
KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS 1

A Forward-backward Learning strategy for
CNNs via Separation Index Maximizing at the
First Convolutional Layer

Ali Karimi1

aliiikarimi@ut.ac.ir

Ahmad Kalhor1

akalhor@ut.ac.ir

Mona Ahmadian2

m.ahmadian@surrey.ac.uk

1 University Of Tehran,
Tehran, Iran

2 University of Surrey,
Guildford, UK

Abstract

In deep neural networks, involving a forward learning method for initial layers can
mitigate the effect of the vanishing gradient problem and enhance the performance of
the whole model. In this paper, based on the Separation Index (SI) concept, a forward-
backward learning strategy is proposed for Convolutional Neural Networks (CNNs). At
first, the concept of SI as a supervised complexity measure is explained, and then the
learning strategy is introduced in two phases. In the first phase, as the forward learning
part, the first layer of the CNN is learned by maximizing the SI; then in the second
phase, the further layers are trained through the error backpropagation algorithm. To
maximize the SI, a novel variant of triplet loss is introduced, and it is optimized by a
quasi-least squares (QLS) error technique. The proposed learning strategy is applied
to VGG, AlexNet, ResNet, Inception, and datasets such as CIFAR100, CIFAR10 and
Fashion MNIST. A comparison of the proposed learning strategy with some state-of-the-
art learning techniques shows that it is superior to all the models and datasets evaluated.

1 Introduction
In recent years, deep learning has advanced significantly. The use of deep learning has been
demonstrated in a variety of fields, including video, image, audio, and data analysis. Deep
learning applications and their ability to solve different problems have led to various studies
to improve their performance. Accordingly, novel convolutional neural network architectures
such as VGG [22] and EfficientNet [24] have been proposed. Also, new architectures such as
transformers [6], improved loss functions [10], and novel learning strategies [9] introduced.

Although error backpropagation algorithms can achieve very high accuracy in image
classification problems, they are constrained by the vanishing gradient issue. It is not possi-
ble for the first layer to be properly learned. The vanishing gradient occurs more when we
have more layers and use deeper neural networks. With the development of deeper networks,
this problem will become more visible. Due to this issue, a variety of approaches have been

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{TanM and LeQ} 2019

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, etprotect unhbox voidb@x protect penalty @M {}al.}

Citation
Citation
{Huang, Shi, and Suykens} 2013

Citation
Citation
{Hinton} 2022

2 KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS

proposed, including activation functions like Rectified linear unit (ReLU) [18] that avoid
saturation in the early layers , use normalization techniques such as batch normalization or
layer normalization to reduce the dependence of the gradients on the scale of the activation
values [11] . But the issue still exists.

It is possible to solve the Vanshing gradient problem using forward learning, but error
backpropagation is still more accurate and powerful [9] . We have proposed a method that
combines forward learning and error backpropagation with a slight modification to improve
accuracy. our novel learning is developed in two phases:

• At the first phase, as the forward learning part, After a batch normalization layer is
applied to the data, the patches from the input data are extracted and principal compo-
nent analysis (PCA) is carried out on the data based on these patches. The eigenvalues
derived by PCA in the convolution layer are used as the values for the filter in the
convolution layer. The output of the convolution layer is then received, and QLS is
performed on them to calculate the updated values of the convolution layer filters. This
continues until we reach maximum classification accuracy in the first layer.

• At the second phase, as the backward learning part, the output of the first layer is given
as input to the second layer and the network is trained by an error backprogration
algorithm.

2 Related Works
The related works section is organized into two sections. First, learning strategies are dis-
cussed, and then different complexity measures are reviewed.

