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Abstract

One of the fundamental properties of an intelligent learning system is its ability to
decompose a complex problem into smaller reusable concepts and use those concepts
to adapt to new tasks. This core construct has inspired several concept-based few-shot
learning approaches. However, most existing methods lack explicit semantics or require
strong supervision to impose semantic structure over their concept representations. In
this work, we propose a weakly-supervised and visually grounded concept learner (VG-
CoL), which enforces semantic structure over the learned spatial representations. The
core of VGCoL is its reusable block that learns semantic concept prototypes and grounds
them in an image by associating the cell features (obtained as the output of the con-
volution over the image) with these concept prototypes using an attention mechanism.
To ensure the learned prototypes are semantic and disentangled, we introduce a regu-
larization that aligns these prototypes with weights of the image-level concept/attribute
classifiers and induces orthogonality. We illustrate that this hierarchical and semantic
representation results in state-of-the-art few-shot classification performance on multiple
datasets, resulting in improvements of 3–4% on CUB, SUN, and AWA2 datasets. Fur-
ther, we illustrate that we can learn meaningful, interpretable, spatially coherent, and
grounded concept representations despite weak class-level concept supervision.

1 Introduction
Deep learning, manifested by CNN-based [12, 16, 32] and Transformer-based [3, 20] archi-
tectures, has led to vastly improved, and in certain cases, human-level, recognition perfor-
mance in circumstances where large-scale and fully-annotated data is available (e.g., Ima-
geNet [16]). However, the performance of such approaches in scenarios where only limited
data exists, is considerably more modest, with most architectures overfitting and lacking
the ability to generalize. 1 In a limited data regime, few-shot learning has surfaced as
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the proxy for measuring the efficiency and generalization of various learning approaches
and paradigms. Meta-learning [8, 22, 23, 28, 33] in particular, has emerged as a general
paradigm for learning how to learn from related tasks. Meta-learning approaches leverage
many tasks, each with a relatively small amount of data, to accumulate prior knowledge and
learn adaptive strategies for transferring this knowledge to novel tasks. However, most such
approaches [33, 43] lack any form of representation semantics and rely on traditional CNN-
based architectures and semantics-agnostic adoptive strategies to tune representations and
classifiers.

Several approaches have tried to leverage the high-level ideas, starting from early work
in zero-shot learning that used class-attribute concepts [18]. More recently, semantics have
been used in the form of attributes that act as a bridge between the seen and unseen classes
[10, 13, 31, 37]. Most of such approaches [37, 40] assume annotation of concepts per cate-
gory class, which makes them scalable – little additional annotation effort is needed. How-
ever, this also results in models that are unable to spatially localize the concepts in an image,
lacking both precisions of concept definitions and visual interoperability one would like to
have. To address this, [1] required strong supervision where each image instance is annotated
with localized rectangular (part) concepts. Similarly, [21, 36] utilize the parts localization
information to learn the correspondence between the visual features and semantics. While
this results in a compositional model with grounded concepts, this comes at a price of much
costlier annotation. Further, some concepts may not be appropriately grounded to a rectan-
gular region of the bounding box, either because they map out a highly irregularly shaped
region or simply have no visually observable component (e.g., concepts such as “calm",
“friendly", etc.).

To solve these challenges, we propose an interpretable spatially grounded concept learner,
which only requires weakly supervised annotations at a class (or, optionally, image) level.
In doing so, we develop an end-to-end framework to learn structured, reusable, semantic,
and concept-based representations from limited data and leverage them to recognize novel
object categories. We model concepts by learning semantic vector prototypes. We ground
these concepts by computing the similarity of each image region, encoded by a cell feature
vector from a CNN backbone, to each concept prototype. We combine these grounded con-
cept representations (akin to attention maps) with original image features in a hierarchical
and implicitly compositional manner to arrive at a classification prediction. To ensure that
the learned prototypes are semantic, we introduce a regularization that both (1) aligns them
with the weights of an image-level attribute classifier and (2) ensures that the concept repre-
sentations are disentangled, by inducing orthogonality. We evaluate the proposed method in
few-shot learning tasks on three benchmark datasets: (CUB200-2011 [39]), outdoor/indoor
scene classification (SUN [26]), animal categorization (AWA2 [40]). Through extensive ex-
periments, we demonstrate that the proposed method not only achieves SoTA few-shot clas-
sification performance but learns semantically interpretable and spatially grounded concept
representations.

