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Abstract

Camera-LiDAR extrinsic calibration is a critical task for multi-sensor fusion in au-
tonomous systems, such as self-driving vehicles and mobile robots. Traditional tech-
niques often require manual intervention or specific environments, making them labour-
intensive and error-prone. Existing deep learning-based self-calibration methods focus
on small realignments and still rely on initial estimates, limiting their practicality. In this
paper, we present PseudoCal, a novel self-calibration method that overcomes these lim-
itations by leveraging the pseudo-LiDAR concept and working directly in the 3D space
instead of limiting itself to the camera field of view. In typical autonomous vehicle and
robotics contexts and conventions, PseudoCal is able to perform one-shot calibration
quasi-independently of initial parameter estimates, addressing extreme cases that remain
unsolved by existing approaches.

1 Introduction
Camera to LiDAR extrinsic calibration is crucial for enabling seamless sensor fusion and
comprehensive environmental understanding in autonomous systems such as self-driving
vehicles and mobile robots. The objective of this task is to determine the 6D transfor-
mation T between the coordinate systems of a camera and a LiDAR (that is, rotation and
translation). Calibration techniques based on traditional vision methods achieved accurate
results [1, 2, 9, 11, 20, 24, 30, 31], but often require labour-intensive manual procedures,
specific environments, or targets. This leads to potential inaccuracies and inefficiencies. Al-
though deep learning-based calibration methods [6, 12, 13, 16, 17, 25, 29] have emerged as
powerful alternatives, they are limited by their dependence on initial parameter knowledge
(approximation of T).

To address these challenges, we propose PseudoCal, a novel sensor calibration method
that capitalises on the pseudo-LiDAR concept [27]. It enables accurate and efficient calibra-
tion independent of initial parameter knowledge. Existing deep learning-based methods rely
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Figure 1: Illustration of the PseudoPillars module, key component of the PseudoCal method
allowing for calibration estimation quasi-independently from initial values.

on a LiDAR projection in the camera image, based on an initial approximate knowledge of
the extrinsic calibration parameters. Thus, they depend on the availability and accuracy of
this initial knowledge, and discard most of the LiDAR point cloud, which is not projected
into the camera field of view. By leveraging the pseudo-LiDAR concept into the calibration
process, PseudoCal is able to work directly in 3D space, dismissing the reliance on initial
parameter knowledge.

In autonomous vehicle and robotics contexts, calibration without an initial estimate is
critical. It facilitates on-the-fly recalibration, essential when initial parameters are unavail-
able or post-mechanical stress like accidents or maintenance, as well as in cases where a
robot might be physically unreachable. This adaptability ensures the reliability and precision
of the fused sensor data. Furthermore, it accelerates the integration of new sensors, elimi-
nating the need for laborious manual calibration, thus promoting faster adaptation within the
autonomous vehicle ecosystem.

The main contribution of this paper lies in a novel camera-to-LiDAR self-calibration
technique that effectively leverages the pseudo-LiDAR concept through our proposed Pseu-
doPillars module, as depicted in Figure 1. This method is able to perform calibration quasi-
independently of initial parameter estimates in typical autonomous vehicle and robotic con-
texts, addressing extreme cases that remain unsolved by existing approaches (refer to Fig-
ure 2 for examples).

2 Related Work
In this section, we provide an overview of calibration methods, focusing on deep learning-
based techniques, and highlighting the similarities and differences with our approach. We
also discuss the development of monocular depth estimation and pseudo-LiDAR, emphasis-
ing their relevance to our work.

