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Abstract

We present a method for novel view synthesis of empty rooms from object-existing
room images. Despite the remarkable achievements of previous inpainted NeRFs for
object removal tasks, they have a limitation in completely reconstructing the empty room
due to the lack of consideration for the room’s characteristics. Our proposed network,
named RoomNeRF, is designed to fully exploit the shared intrinsic properties of each
plane of the room via the Pattern Transfer (PT) and Planar Constraint (PC). For each
plane, the PT and PC modules capture shared visual patterns and geometrical structures,
respectively, and transfer them to areas occluded by objects, enabling realistic empty
room reconstructions without being disturbed by invisible areas of the input images.
With these internal learning strategies, RoomNeRF successfully performs novel view
synthesis of an empty room from multi-object presence images in extensive experiments
and demonstrates its superiority.

1 Introduction
Novel view synthesis from a sparse set of images is a long-standing task in computer vision,
which is essential for many AR/VR applications. This novel view synthesis allows users to
render scenes from static images, virtually enter the environment, and move freely within
3D space. A representative space where the novel view synthesis can be applied is the room.
In this case, users can freely look around, explore, and place furniture in a 3D reconstructed
empty room in a virtual environment. To accomplish this, we need a novel view synthesis
technique along with removing objects present in the room.

Recently, Neural Radiance Fields (NeRF) [19] has achieved astonishing results in novel
view synthesis. Following its initial development, various studies have been conducted to
explore extensive applications [2, 3, 7, 17, 21, 29, 32, 37]. One of the representative applica-
tions is inpainted NeRF [15, 20, 31], which performs novel view synthesis while removing
certain objects in the input images. At first glance, these inpainted NeRF solutions seem to
be able to perform novel view synthesis of an empty room successfully. However, despite
their impressive performance in object-wise removal tasks, these methods face challenges in
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Figure 1: Novel view synthesis of an empty room from object-existing room images.

reconstructing an empty room and have a limitation in generating realistic novel view images
of the empty room, due to insufficient consideration of the intrinsic properties of the room.

In this paper, we present a network for novel view synthesis of empty rooms from object-
existing room images. Our proposed network, named RoomNeRF, is designed to fully exploit
the intrinsic properties shared by each plane of the room on top of the inpainted NeRF. To
this end, we propose two modules: Pattern Transfer (PT) and Planar Constraint (PC). The
PT and PC modules capture visual patterns and geometrical structures shared by each room
plane, respectively, and transfer them to the region occluded by objects. This information
propagation dramatically improves the reconstruction quality of object-occluded regions in
the input images and allows the network to generate realistic novel view images of empty
rooms. The proposed RoomNeRF successfully performs the novel view synthesis of empty
rooms in various datasets, from virtual to real, demonstrating its superiority. To summarize,
we propose RoomNeRF, which presents a new way to synthesize novel views of empty
rooms from object-existing room images. The main contributions of our paper are as follows.

• First, we propose Pattern Transfer (PT), which transfers the visual pattern of each
plane of a room to the region occluded by objects to perform a consistent visual
reconstruction.

• Second, we propose Planar Constraint (PC), which transfers the geometric structure
of each plane of a room to the region occluded by objects to perform a consistent
geometric reconstruction.

With the aforementioned contributions, our proposed RoomNeRF successfully performs
the novel view synthesis of empty rooms in various datasets, from virtual to real, demon-
strating its superiority.

2 Related work
Neural Radiance Field (NeRF). The volumetric rendering approach to novel view synthesis
has gained prominence in recent times. Particularly, Neural Radiance Field (NeRF) [19],
which utilizes neural networks to model a scene’s appearance and 3D structure, has emerged
as a promising solution in volumetric rendering approaches. NeRF and its extensions also
have brought significant advancements beyond traditional novel view synthesis solutions:
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better reconstruction performance [2, 3], faster-rendering speed [21], larger fields [29, 37].
Some solutions directly supervise the scene geometry using sparse depth predicted from
Structure-from-Motion (SfM) [7, 26], dense depth completed by the neural network [25] or
depth from sensors [11, 24], to achieve more accurate scene reconstruction.

