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Abstract

Unsupervised Domain Adaptation (UDA), a process by which a model trained on a
well-annotated source dataset is adapted to an unlabeled target dataset, has emerged as a
promising solution for deploying semantic segmentation models in scenarios where an-
notating extensive amounts of data is cost-prohibitive. Although the recent development
of UDA strategies exploiting Transformer-based architectures has represented a major
advance in the field, current approaches struggle to effectively learn context dependen-
cies in the target domain, leading to suboptimal semantic label predictions. Aiming
at addressing this issue, in this work we introduce a generic three-branch Transformer
block that combines self- and cross-attention mechanisms for better source and target
feature alignment. We then show how the proposed architecture can be seamlessly in-
corporated into state-of-the-art self-training UDA schemes for semantic segmentation,
yielding enhanced adaptation capabilities without increasing the GPU memory foot-
print during training. The resulting framework significantly outperforms its baseline
on benchmarking datasets for synthetic-to-real (+1.4 mIoU on GTA→Cityscapes and
+1.1 mIoU on SYNTHIA→Cityscapes) and clear-to-adverse-weather (+3.4 mIoU on
Cityscapes→ACDC) UDA. In addition, it achieves superior robustness compared to us-
ing existing cross-domain Transformer architectures that require substantially more GPU
memory for training.

Code – https://github.com/VIS4ROB-lab/MemCDT

1 Introduction
Semantic segmentation is a fundamental task in computer vision that aims at assigning a
class label to each pixel in an image. By doing so, it provides a detailed understanding of the
image content, which is often key to enabling high-level reasoning in various downstream
applications, such as autonomous driving and robotics. Despite the outstanding progress
achieved in the field through the application of deep learning techniques [4, 13, 27], current
methods still rely on the availability of abundant labeled data for training and are highly
sensitive to domain shifts. This poses a substantial challenge to the deployment of semantic
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segmentation models in a wide range of applications and environments, as collecting large-
scale, pixel-level annotated datasets reproducing the conditions expected during deployment
is an extremely labor-intensive and time-consuming process.

A promising approach to overcome this problem involves the transfer of knowledge ac-
quired from well-annotated source data to unlabeled target data, which is commonly re-
ferred to as Unsupervised Domain Adaptation (UDA) in the literature. In the context of
semantic segmentation, UDA methods have witnessed remarkable performance improve-
ments over the past few years, especially since the incorporation of strategies that leverage
modern Transformer-based architectures [10]. Built upon the self-attention mechanism [23],
these models have demonstrated greater success in modeling context relationships compared
to traditional Convolutional Neural Networks (CNNs), leading to increased generalization
capabilities. Nonetheless, a considerable performance gap still exists between UDA and su-
pervised training. This stems from the fact that, while the learning of context dependencies
can be guided by ground truth in supervised learning, the unsupervised losses in UDA typi-
cally lack the power to facilitate effective learning of such information in the target domain.
As a result, the adapted models tend to focus on irrelevant regions and struggle to provide
adequate support for accurate semantic label prediction [25].

In this work, we address this issue by explicitly leveraging cross-domain context rela-
tionships during training. Drawing inspiration from recent work exploiting cross-domain
attention for UDA in image classification [28], we rethink how such a mechanism can be
introduced within Transformer backbones for semantic segmentation to promote the learn-
ing of robust, domain-invariant features. The resulting architecture can be effortlessly in-
tegrated into current state-of-the-art self-training UDA pipelines, yielding a simple, yet ef-
fective scheme that exhibits increased generalization capabilities across diverse synthetic-to-
real and clear-to-adverse-weather UDA benchmarks. Furthermore, the proposed approach
does not increase the GPU memory footprint of the underlying UDA framework, offering a
more accessible solution compared to existing cross-domain Transformer designs [25, 28]
that require higher-end hardware for training.