2.1 Automatic Camera-LiDAR Calibration Methods
Classical computer vision approaches have been used to address this task and have achieved
satisfactory accuracy. However, these methods have drawbacks, such as requiring a target [1,
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(a) Exemple of a pitch decalibration > 20◦ (b) Exemple of a yaw decalibration ≈ 90◦

Figure 2: Illustration of the method on driving scenes from KITTI. Points are a depth-
coloured LiDAR projection. On top are decalibrated samples in two extreme scenarios where
existing deep learning-based methods fail. Bottom visuals represent PseudoCal’s correction.
(a) shows no LiDAR-camera overlap due to severe pitch axis decalibration, and (b) presents
a severe yaw axis decalibration which results in projected points corresponding to objects
outside of the camera field of view.

9, 32], specific environment features [30], and for most of them offline and relatively long
computation (seconds to minutes)[1, 9, 11, 30]. Deep learning-based calibration methods
have emerged as powerful tools for addressing sensor calibration challenges due to their
ability to capture complex relationships between sensor modalities while using larger parts
of the scene than target-based methods. Examples of such methods include RegNet [25],
CalibNet [12], SemAlign [16], LCCNet [17], DXQ-Net [13], and UniCal [6]. Each of these
methods has made significant contributions. RegNet [25] was the first work to address this
task with a deep learning approach that matches the camera image and projected LiDAR,
with parameters refined in a cascaded architecture. DXQ-Net [13] introduced a differentiable
pose estimation module and probabilistic modelling of the task, improving accuracy and
generalisation. A more recent approach, UniCal [6], leverages a Transformer[26]-based
backbone network to bring attention mechanisms to calibration. It achieves state-of-the-art
results with a lighter single-branch architecture.

However, these methods share a common drawback. They rely on a good initial guess
of extrinsic parameters, which may not always be available. Therefore, we propose with
PseudoCal a procedure to get an accurate calibration quasi-independently from the initial
parameters. Details on the architecture are given in Section 3.1.

2.2 Exploiting a 2D camera for 3D information

Pseudo-LiDAR The pseudo-LiDAR concept has emerged as a key technique for bridg-
ing the performance gap between image-based and LiDAR-based 3D object detection. It
consists in using a depth map obtained from 2D sensors to generate a point cloud by pro-
jecting its points in a 3D space. Wang et al. [27] first demonstrated significant performance
improvements on image-based 3D detection by converting stereo-based depth maps into
pseudo-LiDAR representations. Weng and Kitani [28] then proposed to generate the depth
map from a single camera by monocular depth estimation. Our work capitalises on this
approach to generate a point cloud from monocular camera images.
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Figure 3: Overview of the PseudoCal architecture and its three main components: PseudoPil-
lars, UniCal-M, and UniCal-S. PseudoPillars provides an initial estimation to the cascaded
UniCal modules for refinement. The 6D transformation (calibration parameters) is noted T.

In network feature extraction, point cloud representation varies. Some, like [21, 27],
use unordered points, while others prefer to voxelise it [22]. We adopt the approach of
Lang et al. [15], generating Pillars features from voxels, depicted as a 2D pseudo-image.
This method is memory efficient, computationally effective, and suited for sparse or semi-
dense point clouds, such as those from LiDARs or pseudo-LiDARs.

Monocular Depth Estimation Monocular depth estimation is a broadly researched com-
puter vision task. State-of-the-art methods such as [10, 14, 19, 23] now demonstrate reliable
and accurate results. These approaches take advantage of advanced techniques and architec-
tures, such as Vision Transformers [23], to capture rich contextual information and model
complex scene structures effectively. Moreover, some methods, such as the one proposed
by Godard et al. [10], explore unsupervised learning strategies, reducing the need for large-
scale annotated depth datasets and further broadening the applicability of monocular depth
estimation. These methods have become more reliable and can now be used as critical com-
ponents for complex vision pipelines. We use a recent model, Global-Local Path Networks
(GPLN) [14], as a base component of our PseudoPillars module to provide depth estimation
for generating a pseudo-LiDAR projection. GPLN relies on a Transformer-based architec-
ture to capture the global context of the image while using a novel decoder to consider local
connectivity.