As NeRF faithfully reconstructs the scene as it is, various editing methods [15, 17, 20,
31, 32, 34] have also been proposed to manipulate the scene according to specific prefer-
ences. In particular, recent discussions have revolved around techniques such as inpainting
NeRF[15, 20, 31], which involves removing objects within a scene and restoring the back-
ground. Among these inpainting NeRF methods, notable approaches include Spin-NeRF
and Object-removal NeRF. Spin-NeRF [20] utilizes perceptual loss rather than photometric
loss, and object-removal NeRF [31] weights confidence score for each image and selects
view-consistent images during optimization. These solutions show promising performance,
however, they are limited to a single object and paint the geometry of scenes neglecting the
detailed structure, and sometimes fail to cleanly remove many objects in structured spaces
like a room. In this paper, we propose an empty room reconstruction method named Room-
NeRF, which preserves the visual and geometric structure of the room while editing, even
when removing many objects such as furniture.

Image Inpainting. Early 2D image inpainting approaches complete the missing regions
in an image based on patch-based [1, 6] or nearest neighbor methods [8]. After the advent
of deep learning, GAN-based approaches showed remarkable performance with adversarial
methods [10, 22, 35, 36] and various architectures [14, 16, 33], resulting in successful out-
comes. In our work, we utilize LAMA [28], a method that employs Fourier convolutions
and high receptive fields to handle challenging scenarios with large masks. While there exist
inpainting approaches that utilize perceptual information such as room layout [12] or as-
suming the background to be plane [23] for image-based rendering; however, they are not
well-suited for achieving realistic 3D reconstruction required for novel view synthesis, which
is our primary objective. To enable 3D reconstruction through inpainting methods, we com-
bined LAMA[28] with neural radiance fields[19] to reconstruct empty rooms for novel view
synthesis.

3 Preliminaries

In this section, a brief explanation of NeRF and naïve inpainted NeRF will be introduced.

3.1 Neural Radiance Field (NeRF)

With the sparse set of images of a static scene, I = {Ii}n
i=1, and their corresponding camera

intrinsic and extrinsic parameters, NeRF represent a 3D scene with a function Fθ : (x,d)→
(c,σ), which encodes 3D coordinate x = (x,y,z) and viewing direction d = (θ ,φ) to RGB
color c and density σ . Using this function Fθ , the rendered color Ĉ(r) projected into each
pixel is computed as the integrated color of the sampling points of the pixel-associated ray r:

Ĉ(r) =
N

∑
i=1

Ti(1− exp(−σiδi))ci,Ti = exp(−
i−1

∑
j=0

σ jδ j), (1)

where N is the number of sampling points on each ray, and δi is the distance between two
adjacent sample points. NeRF aims to minimize the difference between the rendered colors
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Figure 2: An overview of our proposed method. Our method takes posed RGB images with
corresponding masks as input to optimize NeRF representing an empty room. Losses derived
from the pattern transfer module and planar constraint module transfer the pattern and the
structure of each plane of the room to ensure visual and geometric consistency.

Ĉ(r) and the corresponding ground-truth colors C(r) for all ray r ∈ R:

Lcolor = ∑
r∈R

∥Ĉ(r)−C(r)∥2, (2)

where R is the set of rays used in NeRF training for each step.
Additionally, some NeRF studies [7, 25] have used pseudo sparse depths derived from

Structure from Motion (SfM) [26] as a weak supervision. The rendered depth D̂(r) projected
corresponding to each pixel r is predicted from the distribution of occupancy on the rays:

D̂(r) =
N

∑
i=1

witi,wi = Ti(1− exp(−σiδi)). (3)

In this case, NeRF additionally aims to minimize the difference between the rendered depth
D̂(r) and the corresponding ground-truth depth D(r) for all ray r ∈ R:

Ldepth = ∑
r∈R

∥D̂(r)−D(r)∥2. (4)

3.2 Naïve Inpainted NeRF
The most intuitive approach to removing objects from NeRF is to train them with object-
inpainted images. The inpainting module Fin generates inpainted images Ĩ = {Ĩi}n

i=1 with a
set of binary occlusion masks M = {Mi}n

i=1 obtained through object segmentation, which
can be replaced by other methods:

Ĩ = Fin(I,M). (5)

By using these object-inpainted images Ĩ as training data, we can naïvely train a NeRF
that implies a scene without objects.