2 Related Work
UDA for Semantic Segmentation. UDA methods are typically categorized into adversarial
and self-training approaches. The former exploit learned domain discriminators to align the
source and target domain distributions at input [8, 9], feature [22] or output level [22, 24].
The latter, on the contrary, train the network on the target domain using pseudo-labels. These
can be either generated offline, requiring multiple training stages [29, 33], or predicted online
during training, in which case pseudo-label prototypes [30] or consistency regularization
techniques [1, 15, 21] are often used to promote stability of training. Most UDA methods
have evaluated their contributions using CNN-based architectures so far, with self-training
methods gradually outperforming the usually more unstable and computationally expensive
adversarial approaches. Recently, with DAFormer [10] and HRDA [11], the Transformer
architecture and additional strategies for self-training were introduced to the task of UDA in
semantic segmentation, greatly improving performance over previous CNN-based methods.
Building upon the former as an example of a modern, simple, and widely applicable UDA
pipeline that can be deployed on consumer-grade GPUs (as opposed to the latter, which is
specifically tailored to high-resolution input), here we aim at further enhancing source-target
feature alignment through an additional network component that leverages the Transformer’s
attention mechanisms for mixing context-aware features across domains.
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Vision Transformers. Motivated by their initial success in Natural Language Process-
ing, Transformer-based architectures [23] have recently been adapted to computer vision
tasks such as image classification [7, 12], object detection [3, 32], and semantic segmen-
tation [27, 31], yielding state-of-the-art performance while exhibiting greater robustness
than CNNs against distribution shifts [2, 27]. The key component of these novel archi-
tectures is the so-called self-attention module, which enables the integration of both local
and global context information in the computed deep features as opposed to the convolution
operation in CNNs, which only captures local information. Originating from self-attention,
cross-attention has been deployed within Transformer architectures mainly for feature fu-
sion in multi-modal tasks (e.g. language-vision [5, 26]). However, in the context of im-
age classification, recent work has demonstrated that such mechanisms can also be used to
enhance source-target feature alignment within Transformer-based UDA frameworks [28].
Inspired by this idea, we study effective ways to incorporate cross-domain attention within
Transformer-based backbones for semantic segmentation and design a UDA training strat-
egy that leverages the properties of these newly introduced modules to promote knowledge
transfer. Compared to concurrent work that applies the architecture introduced in [28] to
domain-adaptive semantic segmentation, our proposed approach achieves superior perfor-
mance while being substantially more memory efficient.

3 Method

3.1 Preliminaries
In UDA, we are given a set of images from a source domain XS = {x(i)S }

NS
i=1, together with

its corresponding set of ground-truth, pixel-wise semantic annotations in the form of one-hot
labels YS = {y(i)S }

NS
i=1, and a set of unlabeled images from the target domain XT = {x(i)T }

NT
i=1.

We assume that, while the images in XS and XT are sampled from different distributions,
both domains share a common label space C. The goal is then to train a neural network
f parametrized by θ , i.e. fθ , so that it delivers reliable performance on previously unseen
images originating from the target domain.

Following DAFormer [10], we start by setting up a baseline UDA pipeline that adopts the
online self-training paradigm, where the mean-teacher framework is used. This is comprised
of a teacher network hφ and a student network fθ , both sharing the same architecture. The
student model is used to backpropagate gradients and update weights based on the training
loss, while the teacher model is used to produce pseudo-labels for the target images:

ŷ(h,w,c)T = [c = argmax
c′

hφ (xT )
(h,w,c′)] , (1)

where [·] denotes the Iverson bracket. During training, the weights of the teacher model are
updated based on the Exponential Moving Average (EMA) of the student’s weights after
each iteration t, i.e. φt+1← αφt +(1−α)θt .

To train the student network, a supervised branch for the source domain and an unsuper-
vised branch for the target domain are employed. The supervised branch is trained with a
categorical cross-entropy loss using the available ground-truth labels for the source domain
images:

LS =−
H

∑
h=1

W

∑
w=1

C

∑
c=1

y(h,w,c)S log p(h,w,c)S , (2)
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Figure 1: Overview of the proposed UDA framework for semantic segmentation with
memory-efficient cross-domain Transformers. The three-branch, weight-sharing Trans-
former block architecture introduced in Sec. 3.2 is illustrated on the left, while the adapted
UDA self-training strategy described in Sec. 3.3 is shown on the right.

while the pseudo-labels are used to train the unsupervised branch on the target domain:

LT =−
H

∑
h=1

W

∑
w=1

C

∑
c=1

qT ŷ(h,w,c)T log p(h,w,c)T . (3)