3 Method
In this section, we present the methodology of the proposed PseudoCal approach, which con-
sists of our novel PseudoPillars network, followed by a cascade of two UniCal [6] networks.

3.1 Architecture
3.1.1 Cascaded Architecture Rationale

The PseudoCal architecture adopts a cascaded structure illustrated in Figure 3, comprising
the proposed PseudoPillars module followed by two UniCal [6] modules trained on decreas-
ing decalibration ranges as described in Table 1.The PseudoPillars module performs a coarse
estimation of the calibration, while the UniCal modules sequentially refine the estimation.
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Module Training decalibration range
Rotation (◦) Translation (cm)

PseudoPillars 30, 30, 180 150
UniCal-M 10, 10, 10 100
UniCal-S 1, 1, 1 10

Table 1: Training decalibration range for each cascaded module in PseudoCal. Translation
range is the same on all axes, while rotation is respectively for roll, pitch, and yaw axes.

Figure 4: Kitti scene without (left) and with (right) edge removal.

This design choice is motivated by the success of cascaded architectures in various computer
vision tasks, including object detection [3], pose estimation [5], and even camera to LiDAR
calibration [25]. The cascading approach enables PseudoCal to achieve state-of-the-art cali-
bration results quasi-independently from initial parameters.

3.1.2 The PseudoPillars module

The PseudoPillars module described in Figure 1 is the core component of our PseudoCal
architecture. It comprises a depth estimation network, a pseudo-LiDAR projection, a Pil-
lars [15] encoder, a matching lightweight backbone (here MobileViT), and a regression head
similar to the one used in [6].

The depth estimation network is based on GLPN [14], which has shown state-of-the-art
performance in monocular depth estimation. The estimated depth map is then converted into
a pseudo-LiDAR point cloud. This is done by projecting the depth-encoded pixels from the
depth map to the 3D space, considering the camera intrinsics. The 3D points coordinates
(x,y,z) are given by:

z = D(u,v), x =
(u− cU )× z

fU
, y =

(v− cV )× z
fV

(1)

where D is the depth map, (u,v) the pixel coordinates, (cU ,cV ) the camera center, and( fU , fV )
the focal length along U and V axes respectively.

This 3D back-projection results in unwanted artefacts on objects’ edges, affecting the
output of our network. More specifically, trails of points making the junction between 3D
objects on different depth, which have already been observed in [27]. Noticing that they are
caused by gradient irregularities (inherent to its 2D representation) on the edges in the depth
map, we found a simple yet efficient way to filter them. We use the Canny edge detection [4]
algorithm to find and remove edges in the depth map before the 3D back-projection, result-
ing in a clean point cloud, as illustrated in Figure 4. Other methods such as statistical 3D
neighbourhood filtering have been considered but have produced lesser results. Other filters
could be considered in future research. To efficiently match information between pseudo-
LiDAR and LiDAR, a representation robust to point cloud density is needed. Thus, both
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(a) Calibrated (b) Decalibrated (c) Decalibrated and aug-
mented

Figure 5: Visualization of the Pillars representation of a KITTI scene for the LiDAR (top) and
the camera (bottom). (a) is calibrated, (b) is decalibrated by 90◦ on yaw for the illustration,
(c) has the same decalibration and a 180◦ yaw augmentation.

pseudo-LiDAR and LiDAR point clouds are passed through Pillars encoders, a technique
inspired by the Pillar Feature Network used in LiDAR-based 3D object detection [15]. The
Pillars encoder generates a compact and efficient feature representation of the point cloud,
of which sampling and density can be tuned. Figure 5 illustrates the Pillars representation
obtained from both modalities and highlights their common information.

Both are then jointly passed through a MobileViT [18] backbone, which is responsible
for extracting useful features for the regression head. MobileViT is a variant of the Vision
Transformer [7] architecture. It has shown impressive performance in various computer
vision tasks [18], including camera to LiDAR calibration [6]. It has the advantage of being
lightweight, fast, and to leverage Transformers and convolutional operations, which allows
it to perceive global information in the image, while also considering local features. The
regression head then estimates the extrinsic parameters. It is composed of a common dense
layer which then forks to two other dense layers to output rotation and translation parameters.