4 Method
Even with high-quality image inpainting methods, inpainting large occluded regions in an
image can result in poor inpainting results due to large masks, shadows, or inaccurate masks.
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Furthermore, individually inpainted images lack 3D consistency, resulting in blurred and cor-
rupted novel-view images. The same problems also arise when reconstructing empty rooms
from images of rooms with many objects. However, we have found that in the case of a room,
we can effectively tackle these issues by leveraging planar-internal information.

In this section, we introduce a novel network for novel view synthesis of empty rooms,
named RoomNeRF. Our proposed RoomNeRF is designed to fully exploit the shared intrin-
sic properties of each plane of the room via two novel modules: Pattern Transfer (PT) and
Planar Constraint (PC). In Sec. 4.1, Pattern Transfer is introduced first, which captures and
transfers the shared visual pattern in each plane to the object-occluded region. In Sec. 4.2,
Planar Constraint is additionally introduced, which captures and transfers the 3D geometric
structures of each plane to the object-occluded region. With these contributed modules, our
RoomNeRF successfully generates novel view images of empty rooms. An overview of our
proposed method is shown in Fig. 2.

4.1 Pattern Transfer (PT)
In this subsection, we propose Pattern Transfer (PT), which transfers a shared visual pattern
from the visible region to the occluded region. In the case of an empty room, it’s reasonable
to assume that the same planes within the room share a similar visual pattern. With this
assumption, we can infer that the visual pattern in the occluded region closely resembles the
pattern present in the unoccluded region of the same plane.

The proposed Pattern Transfer module consists of two steps. The first is a search step
in which each patch sampled from the occluded regions of the inpainting image searches
similar patches in the unoccluded regions of the original image. The second is a transfer step
in which the searched similar visual pattern from the original images is transferred to each
occluded region.

Specifically, the search step can be described as follows: for each pixel i in the occluded
region M, we extract pixel-surrounding patch representation Qi. Additionally, for each pixel
j in the non-occluded region Mc, we extract pixel-surrounding patch representation K j. The
similarity of two patch representations is measured as cosine similarity:

d(Qi,K j) =
< Qi ·K j >

∥Qi∥∥K j∥
. (6)

With these representations, we can find the most similar patch representation K j′ as fol-
lows:

j′ = argmax
j∈(Mc∩L)

d(Qi,K j), (7)

where L is the mask of the same plane where pixel i belongs.
The transfer step can be described as follows: by minimizing the difference between the

patch representation R̂i rendered from NeRF and the most similar patch representation K j′ ,
for all pixel i in the object-occluded region M:

LPT = ∥M⊙{R̂i −K j′}∥2. (8)

In practice, since rendering all patches requires a lot of computation, we perform the
pattern transfer on a single patch every iteration. And also if the cosine similarity d(Qi,K j′)<
θthres of the most-similar patch is under the threshold, then the patch is not transferred, as
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Figure 3: Pattern Transfer (PT) and Planar Constraint (PC).

the most similar patches may not be substantially identical. The detailed illustration of the
Pattern Transfer module is illustrated in Fig. 3.

4.2 Planar Constraint (PC)

Simply optimizing NeRF with individually inpainted images not only lacks visual consis-
tency, but it is also geometrically insufficient. Since an empty room is mostly composed of
the planar structure as Manhattan world assumption [5], we can assume the occluded area by
objects is along the plane of the visible region. With this prior assumption, we can transfer
the planar structure from the visible region Mc to the occluded region M.

Specifically, for each plane Ln, we randomly sample three pixels an,bn,cn ∈ Mc ∩ Ln
from visible region Mc. And we unproject the sampled pixels an,bn,cn ∈ p to the 3D points
An,Bn,Cn ∈ P:

P = o(r(p))+ D̂(r(p))d(r(p)), (9)

where o(r(p)),d(r(p)), D̂(r(p)) ∈ R3 is the orientation, direction, and estimated depth with
the pixel-associated ray r. With the prior assumption that the occluded region is upon each
plane of the visible area, 3D points Dn on the occluded region M∩Ln also have to be on the
plane of visible points △AnBnCn.