2.1 Layerwise Learning
It is important to choose a learning strategy that determines how the network’s weights are
updated during training. A popular learning strategy is the error backpropagation algorithm
based on stochastic gradient descent (SGD) or Adam [12] or RAdam [17]. Layerwise or for-
ward training are also other innovative methods that can be used for neural network training.
Hinton [9] has introduced a novel learning strategy for neural networks named the Forward-
Forward Algorithm. By using this algorithm, forward and backward backpropagation passes
are replaced by two forward passes. A greedy layer-wise learning approach was introduced
by Bengio et al [3] . The main purpose of greedy layer-wise pretraining is to initialize the
weights of a deep neural network layer by layer, beginning with the first layer. In each layer,
a separate autoencoder is trained, using the previous layer’s output as an input. After each
layer has been trained, the entire network is fine-tuned using backpropagation.

2.2 Complexity measures
To evaluate the challenges of the dataset in a classification problem, several complexity
measures have been introduced, [20]. Table 1 presents some introduced complexity measures
and their overall evaluating approaches.

According to the given explanations about the Separation Index (SI) in [20], SI indicates
how much the data points with different labels are separated from each other. In addition,
it has been explained that while the SI increases layer by layer in a deep neural network

Citation
Citation
{Nair and Hinton} 2010

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Hinton} 2022

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Loshchilov and Hutter}

Citation
Citation
{Hinton} 2022

Citation
Citation
{Bengio, Lamblin, Popovici, and Larochelle} 2006

Citation
Citation
{Saffar and Kalhor} 2023

Citation
Citation
{Saffar and Kalhor} 2023

KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS 3

(DNN), the margin among different classes will increase and the generalization of the net-
work increases. On the other hand, increasing the margin between different classes leads to
boundary complexity reduction and hence one can consider SI as a variant of neighborhood
measures. Fig 1 shows an illustrative example where data points of two classes (with circle
and triangle indicators) have (a) low, (b) medium, or (c) high separation indices. As it is
seen, when the SI increases in (c), the complexity boundaries between data points of two
classes are less than the cases (a) and (b).

(a) (b) (c)
Figure 1: An illustrative example where data points of two classes (with the circle and trian-
gle indicators) have (a) low (SI ≈ 0) , (b) medium (SI ≈ 0.5), or (c) high (SI ≈ 1) separation
indices.

Complexity measures Overall evaluating approach
Feature-based Discovering informative features by evaluating each feature independently [5, 19]

Linearity separation Evaluating the linearly separation of different classes [4]
Neighborhood Evaluating the shape of the decision boundary to distinguish different classes overlap [15, 16]

Network Evaluating the data dataset structure and relationships by representing it as a graph [7]
Dimensionality Evaluating the sparsity of the data and the average number of features at each dimension [1, 16]

Class imbalanced Evaluating the proportion of dataset number between different classes [16]

Table 1: Some complexity measures and their evaluating approaches in a classification prob-
lem

The first order SI, in fact counts the number of all data points having the same labels with
their nearest data points (neighbors with minimum distances), [20]:

SI
(
{zq}Q

q=1 ,{lq}Q
q=1

)
= 1

Q ∑
Q
k=1 ϕ (lq − lqnear)

ϕ(v) =
{

1 v = 0
0 v ̸= 0

(1)

qnear = argmin
h

∥∥∥zq − zh
∥∥∥2

h ∈ {1,2, . . . ,Q} and h ̸= q
(2)

Where {zq, lq}Q
q=1 denotes the dataset with their labels and ϕ(.) denotes the Kronecker

delta function. From (1) and (2), it is understood that the separation index is normalized
between “zero” and “one”.

Remark 1: In this paper, all applied distance norms as ∥x∥2 are L2 norm.