Here, pS and pT are the pixel-wise softmax class probabilities predicted by the source and
the target branches, respectively, i.e. pS = fθ (xS) and pT = fθ (xT ), while qT represents a
confidence estimate for the pseudo-labels, which is determined by the proportion of pixels
whose maximum softmax probability surpasses a threshold τ [10, 21]:

qT =
1

HW

H

∑
h=1

W

∑
w=1

[max
c′

hφ (xT )
(h,w,c′) > τ] . (4)

In practice, to boost the efficiency of training, the student network is trained on aug-
mented target data, while the teacher network generates pseudo-labels using non-augmented
images. As in DACS [21] and DAFormer [10], we use color jitter, Gaussian blur, and Class-
Mix [16] for data-augmentation-based consistency regularization. Additional training strate-
gies introduced in DAFormer, such as Rare Class Sampling and ImageNet Feature Distance,
are also adopted in our framework.

3.2 Memory-Efficient Cross-Domain Transformer Backbone
Given the baseline UDA pipeline described in the previous section, we study how the in-
trinsic properties of Transformer-based architectures can be leveraged to further enhance the
learning of domain-robust features. Transformer-based models build upon the so-called self-
attention mechanism [23], which produces a representation of an input sequence based on
dynamically computed relationships among all the elements in it. Formally, the self-attention
block takes as input a sequence of N flattened image patches or feature embeddings and
projects them into three vectors, namely queries Q ∈ RN×dk , keys K ∈ RN×dk and values
V ∈ RN×dv , with dk and dv indicating their dimensions. The output is computed as follows:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V . (5)
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One of the key advantages of the self-attention mechanism is that it allows the network
to integrate both local and global context relationships into their features. However, while
the learning of such information can be effectively guided by ground truth in supervised
learning, the lack of ground-truth supervision for the target domain in UDA typically causes
self-attention to be noisy and focus on less informative regions when applied to target images.
To mitigate this issue, we design a novel backbone architecture that helps the model bridge
distributional shifts in attention across domains and makes it more robust in the presence of
noisy attention maps.

Inspired by recent work introducing cross-domain Transformers for UDA in image clas-
sification [28], we aim at extending Transformer-based semantic segmentation backbones
with cross-domain attention mechanisms in order to capture common context relationships
among images from different domains. Contrary to self-attention, cross-domain attention
takes as input query vectors from an image of one domain and key, value vectors from an
image of the other domain. Namely, following Eq. 5, we compute target-to-source attention
as AttnT S = Attention(QT ,KS,VS). By leveraging this operation to transfer relevant con-
text relationships from the source to the target images, our method effectively softens the
boundary between the two domains.

Fig. 1 shows how we apply cross-domain attention within Transformer backbones for
UDA in semantic segmentation. Specifically, we replace every self-attention block in the
original architecture with the illustrated three-branch, weight-sharing attention mechanism.
From left to right, we name these branches as source (S), target-to-source (T S) and target
(T ), according to the type of attention they are comprised of. In the b-th transformer block,
the S and T branches apply self-attention to the input source and target embeddings, re-
spectively, producing output source and target feature representations, i.e. zb

S and zb
T . Cross-

attention mechanisms, on the other hand, are incorporated in the T S branch, which is de-
signed to produce mixed feature representations for the target image, i.e. zb

T S, by attending
on both intra- and cross-domain similar patches. More precisely, the T S branch extracts ini-
tial features from the target images and produces output based on the combination of self
and target-to-source attention. To fuse features extracted from the self- and cross-attention
modules, we simply compute the average of both.

It is worth noting that, differently from related methods employing cross-domain Trans-
formers in UDA [25, 28], our design introduces both self- and cross-attention modules within
the T S branch. In our approach, cross-domain attention is used to generate a representation
for the target image based on affine features retrieved from the source image. Fusing such
a representation with the output of self-attention, the T S branch in the proposed architec-
ture eventually produces a feature representation for the target image that encodes relevant
contextual information extracted from both the source and the target domains. This enforces
an effective transfer of contextual dependencies from the source to the target domain dur-
ing training. Furthermore, as cross-domain attention might produce noisy signals, we use
gradient stopping on the cross-attentive features. A key implication of this design is that
it removes the need to backpropagate gradients through multiple branches simultaneously,
resulting in a much more memory-efficient architecture compared to existing cross-domain
Transformers in the literature.