3.1.3 Refinement cascade

Following the PseudoPillars module, we cascade two UniCal [6] modules to refine the cali-
bration estimation, as illustrated in Figure 3. UniCal is a model which calibrates a camera-
LiDAR pair given an approximate initial calibration, specialized on correcting small de-
calibrations. Unlike other methods, it fuses camera and LiDAR data early in the process,
aggregating image channels and LiDAR mappings into a unified representation for joint
feature extraction. This approach results in state-of-the-art performance while offering a
lightweight solution ideal for resource-constrained applications. In PseudoCal, the UniCal
modules are trained on two different ranges of decalibrations on which they will special-
ize. These are described in Table 1 and noted respectively UniCal-M for the medium range
(±10◦ and ±100cm), and UniCal-S for the smaller range (±1◦ and ±10cm). As motivated
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in Section 3.1.1, by organising the UniCal modules in a cascade, we can refine the coarse
output from PseudoPillars to achieve state-of-the-art results reported in Table 2 while being
quasi-independent from initial parameters. Ablation studies presented in Section 4.2.3 and
Table 3 support the choice of using exactly two refining UniCal modules.

3.2 Training Strategy
3.2.1 Loss Function

Our training strategy involves a combination of translation, rotation, and spatial losses to
effectively train the PseudoCal network. Translation and rotation losses Lt and Lr ensure
that the estimated extrinsic parameters are accurate, while spatial losses, inspired by Net-
Calib [29] and CalibNet [12], take into account geometric information to achieve better
learning convergence.

For translation and rotation losses, we use the mean squared error (MSE) between the
predicted and ground-truth values. These two losses are balanced with appropriate weighting
factors to account for the difference in their magnitudes. The first spatial loss, Lpcl , measures
the average distance between corresponding points in the predicted and ground-truth point
clouds, which is correlated to the rotation error. The second spatial loss, LC, is the distance
between the centroids of the predicted and ground-truth point clouds, which is correlated
with the translation error. The global loss is defined in Equation 2 where weights are defined
as α = 1.3, β = 1.3, γ = 1, δ = 1.75.

L= α ×Lt +β ×Lr + γ ×Lpcl +δ ×LC (2)

3.2.2 Samples Generation

During training, two complementary processes are applied to prevent the model from learn-
ing biases. First, artificial decalibration changes the initial calibration parameters (relative
3D transformation). It is used to generate different samples to train the network (within the
specified ranges). It helps to generalize, as the number of real setups available is limited
(KITTI setup in our case). On the other side, augmentation is an absolute 3D transforma-
tion applied on both sensors (no change of target calibration parameters). Augmentation is
needed with PseudoPillars to generalise to any orientation of the sensors in its internal 3D
space (Pillars representation).

Artificial Decalibration To train the model, we need a large number of ground-truth val-
ues. It is impossible to get enough values naturally, since one value corresponds to a camera-
LiDAR pair; thus we have to adopt an approach similar to [6, 25] to generate artificial de-
calibrations on rotation and translation parameters, which we illustrate in Figure 5b. As we
want our network to be able to calibrate a LiDAR and a camera whatever their location on
the vehicle or robot, we need to choose decalibration ranges capable of simulating virtually
any pairing on the vehicle. Considering a car equipped with a rotating lidar and a camera
facing any direction around the car (e.g. front, back, side, etc.), we choose a decalibration of
±180◦ on the yaw axis, ±30◦ on the other rotation axes, and ±150cm along each translation
axis. Within this setup, the whole yaw rotation is covered. The decalibration range on the
other rotation axes is more than any previous works, such as [6, 12, 13, 16, 17, 25, 29]. It
is amply sufficient to cover most situations : with a 30◦ rotation on the pitch axis, there is
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not any overlap left between Lidar and camera field of view, as shown in Figure 2a. Simi-
larly, 150cm for each translation axis is enough to cover most cases, with, for example, the
maximal distance between the LiDAR and a camera in KITTI being 60cm.