Citation
Citation
{Cummins} 2013

Citation
Citation
{Orriols-Puig, Macia, and Ho} 2010

Citation
Citation
{Bottou and Lin} 2007

Citation
Citation
{Leyva, Gonz{á}lez, and Perez} 2014

Citation
Citation
{Lorena, Costa, Spola{ô}r, and Deprotect unhbox voidb@x protect penalty @M {}Souto} 2012

Citation
Citation
{Garcia, deprotect unhbox voidb@x protect penalty @M {}Carvalho, and Lorena} 2015

Citation
Citation
{Basu and Ho} 2006

Citation
Citation
{Lorena, Costa, Spola{ô}r, and Deprotect unhbox voidb@x protect penalty @M {}Souto} 2012

Citation
Citation
{Lorena, Costa, Spola{ô}r, and Deprotect unhbox voidb@x protect penalty @M {}Souto} 2012

Citation
Citation
{Saffar and Kalhor} 2023

4 KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS

Figure 2: This flowchart indicates the learning method in which the quasi-LS is utilized to
learn the first convolution layer (phase 1), and other layers are learned by an error backprop-
agation algorithm (phase 2).

3 Method
To increase the generalization of a DNN, it is required that SI increases along with the layers
of a DNN, [20]. Using different error backpropagation algorithms indirectly cause increasing
the SI. However, due to the vanishing gradient problem, the SI cannot significantly increase
through initial layers, particularly at the first convolution layer as the base of the filtering
process in a CNN. Here, to maximize the SI at the first layer of a CNN, QLS technique
is proposed, [21]. Fig 2 shows the flowchart which is used to learn a CNN, where only
the first convolution layer is learned by QLS, but the other layers are updated by the error
backpropagation algorithm.

3.1 Quasi-Least Square Algorithm

Assume there are Q input training patterns at input layer: {xq}Q
q=1 . Applying M convolu-

tional filters and biases,{(θ l ,bl)}M
l=1 , to {xq}Q

q=1 and then activating the units of M feature

maps by ReLU, {Zq}Q
q=1 are appeared, equation 3. In this paper, each xq and zq are reshaped

as a vector.

{xq}Q
q=1 Filters:

{(θl ,bl)}M
l=1−→ ReLU−→ {zq}Q

q=1 (3)

In order to maximize the SI at {zq}Q
q=1 ,it is aimed that at the first stage, filter parame-

ters, {(θ l ,bl)}M
l=1 are initialized by using PCA technique, and then through some iterations,

{(θ l ,bl)}M
l=1 are updated by following rules:

• Rule 1: each zq becomes near to its nearest neighbor having the same label, zq f r

• Rule 2: each zq becomes far from its nearest neighbor having the different label, zqen

According to above defined rules the following minmax loss function (4) is employed to
maximize SI at first convolution layer:

J
(
{(θ l ,bl)}M

l=1

)
=

∑
Q
q=1 γq ∥zq − zq f r∥2 −∑

Q
q=1 γq ∥zq − zqen∥2

{(
θ
∗
l ,b

∗
l

)}M
l=1 = argminJ

(
{(θ l ,bl)}M

l=1

) (4)

Citation
Citation
{Saffar and Kalhor} 2023

Citation
Citation
{Shults and Hilbe} 2014

KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS 5

where γq denotes the important weight of zq, which is explained later in the presented
quasi-LS algorithm. About the minimax loss function (4), it is required that the first part of
the loss function is minimized and the second part is maximized. Ignoring the act of nonlin-
ear activation function, the least-square (LS) technique is the best solution to minimize (4)
but due to the nonlinearity and non-derivability of the activation function (Relu), gradient-
based methods cannot be used for optimization purposes. However, the quasi-LS technique
as a powerful hybrid optimization technique is employed. In a quasi-LS technique, at each
iteration, by freezing the operation of the activation function, all positive units at the fea-
ture maps participate in an LS technique to update the parameters of the filters. However,
since after each update, the operation of the activation function will change, the former LS
technique should be repeated. It is expected that by repeating the LS technique for several
iterations, the filter parameters converge to more optimal parameters, [21]. Table 2 presents
the list of variables, which are used in the proposed algorithm.