If 3D point Dn is on the plane △AnBnCn of the visible region, the cross product of
−−−→
AnDn

and
−−−→
BnDn will be perpendicular to △AnBnCn plane. Also, the dot product between the normal

vector of the plane △AnBnCn and
−−−→
CnDn has to be 0. Thus, minimizing the dot product term

forces the 3D points Dn to be on the plane △AnBnCn, which works as a loss term:

LPC =
1

NMask

Nlayout

∑
n=1

∑
Dn∈M∩Ln

∣∣∣−−−→AnDn ×
−−−→
BnDn ·

−−−→
CnDn

∣∣∣ , (10)

where Nlayout is the number of room layout planes in the image and NMask is the number of
occluded points. The details of Planar Constraint are shown in Fig. 3.

4.3 Objective Function

Our proposed RoomNeRF is trained to minimize the color loss Lcolor and depth loss Ldepth,
which are mentioned at Sec. 3.2. Additionally, we use the pattern transfer loss LPT and planar
constraint loss LPC which can help our model reconstruct the 3D empty room scene with
consistent visual patterns and geometric structure. Finally, our total loss Ltotal is described
as follows:
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Ltotal = Lcolor +Ldepth +λPT LPT +λPCLPC. (11)

5 Experiments
5.1 Dataset

Existing approaches for novel view synthesis from indoor scenes aim to completely recon-
struct the object-existing room with videos or multi-view images. There is, to our knowledge,
no standard dataset to evaluate novel view synthesis in an empty room. To address the lack of
a dataset, we introduce a real indoor scene dataset. We captured two image sequences with
and without objects as training and testing images. Each dataset has about 60 training images
and 10 test images captured in the rooms at Yonsei University using iPad 11 Pro. Both our
training and test images captured in the identical room share the same intrinsic camera pa-
rameter. Their poses are obtained by SfM [26]. For qualitative comparison, we additionally
adopted 6 indoor scenes, one scene named ’room’ from LLFF dataset [18] and the other five
scenes ’room_0’, ’room_1’, ’room_2’, ’office_0’ and ’office_3’ from replica dataset [27].
We used given ground truth masks of objects on the replica dataset [27].

5.2 Metrics

To evaluate our RoomNeRF, we compare ground-truth images without objects and rendered
images from identical camera poses. We use the standard evaluation metrics of original NeRF
[19]: Peak Signal-to-Noise Ratio (PSNR) [9], Structural Similarity Index Measure (SSIM)
[30], and Learned Perceptual Image Patch Similarity (LPIPS) [38].

5.3 Implementation Details

We built our implementation upon the MPL architecture same as NeRF [19]. We set λPT =
λPC = 0.001 for the parameters of the loss term. We optimized the model for 50k iterations
using Adam optimizer with an initial learning rate of Lrate = 0.0005. 2048 random rays are
sampled for every iteration. For pattern transfer, pre-trained VGG19 is used for extracting
feature representation at the activation of relu3_1. Patch size for PT and the similarity thresh-
old θthres are set as 64x64 and 0.75. The room layouts of each image which are input for PT
and PC are estimated through RoomNet [13]. The masks of multiple objects are obtained by
using modular interactive video object segmentation [4] with sparse human annotations. The
masks are dilated with a 9x9 kernel since the accurate masks of multiple objects allow the
edge of objects to cross the boundary letting the shadow and reflections by objects expand.