2 Related Work
Concept Learning. From the human cognition perspective, concept-learning is considered
the building block for human intelligence that allows us to learn and reason about new con-
cepts [4, 7, 14, 17, 25, 37]. In the past, researchers have used concept learning in computer
vision by introducing feature hierarchies [7] and part-based learning [25]. There have been
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some recent efforts that focus on building deep learning models which are compositional
[1, 10, 37]. Researchers have also used part-based dictionaries to learn concept represen-
tations [25, 34]. [19] used part-based dictionaries to cluster the DCNNs features. In [15] a
generative dictionary-based model was proposed. More recently, [10] uses part-based dictio-
naries along with an attention network to learn concept representations. While most existing
methods encode the semantics, these representations are not spatially grounded, making
them less interpretable.

Interpretable Representations. Deep convolution networks use convolution filters to learn
implicit feature representations of the data [16, 42]. Visualizations of CNN features have
revealed that deep networks learn a hierarchy of representations starting from the local fea-
tures, such as edges, to global features such as the collection of objects in a scene [2, 16, 42].
Alternatively, explicit methods perform clustering over the part-based representations and
model the spatial configuration of these parts [6, 29, 45]. Researchers have explored the
constellation model family for learning expressive representations [5, 43, 45]. These models
use clustering to model the spatial configuration among the cell features. ConstellationNet
[43] has recently shown the benefit of combining implicit and explicit features with the con-
stellation model family to achieve interpretable representations for few-shot learning tasks.
Part-based learning models, such as the ConstellationNet [43] and CORL [11], learn inter-
pretable spatial data features; however, they fail to encode the semantic structure as their
representations focus only on the spatial locations. Consequently, the learned part-based
representations are less meaningful and sometimes visually lack semantics, making the pre-
dictions less reliable for new/unseen tasks.

Few-shot Learning. In few-shot learning (FSL), researchers have leveraged attribute-based
embedding as semantic prior to bridging the gap between the seen and unseen classes [24,
27, 30, 31, 37, 40, 44]. These attribute-embeddings are class-specific rather than instance-
specific, making them easy to attain, thereby applicable to a wide variety of FSL datasets
and tasks. In contrast, the recently proposed COMET [1] builds an interpretable model for
few-shot learning using instance-specific bounding box information to define the concepts,
which are then used to learn the concept prototypes. COMET’s strong performance depends
on the bounding box information, which is a form of strong supervision. Annotating the
entire dataset with concept (part) bounding boxes are expensive, cumbersome, and requires
domain expertise.

3 Problem Formulation
In few-shot classification, the aim is to take a model, trained on a dataset of samples from
seen classes Dseen with abundant annotated data, and transfer / adopt this model to classify
a set of samples from a disjoint set of unseen/novel classes Dnovel with limited labeled data.
We assume that we also have access to semantic information for each class. This infor-
mation comes in the form of class-specific attributes that are available as a form of weak2

supervision. Formally, let Dseen = {(x,y,s)}, where x∈ X corresponds to an image, y∈Y seen

corresponds to the label among the set of seen classes, and s ∈ S is a vector of semantic at-
tributes. We follow the work of [40] and use the standard attributes that are available for all
the few-shot learning datasets. Similarly, with slight abuse of notation, Dnovel = {(x,y,s)},

2“Weak" refers to lack of spatial or image-level annotations.
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where the only difference is that y ∈ Y novel , i.e., comes from a set of novel/unseen classes.
During training, we learn a feature extractor Fθ that learns the representation from the

Dseen by minimizing the cross-entropy loss over the seen classes:

Ltrain = E(x,y,s)∼DseenLce(Fθ (x),y). (1)

We use semantic attributes s to regularize the compositional structure of the feature extractor
Fθ (x), to ensure generalization and interpretability.