Row Variable Explanation
1 K Number of classes in the classification problem
2 Q Number of all training patterns (each class has at least two patterns)
3 q A counter variable for patterns q ∈ {1,2, . . . ,Q}
4 xq The vector of all units in qth pattern at the input layer
5 zq The vector of all units in qth pattern at the first convolutional layer
6 γq The important weight of Zq at each iteration.
7 M The number of feature maps at the first convolutional layer.
8 n The number of units at each feature map.
9 l A counter for number of units at each feature map.
10 nF The number of parameters at each filter without bias.
11 θ l ∈ RnF×1 the lth filter parameters.
12 bl ∈ R The lth bias corresponded to lth filter.
13 σ

q
ρ ∈ R1×nF The ρ th chosen patch from pattern xq .

14 zq
l ∈ R1×n The lth feature map from pattern zq .

15 zq
lρ ∈ R The ρ th unit of lth feature map from pattern zq .

16 t A counter for learning iterations in the Quasi-Least Square method.
17 tstop The number of iterations used in the Quasi-Least Square method.

Table 2: The list of variables used in the quasi-least square method

3.2 Forward Learning Phase
The forward learning phase of the proposed algorithm is based as follows:

3.2.1 Stage1

In this stage
{(

θ̂
1
l , b̂

1
l

)}M

l=1
, as filter parameters and biases, are initialized by applying

PCA on the input data: {xq}Q
q=1. It is assumed that M is an even number and M ≤ 2nF .

Considering that there are Q patterns at the first layer where each one has n patches, the
mean of all patches of all the training patterns is computed as equation (5):

Citation
Citation
{Shults and Hilbe} 2014

6 KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS

σ =
1

QB

Q

∑
q=1

n

∑
ρ=1

σ
q
p QB = nQ (5)

Now the covariance matrix of patches Σ is defined as equation (6) :

Σ =
1

QB
X̃T X̃ X̃T =

[
σ̃

1
1 · · · σ̃1

n σ̃
2
1 · · · σ̃2

n · · · σ̃
Q
1 · · · σ̃Q

n

]
σ

q
p = σ

q
p − σ̄ (6)

where σ
q
p denotes the vector form of p th patch of q th example. It is known that Σ is a

symmetric and positive semi-definite matrix. By applying singular value decomposition, to
Σ :

Σ = VTΛV V = [v1v2 . . .vnF]
Λ = diag(λ1λ2 · · ·λnF)λ1 ≥ λ2 ≥ ·· · ≥ λnF

(7)

where V as matrix of eigenvectors includes unitary orthogonal columns and Λ as a di-
agonal matrix includes non-negative eigenvalues. Each eigenvector vτ ,τ ∈ {1,2, . . . ,nF} is
corresponded with λτ and eigenvectors with bigger eigenvalues are more important because
more data points are propagated along their determined directions. Now, all M vectors of
filter parameters and biases are initialized as equation (8):

θ̂
1
l =

{
vτ if l = 2τ −1
−vτ if l = 2τ

b̂1
l =−σ

T
θ̂

1
l

τ ∈ {1,2, . . . ,nF} l ∈ {1,2, . . . ,M}
(8)

Remark 2: For when M > 2nF , one can initialize the first 2nF filters by (7) but other
M−2nF filters can be initialized by using a random initialization method.

3.2.2 Stage2

Repeat following steps for t=1 up to t = tstop :
Step 1: Define the matrix of patches, X, from patterns in the first layer (9) :

X =

 X1

...
XQ

 Xq =

 σ
q
1 1

...
...

