one-dimensional sweep line problem along a discretized
trajectory. The surface depth is represented by z(r) = f(v(t)), where v(t) = (x+1l,,y +1ly)
and x,y are pixel indices. The shadow estimate is then given by:

s = step (Itn>i(l)lz(0) +1l, — z(t)) 5)

We discretize the trajectory with a step size w and define the array F[i] = f(v(w-i)) for
i=0,1,2,---. The shadow estimation can then be written as:

"i=step ( F in (il,w—Fl[i]) ] =step | —B” in BO[i
s sep( [O]+i61<]r:trl{o}(z W [z])) sep( [O]Jriel\rlinun{o} [f] (6)

We use dynamic programming to compute Eq. 6 efficiently. By defining B [i] := il.w — F[i],
we can compute B()[i] through parallel prefix [7]:

pU+1) [i] := min (B(l) [i]vB(D [i+ 21]) N

— min (B(l’l) [i], BV [i+2-1, B [i42.2/71), BI-D]i 43 2’*1]) ®)

©))
= min BO[i+/] (10)

0<t<2!

Note that the computation depicted in Eq. 7 corresponds to an image operation, which is
inherently optimized by the majority of hardware and software systems, thus ensuring rapid
execution on GPUs.

We use an exponential function with temperature 7 to approximate the non-differentiable
step function in our implementation. Since s’ from Eq. 6 is always non-positive, the expo-
nential function exp (-/7) will approximately converge to the step function when 7 is small.
The temperature 7 can be a trainable or a fixed parameter. We set T as a trainable param-
eter (refer to Table 4). A smaller value of 7 is indicative of a model that is more confident
in its predictions, although this might introduce potential biases. With the replacement of
temperature function, Eq. 6 can then be rewritten as:

(MeTD 101 — BO)

T

where T = O (H 4+ W) is the range of image size. The following lemma analysis the time
complexity of the proposed shadow estimation module.

Lemma 1 (Module Complexity for Shadow Estimation). The shadow estimate can be com-
puted with at most O(log %) differentiable image shift operations, where T is the range of
the image dimension and w is the sampling interval.

On top of that, Eq. 11 also inherits a numerical accuracy limitation:


Citation
Citation
{Grama, Karypis, Kumar, and Gupta} 2003


YEH ET AL.: IMPROVED PHOTOMETRIC STEREO 7

Table 1: We compare our method with other state-of-the-art method in the MAE metric. The
bold font means the best normal estimation accuracy.

Methods GT Normal Ball Bear Buddha Cat Cow Goblet Harvest Potl Pot2 Reading Avg
PX-Net [16] YES 2.00 3.50 7.60 4.30 4.70 6.70 13.30 4.90 5.00 9.80 6.17
W20 [25] YES 178 4.12 6.09 4.66 6.33 722 13.34 6.46 6.45 10.05 6.65
CNN-PS [8] YES 2.20 4.10 7.90 4.60 8.00 7.30 14.00 5.40 6.00 12.60 7.20
GPS-Net [15] YES 292 5.07 777 542 6.14 9.00 15.14 6.04 7.01 13.58 7.81
PS-FCN [5] YES 2.82 7.55 791 6.16 733 8.60 15.85 7.13 725 1333 8.39
TMI18 [22] NO 147 5.79 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83
BK21 [10] NO 3.78 5.96 13.14 791 10.85 11.94 25.49 8.75 10.17 18.22 11.62
L2[26] NO 4.10 8.40 14.90 8.40 25.60 18.50 30.60 8.90 14.70 19.80 15.40
Li22[12] NO 243 3.64 8.04 4.86 4.72 6.68 14.90 5.99 4.97 8.75 6.50
DDPSE (ours) NO 2.00 3.61 7.48 4.75 4.64 6.53 13.79 6.11 5.51 8.14 6.26

Lemma 2 (Numerical Error for Shadow Estimation). The numerical error of the shadow
estimation module, which differs from Equation 1, is bounded by:

min, z7(0) +tl, —z(¢
5] < % sup 1, —(0)] enp (TR EOHEZI)
T teRy T
—_— - -
dominant when t is small dominant when T is large

The first term is related to the smoothness of the surface, while the second term is related
to the approximation of the step function using the exponential function.

4 Experiments

In this section, we present the evaluation results of the proposed method with other state-of-
the-art methods. We first describe the implementation and training details as follows.

Implementation Details: We adhere to the frameworks proposed by Li [12, 13] when im-
plementing our core algorithm. Moreover, we synthesize a Lambertian-based dataset using
common surface functions and include ground truth depth and cast shadow information. We
utilize this dataset in specific experiments to evaluate depth estimation accuracy. We conduct
experiments to measure the speedup achieved using dynamic programming. For detailed in-
formation, please refer to our supplementary material.

Training Details: To train our model, we begin with Li’s pre-trained model [12] and inte-
grate our shadow estimation algorithm for inverse rendering, making the process end-to-end.
As shown in Table 1, our proposed model is implemented with 7 as a trainable parameter. In
addition, the differentiable image shifting operation is implemented using kornia [19]. We
train the model in 800 epochs, with two iterations per epoch and batch size as half of the
total data samples per iteration. Each instance takes approximately 5-8 minutes on an Nvidia
2080 Ti GPU. The initial learning rate is set as 3.5 x 10~*. We employ the cosine annealing
learning rate schedule with the AdamW optimizer [17] for optimization. The experiments
are conducted three times, and we compute the standard deviation of the average MAE on the
results that we achieve to be less than 0.01 (i.e., which is statistically significant). We care-
fully configure the hyperparameters of our model. We also set the weight for autograd loss,
Aautograd = 2.0 X 1073 and the weight for geometrical loss, Ageo = 1.0 % 103, the weight for
projection 1oss Aeproj = 1. These hyperparameters are chosen to ensure the optimal model
performance.
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Table 2: Qualitative comparison results on normal estimation.
GT Normal DDPSE Li[12] PS-FCN [5]

<

.
E

MAE 0.36° 7.18° 0.47°

4.1 Enhancing Self-Supervised Methods

In this study, we aim to enhance the accuracy of estimating surface normal without any
supervised guidance. To achieve this, we compare our proposed improvements with Li’s
method [12] from the source model and other recent approaches [5] using the widely-accepted
mean angular error (MAE) metric.