For inference, we use the standard M-way, N-shot classification by forming tasks (T ),
each comprising of support set (S) and query set (Q), constructed from Dnovel . Specifically,
a support set consists of M×N images; N random images from each of M classes randomly
chosen from Y novel . The query set consists of a disjoint set of images, to be classified, from
the same M classes. Following the setup of [33], we predict the class label ŷ for xq ∈ Q using
nearest prototype ck

3:

ŷ = argmax
m

d(Fθ (xq),cm); cm =
1
N ∑

(x,y,s)∈S,y=m
Fθ (x). (2)

Importantly, in training, our method uses semantic information (s) for aligning the proto-
types with the weights of a semantic decoder. However, semantic information is not needed
at the test time to classify novel classes.
Notations. We use f to denote the extracted feature tensor from the convolution layer. The
prototype matrix is defined as Ps, which is used to compute the similarity matrix Mk for
kth prototype. The attention score matrix is defined as A, while the weights of the semantic
decoder are defined with trainable matrix Ws.

4 Methodology
VGCoL architecture consists of a hierarchy of blocks, each of which has an identical struc-
ture with two key components: interaction of spatial features with learned concept proto-
types obtained using semantic concept attention (SemCon-Attn) module and alignment of
the concept prototypes with the weights of a learned semantic decoder (image-level con-
cept/attribute classifier). We also introduce an orthogonal regularization that ensures the
concept prototypes are disentangled. The overview of VGCoL is given in Figure 1. Given
an input image x, we extract patches (or visual features) using a convolution layer with a
fixed kernel size and stride: f =Conv(x). This gives us visual features f ∈ RH×W×C where
H, W and C refer to the height, width and channels respectively. Next, we take columns of
f as cell features, resulting in H ×W cell feature fi, j ∈ RC. These cell features encode the
local information at each spatial location. Our objective is to encourage these local features
to encode visual concepts, like color and texture so that when faced with novel categories
they can learn to identify these visual concepts and generalize well with very few examples.

Semantic Concept Attention (SemCon-Attn). We define semantic/concept prototypes
Ps = {pk ∈ RC}K

k=1, where pk denotes the prototype for the semantic concept k. Note that the
dimension of each semantic prototype is equal to the image feature channels, which is C. For
each semantic prototype pk, we compute a similarity map Mk ∈ RH×W where each element
in the similarity map is computed by the dot-product between the cell feature at (i, j), fi, j,

3We note that the prototype ck refers to class representations.
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and the semantic prototype pk, i.e., Mk
i, j = fi, j ·pk. The SemCon-Attn module is introduced

to improve the interaction between the concept prototypes and the visual features. Once all
the similarity maps are generated, we compute the attention score over each similarity matrix
as:

ak
i, j = Softmax

(
1√
C

Mk
i, j

)
. (3)
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Figure 1: Architecture of VGCoL. We
use multiple blocks of VGCoL in a deep
pipeline. Our proposed method learns se-
mantic concepts aligned with the spatial re-
gions and is visually grounded.

The attention score map Ak = {ak
i, j} gives

higher weight to spatial regions containing
features consistent with corresponding con-
cept k. However, this score map is unable
to model spatial prior over the concept lo-
cations or to capture spatial interactions be-
tween concepts. To address this we intro-
duce a linear layer that computes a linear
weighted sum of the concept prototypes: P̄s =
Linear([p1,p2, · · · ,pK ]), where resulting P̄s ∈
RH×W×K . We then compute a Hadamard prod-
uct between the attention score matrix A =
{Ak}K

k=1 and the weighted sum of concept pro-
totypes and concatenate (⊕) the result with the
original feature maps. As a result, the output
of each VGCoL block is computed as:

V GCoLout = f⊕
(

A⊙σ
(
P̄s
))

. (4)

where, σ is the activation function.
Our pipeline consists of multiple blocks

of VGCoL stacked over each other, giving
a richer compositional representation by ex-
ploring the hierarchy of visual information
(from fine-grained to coarse-grained represen-
tations). To learn semantic concepts at each

level, we use different parameters for prototypes per block; that is, the semantic concepts
for block l are given by Pl = {pl

k ∈ RC}K
k=1.