σ
q
n 1

 (9)

Step 2: Update the patterns at layer L as equation (10):

ẑq =
[
ẑq

1ẑq
2 · · · ẑ

q
M

]
ẑq

l =
[
ẑq

l,1ẑq
l,2ẑ

q
l,n

]
ẑq

l,ρ = ReLU
(

σ
q
p θ̂ t

l + b̂t
l

) (10)

Step 3: For ẑq, find the nearest neighbor pattern with the same label (friend pattern) as
equation (11):

ẑq f r = near f r (ẑq) (11)

KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS 7

where near f r (ẑq) denotes a function which finds the nearest neighbor pattern from pat-
terns which have the same label with ẑq. Now, decompose ẑq f r as equation (12) :

ẑq f r → ẑq f r =
[
ẑ

q f r
1 ẑ

q f r
2 · · · ẑq f r

M

]
ẑ

q f r
l → ẑ

q f r
l =

[
ẑ

q f r
l,1 ẑ

q f r
l,2 · · · ẑq f r

l,n

] (12)

Step 4: For ẑL
q , find the nearest neighbor pattern from patterns which have different label

with ẑq :

ẑqen = nearen (ẑq) (13)

where nearen (ẑq) denotes a function which finds the nearest neighbor pattern from pat-
terns which have different label with ẑq . Now, decompose ẑqen as equation (14) :

ẑqen → ẑqen =
[
ẑqen

1 ẑqen
2 · · · ẑqen

M

]
ẑq,en

l → ẑqen
l =

[
ẑqen

l,1 ẑqen
l,2 · · · ẑqen

l,n

] (14)

Step 5: Form following data matrices including

Z f r
l =

 Z1
l f r
...

Z
Q f r
l

 Z
q f r
l =

 z
q f r
l,1
...

zl,n

 (15)

Zen
l =

 Z1en
...

ZQen

 Zqen
l =

 zqen
l,1
...

zqen
l,n

 (16)

Step 6: Define the weight matrix of all patches of all patterns as equation (17):

Φl =

 Φ1
l 0 0

0
. . . 0

0 0 Φ
Q
l

Φ
q
l = γq

sign

(
ẑq

l,1

)
0 0

0
. . . 0

0 0 sign
(

ẑq
l,n

)

(17)

where γq denotes the important weight of qth pattern. γq is defined as equation (18):

γq =

{
2 if

∥∥Ẑq − ẑqen
∥∥≤ ∥ẑq − ẑq f r∥

1 otherwise
(18)

With regard to equation (18), when the nearest neighbor of ẑqq does not have the same
label with it, the important weight of ẑq increases to 2, in quasi-LS technique.

Step 7: update the parameters of filters and biases. At first, compute following vector
(equation 19):

8 KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS

Figure 3: An example of our learning strategy for VGG16 [22] is demonstrated.

ψ t = ψ∗
f r −ψ∗

en ψ∗
fr = argmin

ψ fr

∥∥∥Xψ fr −Z f r
l

∥∥∥2

ψ∗
en = argmin∥Xψen

ψen

−Zen
l ∥2

(19)

where ψ∗
f r and ψ∗

en are optimized by least-square technique as equation (20):

ψ∗
fr =

(
XTΦt

1X
)−1 XTΦlZ

f r
l

ψ∗
en =

(
XTΦt

1X
)−1 XTΦlZen

l

(20)

Now, update the parameters of filters and biases as equation (21):[
θ̂

t+1
l

b̂t+1
l

]
=

[
θ̂

t
l

b̂t
l

]
+ψ

t (21)

3.2.3 Satge3

Put θ l = θ̂
t−1
l and bl = b̂t−1

l as final opted filter parameters and biases at the first convolu-
tional layer.

3.3 Backward Learning Phase
In the backward learning phase, first the first layer is freeze and then the other of the layers
are trained using error backpropagation algorithm. In this phase, training is no different from
the error backpropagation technique and training continues until the appropriate epoch.

4 Experimental Results

4.1 Implementation Details
To evaluate the proposed learning strategy, our proposed learning strategy compares to the
error backpropagation algorithm and greedy layer-wise leaning on well-known architectures
and datasets. Five CNN architectures including AlexNet [14], VGG16 [22], InceptionV3[23],
SimCNN [2] and ResNet50[8], and three datasets including CIFAR10 [13], CIFAR100[13],
and Fashion-MNIST [25] were used to evaluate the proposed learning strategy.