3.3 UDA Self-Training with Cross-Domain Transformer Backbones
By replacing the self-attention blocks in a given Transformer architecture fθ with the pro-
posed three-branch attention modules, we obtain an augmented version of the original net-
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work, denoted as f CD
θ

. As shown in Fig. 1, during the forward pass, the three-branch Trans-
former backbone f CD

θ
takes as input a batch of source-target image pairs and produces three

different sets of output features, i.e. one per branch, that we denote as zS, zT S and zT . These
are then fed to the decoder, resulting in three pixel-wise softmax segmentation maps pS, pT S
and pT . The learning of domain-invariant features is achieved in our approach by enforcing
consistency between the semantic labels predicted by the the T S branch and the pseudo-
labels predicted by the teacher network:

LT S =−
H

∑
h=1

W

∑
w=1

C

∑
c=1

qT ŷ(h,w,c)T log p(h,w,c)T S . (6)

Combined with the standard losses used for the source S and target T branches in self-
training UDA (i.e. Eq. 2 and Eq. 3), the total training loss is obtained as:

L= LS +LT +LT S . (7)

3.4 Inference for the Target Domain
Since f CD

θ
keeps the same underlying architecture and number of parameters as the original

model it inherits from, i.e. fθ , the learned parameters θ during UDA training can be directly
loaded into fθ to perform inference on images from the target domain. Therefore, despite
reducing training speed due to the additional calculations for the T S branch, the proposed
strategy does not alter throughput nor the amount of resources required during inference.

4 Experiments

4.1 Datasets
We test our approach on synthetic-to-real and clear-to-adverse-weather UDA using bench-
marking semantic segmentation datasets of street scenes. As synthetic datasets, we use
GTA [17] and SYNTHIA [18]. The former contains 24,966 training images with resolu-
tion of 1914 × 1052 pixels, while the latter features 9,400 training images with resolution
of 1280 × 760 pixels. As real-world datasets, we take Cityscapes [6], with 2,975 training
and 500 validation images of resolution 2048 × 1024 pixels for clear weather, and ACDC
[19], with 1,600 training, 406 validation and 2,000 test images of resolution 1920 × 1080
for adverse weather (i.e. fog, night, rain, and snow). Following standard practice in UDA
[10], we resize GTA images to 1280 × 720 pixels, Cityscapes images to 1024 × 512 pixels,
and ACDC images to 960 × 540 pixels.

4.2 Implementation and Training Details
The UDA framework developed in this work builds upon the DAFormer [10] training pipeline
as noted in Sec. 3.1 and uses the same encoder-decoder architecture formed by the MiT-
B5 [27] backbone and the DAFormer head [10]. For UDA training, we modify the original
MiT-B5 forward pass to exploit cross-attention between the source and the target images as
described in Sec. 3.2 and incorporate the additional consistency loss introduced in Sec. 3.3
to supervise the cross-domain branch. In all of our experiments, the MiT-B5 encoder is
pre-trained on ImageNet-1k.
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GTA→ Cityscapes (Val.)

ADVENT [24] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
DACS [21] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
ProDA [30] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DAFormer [10] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
CDTDA [25] 96.5 73.9 89.5 56.8 48.9 50.7 55.8 63.3 89.9 49.1 91.2 72.2 45.4 92.7 78.3 82.9 67.5 55.2 63.4 69.6
Ours 96.3 73.7 89.9 56.2 49.7 52.0 56.8 62.7 90.0 49.1 91.5 71.5 44.6 92.5 79.4 77.8 71.6 56.8 63.2 69.7

SYNTHIA→ Cityscapes (Val.)