We further pass the output of the VGCoL block which is of dimension H ×W × (C+K)
through a 1×1 convolution to restore the original number of channels C, followed by batch
normalization and ReLU. We perform standard classification (see Eq. (2)) on the output of
the final VGCoL block. In essence, the sequence of VGCoL blocks define Fθ in equations
(1) and (2). In other words, the output of the final VGCoL block forms the image repre-
sentation and is averaged to obtain prototype representations for each class ck during the
meta-testing.

Aligning semantic prototypes. Cell-features and SemCon-Attn module associates spatial
regions with concept prototypes; however, it fails to make the prototypes semantic. It fails to
associate a concept prototype with a unique (nameable) attribute. To induce semantics into
the concept prototypes we introduce a semantic decoder which is defined as a simple neural
net sharing the same feature backbone: DWs =Softmax(Linear(AvgPool(f);Ws)) in
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the final VGCoL block (see Figure 1). This semantic decoder outputs logits equivalent to the
number of attributes present for a particular dataset. Given the image x as input, the semantic
decoder (DW s ) computes the softmax distribution over the concepts:

p(sk = 1|x) =
exp

(
Ws

[k,:] ·AvgPool(f)
)

∑k exp
(

Ws
[k,:] ·AvgPool(f)

) , (5)

where Ws signify the trainable parameters of the attribute classifier, and the kth row of the
Ws ∈ RK×C is associated with the kth concept. We optimize the semantic decoder using
cross-entropy loss which we refer to as semantic loss or Lsem in our paper. The semantic loss
ensures that each row of the parameter matrix Ws is associated with a particular semantic
concept such as stripes or spots. To encode this semantic information into our prototypes we
align the weights of the semantic decoder with the corresponding semantic prototypes using
an L1 loss which we refer to as alignment loss or Lalign:

Lalign = ∑
l∈L

∑
k∈K

||Ws
[k,:]−pl

k||1. (6)

We align the concept prototypes with the weights of the semantic decoder at each level of
the hierarchy, which results in the hierarchical visual grounding of concepts.

Decorrelating semantic concepts. Visual attributes frequently co-occur since they are
highly correlated. It becomes difficult to prevent the entanglement of concepts at times due
to their high frequency of occurrence together. To encourage the disentanglement of visually
grounded concepts we introduce an orthogonality constraint. The constraint is inspired by
[37] and takes the form Lortho = |Ws · (Ws)T − I|, where I is the identity matrix.

Loss objective. The network is jointly trained to optimize all losses:

Loss = Lcls +αLsem +βLalign +λLortho, (7)

where α , β , and λ are the hyper-parameters giving relative weighting of terms. Note, Lcls =
Ltrain from Eq. (1). The hyperparameters defined in Eq. (7) are the weights given to each
loss term, namely, semantic loss, alignment loss, and orthogonal loss.

5 Experiments
Datasets. We evaluate the performance of the proposed model on three benchmark datasets
for few-shot learning: Caltech-UCSD-Birds (CUB) [39], Scene classification with attributes
(SUN) [26], Animals with Attributes 2 (AWA2) [40]. CUB consists of 11,788 images from
200 bird classes with each class further having 312 attributes corresponding to different body
parts of the birds. However, the attributes for CUB are instance specific and noisy [14, 37].
We use the 112 attributes as mentioned in [14] in our experiments. SUN [26] consists of
14,340 images from 717 scene classes while AWA2 contains 37,322 images divided into 50
classes. These datasets have 102 and 85 attributes, respectively. The semantic vectors are
manually annotated for each class and are provided in the official repository for the CUB,
SUN, and AWA2 datasets. Please note that the semantic vectors are class-specific rather than
sample-specific. That is, for all samples in a given class there is a single semantic vector. We
follow the standard few-shot splits provided in [40].
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Implementation Details. We show the effectiveness of our method on two widely used
backbone architectures for few-shot learning, namely Conv-4 and Resnet-12. Conv-4 con-
tains 4 blocks, with each block consisting of a 3×3 convolutional layer, a batch normalization
layer, and a ReLU followed by a max-pooling layer. Further, each of the convolutional layers
has 64 filters. The ResNet-12 network has 4 residual blocks, with each block in turn consist-
ing of three convolutional blocks. Each convolutional block contains a 3×3 convolutional
layer, a batch normalization layer, ReLU, and max-pooling. The filter sizes are set to 64,
128, 256, and 512 respectively for each residual block. The number of neurons in the final
layer of the semantic decoder is equivalent to the number of attributes for each corresponding
dataset.