In the backward phase of our learning strategy and backpropagation error algorithm, we
trained models 250 epoch with Adam as an optimizer and categorical cross entropy as a loss
function, Also our batch size is 128 and the learning rate is 0.01.

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Belilovsky, Eickenberg, and Oyallon} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Xiao, Rasul, and Vollgraf} 2017

KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS 9

Dataset Learning Method AlexNet VGG16 ResNet50 InceptionV3
CIFAR10 Backpropagation algorithm 84.61 92.95 93.17 94.20

Our proposed learning strategy 85.84 94.81 95.02 95.43
Percentage of improvement 1.23 1.86 1.85 1.23

CIFAR10 - (plane,truck) Backpropagation algorithm 96.45 97.18 97.64 97.09
Our proposed learning strategy 97.09 98.36 98.49 97.77

Percentage of improvement 0.64 1.18 0.85 0.68
CIFAR10 - (plane,cat,bird) Backpropagation algorithm 96.21 96.80 96.88 96.81

Our proposed learning strategy 96.62 97.63 97.16 97.14
Percentage of improvement 0.41 0.83 0.28 0.33

CIFAR100 Backpropagation algorithm 62.22 70.98 75.30 76.31
Our proposed learning strategy 62.45 71.74 75.58 76.72

Percentage of improvement 0.23 0.76 0.28 0.41
Fashion-MNIST Backpropagation algorithm 92.53 94.17 95.24 95.78

Our proposed learning strategy 92.65 94.73 95.38 95.91
Percentage of improvement 0.12 0.56 0.14 0.13

Table 3: Comparing the accuracy of our learning strategy in different architectures and
datasets with error backpropagation algorithm

4.2 Results

Dataset Learning Strategy SimCNN (k=1) [2] SimCNN (k=2) [2] SimCNN (k=3) [2]
Our Method 88.7 90.8 92.9

CIFAR10 Belilovsky et al [2] 88.3 90.4 91.7

Table 4: Comparison between networks and datasets (our method vs other layer-wise meth-
ods)

The results of the experiments are given in Table 3 and 4. As shown in Table 3, in all
architectures and datasets the accuracy is increased by our proposed learning strategy. This
improvement is more significant in datasets with fewer classes, as demonstrated in Table
3, The CIFAR10 dataset has the same number of features as the CIFAR100 dataset, but
the CIFAR10 dataset has fewer classes. The accuracy of our learning strategy in CIFAR10
shows a greater improvement ratio to backpropagation than in CIFAR100. Furthermore, the
improvement ratio in datasets with more features is much higher, for instance, the percent-
age of improvement in CIFAR10 and CIFAR100 was higher than that in Fashion-MNIST.
In addition, the accuracy increase ratio in 2-class mode is higher than in 3-class mode in
the CIFAR10 dataset. Also, our learning strategy as shown in Table 4 superior to greedy
layerwise learning [2].

4.3 The Impact of Number of Layers In Forward Learning
We have applied the forward learning method to further layers and Table 5 summarizes the
accuracy results. As it is seen, the best accuracy is for when we apply our forward learning
method to only the first layer. In fact, providing a reliable basis layer by the forward learning
method is enough to have better optimization on the further layers by error backpropagation
method. In addition, by applying the forward learning method to further layers, the required
memory to implement QLS algorithm increses significantly.

Citation
Citation
{Belilovsky, Eickenberg, and Oyallon} 2019

Citation
Citation
{Belilovsky, Eickenberg, and Oyallon} 2019

Citation
Citation
{Belilovsky, Eickenberg, and Oyallon} 2019

Citation
Citation
{Belilovsky, Eickenberg, and Oyallon} 2019

Citation
Citation
{Belilovsky, Eickenberg, and Oyallon} 2019

10 KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS

No. of Forward layers Run Time(m:s) ACC
0 (Backpropagation Method) 144 : 16 92.95

1 (Our Method) 127 : 44 94.81
2 131 : 18 94.76
3 125 : 45 94.32
4 124 : 58 93.64
5 120 : 06 93.73
6 114 : 05 93.66
...
11 87 : 03 93.29
12 85 : 51 93.25
13 81 : 14 93.13

Table 5: Comparison of Time Complexity and Accuracy of the Proposed Method in Different
Layers with Backpropagation Learning Strategy for VGG16 on CIFAR10.