ADVENT [24] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 – 84.1 57.9 23.8 73.3 – 36.4 – 14.2 33.0 41.2
DACS [21] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 – 90.8 67.6 38.3 82.9 – 38.9 – 28.5 47.6 48.3
ProDA [30] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 – 84.4 74.2 24.3 88.2 – 51.1 – 40.5 45.6 55.5
DAFormer [10] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 – 89.8 73.2 48.2 87.2 – 53.2 – 53.9 61.7 60.9
CDTDA [25] 83.7 42.9 87.4 39.8 7.5 50.7 55.7 53.5 85.9 – 90.9 74.5 47.2 86.0 – 60.2 – 57.8 60.8 61.5
Ours 86.0 44.9 88.7 44.0 7.9 50.3 56.0 54.0 85.6 – 88.4 73.8 46.2 87.7 – 61.5 – 55.8 60.3 62.0

Cityscapes→ ACDC (Test)

ADVENT [24] 72.9 14.3 40.5 16.6 21.2 9.3 17.4 21.2 63.8 23.8 18.3 32.6 19.5 69.5 36.2 34.5 46.2 26.9 36.1 32.7
FDA [29] 73.2 34.7 59.0 24.8 29.5 28.6 43.3 44.9 70.1 28.2 54.7 47.0 28.5 74.6 44.8 52.3 63.3 28.3 39.5 45.7
MGCDA [20] 73.4 28.7 69.9 19.3 26.3 36.8 53.0 53.3 75.4 32.0 84.6 51.0 26.1 77.6 43.2 45.9 53.9 32.7 41.5 48.7
DAFormer [10] 58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 58.3 32.6 82.7 58.3 54.9 82.4 44.1 50.7 55.4
CDTDA [25] 57.6 43.7 85.1 43.5 33.9 50.1 42.9 53.9 72.8 52.9 52.2 59.4 34.7 83.6 60.4 68.7 84.3 41.4 53.0 56.5
Ours 69.0 53.1 84.7 45.8 36.0 50.1 43.2 57.0 73.4 54.2 65.9 59.9 37.0 83.0 65.8 62.3 83.9 42.3 51.5 58.8

Table 1: Comparison with the state of the art on different UDA benchmarks. Following
common practice, our reported results are averaged over 3 random seeds.

As in DAFormer, we train on batches of two 512×512 random crops for 40k itera-
tions, using the AdamW [14] optimizer with a learning rate of 6× 10−5 for the encoder
and 6× 10−4 for the decoder, a weight decay of 0.01, linear learning rate warm-up up to
iteration 1.5k, and linear decay afterward. Hyper-parameter values for specific UDA train-
ing strategies such as DACS [21] augmentations, Rare Class Sampling (RCS), and ImageNet
feature distance (FD) are kept as in the original configurations.

4.3 Comparison with the State of the Art
The performance of the proposed framework is evaluated on different domain adaptation
scenarios: synthetic-to-real (GTA→Cityscapes and SYNTHIA→Cityscapes) and clear-to-
adverse weather conditions (Cityscapes→ACDC). Tab. 1 shows the segmentation accuracy
obtained with our approach compared to other methods from the state of the art. It is worth
noting that DAFormer itself brings an unprecedented performance boost with respect to
previous CNN-based methods [21, 24, 30], highlighting the benefits of leveraging mod-
ern Transformer architectures in UDA. Compared to the original DAFormer UDA pipeline,
our method achieves significant improvements on all three benchmarks, showing that the
newly introduced cross-domain branch effectively contributes to reducing the domain gap.
Specifically, we improve performance by +1.4 mIoU on GTA→Cityscapes, by +1.1 mIoU
on SYNTHIA→Cityscapes, and by +3.4 mIoU on Cityscapes→ACDC. Interestingly, results
show that the increase in segmentation accuracy is remarkably higher in Cityscapes→ACDC
than in the two synthetic-to-real scenarios. This arises from the fact that, as both Cityscapes
and ACDC are recorded in the real world and partly in the same or very similar cities, the
gap in distributions of context relationships is smaller in this benchmark, thus facilitating the
transfer of domain-invariant features through cross-domain attention.
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Target Image DAFormer Ours Ground Truth

road sidew. build. wall fence pole tr.light tr.sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure 2: Qualitative semantic segmentation results of our method compared to the base-
line DAFormer [10] on GTA→Cityscapes (row 1), SYNTHIA→Cityscapes (row 2), and
Cityscapes→ACDC (rows 3-6). An extended analysis on example predictions is provided in
the Supplementary Material.