We compared ’masked NeRF’, ’Inpainted NeRF’, and object-removing NeRFs [15, 20,
31] on our dataset as a baseline for evaluating novel view synthesis. Masked NeRF opti-
mizes NeRF only with pixels from the unmasked region, ignoring the object region pixels.
Inpainted NeRF is trained with images inpainted by LaMa [28]. Since the official codes
of object-removal NeRFs are not available, we reproduced them with slight modifications.
NeRF-in [15] optimizes with inpainted RGB images and also depth images which are first
rendered from pre-trained NeRF and inpainted by LaMa [28]. We reproduced object-removal
NeRF [31] which weights uncertainty score for each training image and undergoes a view se-
lection process for every mid-iteration. Since our dataset is absent of data from depth senor,
we modified the depth data of object-removal NeRF with the rendered depth as NeRF-in
[15].
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Table 1: Comparison with baselines for novel view synthesis of an empty room on our dataset

Seminar room Office room
PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Masked NeRF 21.69 0.8383 0.3781 20.61 0.9387 0.3409
Inpainted NeRF 23.44 0.8672 0.3722 21.07 0.9509 0.3199

NeRF-in [15] 23.35 0.8754 0.3420 21.42 0.8778 0.3310
Object-removal [31] 22.60 0.8591 0.3644 21.26 0.9425 0.3237

SPin-NeRF [20] 22.96 0.8643 0.2454 21.26 0.9467 0.2841
RoomNeRF (Ours) 23.82 0.9148 0.1546 21.58 0.9580 0.2434

Input Image NeRF-in Object-Removal SPin-NeRF Ours Ground-truth

Figure 4: Qualitative comparison with Object-removing NeRFs on our dataset.

Input Image NeRF-in Object-Removal SPin-NeRF Ours

Figure 5: Qualitative results on LLFF Dataset [18] and Replica Dataset [27]

5.4 Experimental Results

Our RoomNeRF is compared against the baselines on our real-world dataset. As shown in
the Table. 1, our method is superior to other object-removal NeRFs for novel view synthesis
in an empty room. Object-removal NeRFs [15, 20, 31] utilizing depth inpainting are affected
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Table 2: Module ablation studies for RoomNeRF.

PT PC Seminar room Office room
PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

23.54 0.9048 0.1880 20.65 0.9555 0.2414
✓ 23.64 0.9076 0.1673 21.01 0.9574 0.2254

✓ 23.70 0.9155 0.2250 20.65 0.9565 0.2437
✓ ✓ 23.82 0.9148 0.1546 21.58 0.9580 0.2434

Without PC, PT Without PC Without PT RoomNeRF

Figure 6: Visual results on ablation studies. The first row shows rendered images from a
novel view and the second shows disparity maps.

by the inpainted depth maps generated from the rendered inaccurate depth map, resulting
in 3D inconsistency due to different geometry from the real room. On the other hand, our
method is similar to the actual wall pattern and structure without being blurred and remaining
3D consistent.

Qualitative Results. In Fig. 4, we show a qualitative comparison with baselines. Our
method generates compelling novel view images for the occluded region, while preserving
3D consistency and detailed pattern which is well-blended with the surrounding texture. In
contrast, the novel view image from NeRF-in model which simply inpaints NeRF is blurred
due to the 3D inconsistency of inpainted images.

Additionally, we conducted experiments on room scenes of the LLFF and replica dataset.
Example novel view images and reconstructed 3D point clouds are shown in Fig. 5. More
results of the novel view synthesis of an empty room are in our supplementary material.

Ablation Studies. We evaluated our method by applying the modules one by one. The
results are shown in Table. 2. As shown in the results, the model applying both Pattern Trans-
fer and Plane Constraint modules shows higher accuracy. The qualitative result of module
ablation is shown in Fig. 6. Wall planes of the room are not properly aligned without PC as
shown on the rendered disparity map at the novel view. The existence of the Pattern transfer
(PT) module makes a difference in the occluded region with the well-generated texture of
walls.

6 Conclusion
In this paper, we propose RoomNeRF, which presents a new way to synthesize novel views
of empty rooms from object-existing room images. The proposed network leverages the
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internal patterns and structures of the room to accurately reconstruct occluded regions of a
scene well in an efficient way. To this end, we propose two modules. First, we propose a
Pattern Transfer module, which captures the internal patterns of the plane of the room and
transfers them to the occluded region. Second, we propose a Planar Constraint module, which
captures the 3D structures of the plane of the room and transfers them to the occluded region.
With these internal learning strategies, our proposed RoomNeRF successfully synthesizes a
novel view of an empty room from several object-existent room data, proving the superiority
of the proposed network.
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