5 Conclusion
In this paper, a forward-backward learning strategy was proposed to enhance convolutional
neural network learning. In the forward learning phase, the first layer of the CNN was learned
by maximizing the SI which was known as a complexity measure. In fact, in this learning
phase, by using a novel variant of triplet loss and applying an iterative quasi-least square op-
timization technique to input data, the resulting features with different labels were explicitly
separated from each other. Then, in the backward learning phase, further layers were learned
by the conventional error backpropagation algorithm. Next, the proposed method was ap-
plied to some well-known CNNs and datasets. The comparison results clearly demonstrated
that such a straightforward learning strategy improved the learning of CNNs in all cases.
For example in the classification of CIFAR10 images, the accuracy of VGG and ResNet50
increased near two percentages compared to the error backpropagation. Furthermore, in
comparison with greedy layerwise learning, the proposed method was superior.

References
[1] Mitra Basu and Tin Kam Ho. Data complexity in pattern recognition. Springer Science

& Business Media, 2006.

[2] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise
learning can scale to imagenet. In International conference on machine learning, pages
583–593. PMLR, 2019.

[3] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-
wise training of deep networks. Advances in neural information processing systems,
19, 2006.

[4] Léon Bottou and Chih-Jen Lin. Support vector machine solvers. Large scale kernel
machines, 3(1):301–320, 2007.

[5] Lisa Cummins. Combining and choosing case base maintenance algorithms. PhD
thesis, University College Cork, 2013.

KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS 11

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. In International Conference on Learning Representations.

[7] Luís PF Garcia, André CPLF de Carvalho, and Ana C Lorena. Effect of label noise in
the complexity of classification problems. Neurocomputing, 160:108–119, 2015.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[9] Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations.
arXiv preprint arXiv:2212.13345, 2022.

[10] Xiaolin Huang, Lei Shi, and Johan AK Suykens. Support vector machine classifier
with pinball loss. IEEE transactions on pattern analysis and machine intelligence, 36
(5):984–997, 2013.

[11] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing sys-
tems, 25:1097–1105, 2012.

[15] Enrique Leyva, Antonio González, and Raul Perez. A set of complexity measures de-
signed for applying meta-learning to instance selection. IEEE Transactions on Knowl-
edge and Data Engineering, 27(2):354–367, 2014.

[16] Ana C Lorena, Ivan G Costa, Newton Spolaôr, and Marcilio CP De Souto. Analysis of
complexity indices for classification problems: Cancer gene expression data. Neuro-
computing, 75(1):33–42, 2012.

[17] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Interna-
tional Conference on Learning Representations.

[18] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

[19] Albert Orriols-Puig, Núria Macia, and Tin Kam Ho. Documentation for the data com-
plexity library in c++. Universitat Ramon Llull, La Salle, 196:1–40, 2010.

12 KARIMI ET AL.: A FORWARD-BACKWARD LEARNING STRATEGY FOR CNNS

[20] Mohsen Saffar and Ahmad Kalhor. Evaluation of dataflow through layers of convo-
lutional neural networks in classification problems. Expert Systems with Applications,
224:119944, 2023.

[21] Justine Shults and Joseph M Hilbe. Quasi-least squares regression. CRC Press, 2014.

[22] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[23] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

[24] X TanM and V LeQ. Rethinking model scaling for convolutional neural networks. In
Proceedings of the 36th International Conference on Machine Learning. New York:
IEEE, volume 97, pages 6105–6114, 2019.

[25] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