We additionally compare our approach to concurrent work [25], dubbed CDTDA for
convenience, that also leverages cross-domain Transformers for UDA in semantic segmen-
tation. Specifically, CDTDA employs a bidirectional cross-domain Transformer backbone
following the design of CDTrans [28] and supervises the target branch with an extra consis-
tency loss on attention maps that we do not consider in our framework. Our overall training
scheme, despite being simpler and requiring substantially fewer calculations, still achieves
superior performance, indicating that our proposed cross-domain Transformer design does a
better job at enforcing domain-robust feature learning.

4.4 Analysis of the Proposed Cross-Domain Transformer Design

To further verify the effectiveness of our proposed architecture for domain-adaptive semantic
segmentation, we evaluate its performance against existing cross-domain Transformers in the
literature, namely CDTrans [28] and CDTDA [25], both shown in Fig. 3. As the goal here is
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Figure 3: Different cross-domain Transformer variants for UDA. (a) corresponds to the CD-
Trans [28] design, originally developed for UDA in image classification. (b) is an adapted
version of CDTrans which includes bidirectional cross-attention and gradient stopping on the
query vectors in the cross-domain attention modules. (c) is our cross-domain Transformer
block structure described in Sec. 3.2. LS and LST are supervised cross-entropy losses using
the ground-truth labels for the source domain, while LT and LT S are unsupervised cross-
entropy losses using pseudo-labels produced by the EMA-teacher network.

Training
Architecture mIoU Throughput GPU Mem.

DAFormer [10] 68.1 ± 0.7 0.70 it/s 9.81 GB
CDTrans [28] 68.8 ± 0.4 0.44 it/s 17.51 GB
CDTDA [25] 68.9 ± 0.6 0.37 it/s 13.35 GB
Ours 69.7 ± 0.4 0.52 it/s 9.81 GB

Table 2: Throughput and memory consumption of DAFormer and the cross-domain Trans-
former variants in Fig. 3 during training on a NVIDIA A10G GPU, together with the
achieved segmentation accuracy averaged over 3 random seeds. Results are obtained by
integrating each of the evaluated architectures in our baseline UDA framework.

to compare the architecture designs, we integrate each of the aforementioned cross-domain
Transformer variants in our UDA framework and report their performance on the challeng-
ing GTA→Cityscapes benchmark. For reference, we also report the performance achieved
using the original DAFormer architecture with our baseline UDA pipeline (i.e. only using
the standard source and target branches, without leveraging cross-domain attention). Results
in Tab. 2 prove that, while all cross-domain Transformer variants tend to boost UDA per-
formance, our novel design leads to better adaptation capabilities (+0.9 mIoU compared to
CDTrans and +0.8 mIoU compared to CDTDA). Tab. 2 additionally reports the runtime and
GPU memory footprint of the original DAFormer architecture and the three evaluated cross-
domain Transformer designs during training. It is worth noting that both the CDTrans and the
CDTDA architectures lead to a considerable increase in GPU memory consumption when
compared to DAFormer (+78.5% and 36.1%, respectively), as they require gradient back-
propagation through multiple branches simultaneously. Our design, on the contrary, does
not suffer from this drawback (note that we backpropagate gradients through each branch
separately) and only increases training time compared to DAFormer, as it requires an addi-
tional forward/backward pass for the T S branch. During inference, none of the methods lead
to computation overhead as images are forwarded through the model’s original self-attention
branch.
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5 Conclusion
In this work, we present a novel framework for robust domain-adaptive semantic segmenta-
tion with Transformer-based architectures. Targeting applications where annotated data for
the target domain is not available, we introduce a generic three-branch Transformer block
that combines self- and cross-attention mechanisms to boost learning of domain-invariant
features. In addition, we show how such an architecture can be seamlessly integrated into a
state-of-the-art self-training UDA scheme, resulting in a framework that, despite its simplic-
ity, leads to learned models with better generalization capabilities. An extensive evaluation
on benchmarking datasets reveals that the proposed framework consistently achieves better
results than its baselines without increasing GPU memory consumption, thus comprising a
significant step towards achieving more robust models under data-scarce scenarios and lim-
ited computational resources. Future work will investigate the application of the proposed
cross-domain Transformer design to boost UDA capabilities in other computer vision prob-
lems, such as object detection and panoptic segmentation.
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