Table 1 compares MAE values for various supervised and unsupervised methods on the
common DiLiGenT [21] photometric stereo benchmark, including our proposed improve-
ments. Our findings demonstrate that our improvements consistently outperform other unsu-
pervised methods while remaining competitive with supervised methods. We provide qual-
itative results in Table 2, highlighting the key differences in the qualitative results for each
instance. The bounding box in the table indicates the areas where our method outperforms
others, particularly in regions with cast shadows. This demonstrates the effectiveness of our
proposed DDPSE in handling cast shadows, leading to improved normal estimation results.
By incorporating our novel shadow estimation algorithm into the photometric stereo frame-
work, we can perform better in challenging scenarios, making our method a more robust and
reliable solution for various applications.

4.2 Evaluation Results with Ground-Truth Depth

‘We measure the predicted depth estimation using simply rendered surfaces with ground truth
depth and cast shadow. The shapes used include Cube (step-like function), Cone, Hemi-
sphere, Gaussian, Ripple (sinusoidal function in polar coordinates), and Bumps (2D trigono-
metric functions), as shown in Table 3. For depth estimation, we measure the accuracy using
root-mean-square error (RMSE) and peak signal-to-noise ratio (PSNR) metrics. We also
provide the MAE result for normal estimation of the instances. Moreover, we achieved bet-
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Table 3: Comparisons of Li [12] and the proposed DDPSE on the photometric stereo
datasets. The bold font indicates the better shadow estimation accuracy.

Instance Method Est Depth Metric Value Instance Method Est Depth Metric Value
RMSE 61.10 RMSE 0.20

Li PSNR  2.66 Li PSNR 49.21
MAE 7.18 MAE 0.88

RMSE 8.11 RMSE 0.09
DDPSE PSNR 2147 DDPSE PSNR 56.76
MAE 0.36 MAE 0.86

RMSE 1.85 RMSE 225
Li PSNR 29.02 Li PSNR 33.02
MAE 0.68 MAE 5.08

RMSE 0.36 RMSE 0.12
DDPSE PSNR 43.75 DDPSE PSNR  59.03
MAE 0.53 MAE 4.5

7= RMSE 0.68 RMSE 0.47

PSNR 25.10 Li PSNR  30.57

N 72 MAE 6.38 MAE 4.40

77\ RMSE 1.79 RMSE 0.17
PSNR 16.64 DDPSE PSNR  39.23

N 72, MAE 3.67 MAE 4.13

Table 4: Ablation study of the proposed method using the MAE metric.

Setting Methods Ball Bear Buddha Cat Cow Goblet Harvest Potl Pot2 Reading Avg
S1 [12] 243 3.64 8.04 4.86 4.72 6.68 14.90 5.99 4.97 8.75 6.50

S2 S1 +DPSE 2.03 3.75 8.38 4.81 4.55 6.66 15.48 6.58 5.78 9.26 6.73

S3 S2 + step — exp(+/7) 2.03 3.62 7.48 4.79 4.70 6.52 13.85 6.28 5.82 8.16 6.33
proposed S3 + 7 tunable 2.00 3.61 7.48 4.75 4.64 6.53 13.79 6.11 5.51 8.14 6.26

ter results compared to our baseline. Our method outperforms in all instances, except for the
Ripple case, which indicates that our method may not be robust for certain instances. How-
ever, our baseline outputs a flat surface instead in the Cube instance (Table 3). It is important
to note that the Cube instance is a pure shadow instance and does not provide any clue of
normal from Woodham’s [26] formulation. The fact that our method can achieve non-trivial
RMSE and PSNR results for the Cube instance suggests that our method is not only robust
to cast shadows but can also leverage shadow information to enhance geometric output.

4.3 Ablation Study

As described in the main paper, we have introduced several improvements to Li’s method
[12], which include:

* Incorporating dynamic programming for accelerated sampling.
» Employing a softer step function (the exp(-/7)) to enable differentiability.

* Making 7 a trainable parameter.

Table 4 presents the impact of these modifications on the Mean Absolute Error (MAE)
of normal estimation. We conduct an ablation study using Li’s method [12] as a starting
point. As expected, adding dynamic programming does not affect normal estimation accu-
racy since its primary contribution is to speed up the process. The crucial improvements
come from making the operations differentiable, as evidenced by the results in Table 4. For
the configuration that replaces the step function with the exponential function with a fixed
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10 YEH ET AL.: IMPROVED PHOTOMETRIC STEREO

temperature, we set T = 5 x 10°. We then further make 7 learnable and reaches the best
result. Finally, we adopt this configuration for all the experiments in this paper.

5 Conclusion

In this paper, we propose a novel approach to enhance self-supervised methods for normal,
depth, and cast shadow estimation. Our method has been shown to be effective in improv-
ing the performance of the previous state-of-the-art Li’s framework [12], incorporating a
dynamic programming-based sampling method and a differentiable temperature function,
which jointly improves computational efficiency and shadow estimation accuracy. Through
extensive experiments, we demonstrate that our proposed method outperforms other unsu-
pervised techniques in terms of mean angular error (MAE), while remaining competitive
with supervised methods. One of the significant contributions of our method is the ability to
estimate depth using only shadow information (Table 3).
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