Data Augmentation Data augmentation is applied to further improve the generalisation
capabilities of PseudoCal. Specifically, we apply a same rotation and translation on point
clouds from both sensors, which is illustrated in Figure 5c. This does not affect the calibra-
tion parameters (the transformation T between these two sensors), but alters the input for the
backbone. It helps ensure that the model does not overfit to a specific sensor configuration
or a particular pattern of decalibration.

Training Details The loss weights, learning rate (3e−5), and batch size (8) were chosen
empirically by doing a sweep across a set of values. The different modules were trained
independently from scratch and the weights frozen. Training was done on Nvidia V100
GPUs.

4 Experiments
In this section, we present a comprehensive set of experiments which primary goals are
threefold: (i) to validate the performance of PseudoCal in terms of calibration accuracy, (ii)
to evaluate the design choices and the contribution of each module, and (iii) to compare
PseudoCal’s performance with existing state-of-the-art methods.

4.1 Dataset
To evaluate the performance of PseudoCal and compare it to existing works, we employ the
KITTI dataset [8]. It provides accurate ground-truth values for extrinsic calibration parame-
ters, making it a reference benchmark for this task. The KITTI dataset comprises real-world
data collected by a vehicle equipped with a Velodyne HDL-64E LiDAR sensor and front
cameras. We use the same split for training and testing data as the one used in [25].

4.2 Results
4.2.1 Qualitative Results

Figure 6 illustrates the effectiveness of PseudoCal at different stages of the calibration pro-
cess. The first row shows the initial decalibration, while the second row presents a marked
improvement achieved by the PseudoPillars module. This sets the stage for the final row,
where the refinement cascade fine-tunes the calibration to a level visually indistinguishable
from the ground truth. This demonstrates the efficacy of our two-step approach—coarse ad-
justment followed by fine-tuning—in achieving accurate calibration, even in extreme cases.

4.2.2 Comparison to the State of the Art

Table 2 presents the quantitative results of the proposed PseudoCal method compared to
state-of-the-art deep learning-based self-calibration techniques. We report the Mean Ab-
solute Error (MAE) rotation and translation estimates, as well as the acceptable range of
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Figure 6: Qualitative evaluation of PseudoCal on KITTI (best viewed on screen). The point
clouds are color-coded according to depth. Rows represent the initial decalibrations, Pseu-
doPillars’ coarse adjustments, PseudoCal’s final refined calibrations, and groundtruth.

Model Mean Absolute Error Decalibration Range
Rotation (◦) Translation (cm) Rotation (◦) Translation (cm)

RegNet [25] 0.28 6 20, 20, 20 150
CalibNet [12] 0.41 4.34 10, 10, 10 20
LCCNet [17] 0.03 0.36 20, 20, 20 150

DXQ-Net [13] 0.04 0.77 5, 5, 5 10
UniCal [6] 0.04 0.89 1, 1, 1 10

PseudoCal (ours) 0.05 1.18 30, 30, 180 150

Table 2: Comparison on Mean Absolute Error (MAE) with deep learning-based methods
from the state of the art. Rotation decalibration values correspond to the roll, pitch, and yaw
axes. Translation decalibration has the same range on all axes. Evaluations are made on
different subsets of KITTI. PseudoCal is evaluated on the same set as RegNet, which [6]
demonstrate to be the most challenging.

decalibration for each method. From these results, we can observe that PseudoCal achieves
competitive performance compared to existing state-of-the-art methods [6, 12, 13, 17, 25],
while being able to deal with the strongest decalibration ranges of all. The unmatched range
of decalibration (up to 180 degrees on the yaw axis) used in our experiments highlights
PseudoCal’s ability to perform calibration for any camera location without initial informa-
tion, within usual robotics and autonomous vehicles contexts. Thus, it succeeds in extreme
cases where the other compared methods would inherently fail, as illustrated in Figure 2.

In summary, PseudoCal is to our knowledge the first deep-learning based extrinsic cali-
bration method that does not focus only on parameters refinement. This makes PseudoCal a
step forward for camera-LiDAR calibration in autonomous systems.

4.2.3 Ablation Study

Results of the conducted experiments are reported in Table 3. Experiment 1 evaluates the
performance of the PseudoPillars module alone. It shows, as expected, a higher MAE com-
pared to the complete PseudoCal method. Nevertheless, this is a reliable coarse estimate for
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Experiment Mean Average Error
Rotation (◦) Translation (cm)

1 PseudoPillars 3.09 19.9
2 PseudoPillars without Canny-based Noise Removal 4.18 27.93
3 PseudoPillars + UniCal-M 0.90 1.37
4 PseudoPillars + UniCal-M + UniCal-α 0.15 1.25
5 PseudoPillars + UniCal-M + UniCal-α+Unical-S 0.05 1.19
6 PseudoPillars + UniCal-M + UniCal-S 0.05 1.18

Table 3: Ablation experiments results. UniCal-α is trained on a decalibration range of ±3◦

for rotation axes and ±25cm for translation axes.

the refining cascade.
Experiment 2 shows the efficiency of our Canny-based noise removal (illustrated in Fig-

ure 4) in improving accuracy, as not using it leads to an increase of the average error of about
35% on rotation and 40% on translation.

In Experiment 3, we incorporate one UniCal-M module after the PseudoPillars module
from Experiment 1. The addition of a single UniCal-M module dramatically improves the
calibration performance, with the rotation MAE reduced to 0.90◦ and the translation MAE
at 1.37cm. This highlights the effectiveness of the cascading architecture in refining the
calibration. This also confirms that the training range for UniCal-M is sufficiently large to
accommodate the outputs of PseudoPillars. In Experiment 4, we tried adding a UniCal-
α , trained on a decalibration range of ±3◦ for rotation axes and ±25cm for translation axes,
which could be a good intermediate range between UniCal-M and UniCal-S. We then added a
final UniCal-S in Experiment 5. Finally, we compared it to the actual PseudoCal architecture
in Experiment 6, which requires only two refining modules.

Higher MAE in Experiment 4 compared to Experiment 6 suggest that a module trained
on a smaller range, such as UniCal-S, is required to achieve state-of-the-art accuracy. More-
over, similar MAE in Experiments 5 and 6 demonstrate that UniCal-M and UniCal-S are
sufficient to correct all samples, as an additional intermediate network does not improve the
final accuracy. These results thus demonstrate Experiment 6 as the most suitable architecture.

5 Conclusion
We have introduced PseudoCal, a novel sensor calibration method that exploits the potential
of pseudo-LiDAR through the PseudoPillars module, coupled with a cascaded architecture.
This technique enables accurate calibration quasi-independently from any initial knowledge
of extrinsic parameters, representing a significant breakthrough in camera-LiDAR calibra-
tion. PseudoCal has proven its efficacy on the KITTI dataset, demonstrating its robustness
in autonomous system applications. Its architecture limits the number of cascaded modules
compared to previous methods [17, 25], and rely on a light refining model [6], making it an
appealing choice for embedded applications.

Future work will investigate extending our approach to other sensor modalities, incor-
porating additional pseudo-LiDAR representations, and further refining the network archi-
tecture and training strategies. We could also consider processing successive frames as se-
quences to improve the results. PseudoCal, with its novel approach to sensor calibration, not
only advances the field, but also lays a robust foundation for future research.
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