5.1 Few-shot classification
We now compare our proposed method to a number of state-of-the-art few-shot methods
COMET [1], ProtoNets [33], RelationNets [35], CompoNets [37], MatchingNets [38], and
ConstellationNet [43]. This includes approaches that leverage interpretable representations,
meta-learning, and prototype-based learning. Our method, which learns compositional rep-
resentations in the form of semantic prototypes, achieves better 1-shot and 5-shot perfor-
mance in nearly all settings (Table 1). This suggests that our method can inject interpretabil-
ity into the network without loss in performance. With a deeper network (ResNet-12), the
performance surpasses all existing methods, suggesting that semantic information captured
by VGCoL is helpful for few-shot classification.

On the CUB dataset, the VGCoL’s performance is comparable to COMET [1] which uses
strong supervision in the form of bounding boxes for each image sample. This suggests that
semantic attention and alignment help VGCoL (which is weakly supervised) achieve similar
performance to COMET (strongly supervised). COMET fails to utilize non-visual concepts
(such as activity, and behavior), while VGCoL can associate and ground all concepts to
visual space, resulting in better generalization. Further, COMET’s applicability is limited
to datasets where all part annotations are available, which is why COMET cannot work on
SUN or AWA2. In contrast, VGCoL is applicable in most practical scenarios with weak
supervision of class attributes.

Further, we compare VGCoL with several attribute-based few-shot methods: [9, 24, 30,
31, 41, 44] (see middle block of Table 3). Most of these methods use a pretrained ResNet-
101 backbone, so we also report the performance of VGVoL with this backbone.

Fine-tuned VGCoL. We also present a strategy to fine-tune VGCoL on the support set
before the meta-testing phase. During fine-tuning, we freeze all the layers of VGCoL except
the semantic decoder and minimize the sum of semantic loss and alignment loss. This gives
VGCoL some prior knowledge of the semantic attributes on the support set of novel classes.
We show the results of fine-tuning in Table 1. We can see an improvement in performance
on all datasets, surpassing the performance of all existing methods by 3–4% on CUB, SUN,
and AWA2.

5.2 Ablation study
In Table 2 we present an ablation study to understand the importance of each component of
our model. We show performance with Conv-4 and ResNet-12 backbone. Here, the L f sl
is the setup that uses only the cell features and SemCon-Attn for training on Dnovel classes.
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CUB SUN AWA2
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNets [33] 43.4 67.8 37.1 63.1 41.9±0.8 54.86±0.7
MatchingNets [38] 48.5 69.2 41.0 60.4 - -
RelationNets [35] 39.5 67.1 35.1 63.7 - -
COMET [1] 67.9±0.9 85.3±0.5 - - - -
CompoNets [37] 53.6 74.6 45.9 67.1 - -
ConstellationNet - Conv-4 67.8±0.9 85.7±0.6 49.7±0.8 68.2±0.7 44.4±0.7 60.0±0.6
ConstellationNet - ResNet-12 70.1±0.8 86.3±0.5 50.3±0.8 70.1±0.7 47.3±0.7 63.3±0.6

Ours - Conv-4 66.7±0.5 83.1±0.6 52.5±0.8 69.1±0.7 45.7±0.7 61.5±0.6
Ours - ResNet-12 70.5±0.3 87.3±0.5 54.6±0.7 71.2±0.6 47.5±0.6 65.9±0.6

Ours - Conv-4 finetune 66.8±0.9 83.2±0.6 54.4±0.8 71.5±0.7 46.6±0.3 62.1±0.7
Ours - ResNet-12 finetune 73.8±0.8 90.0±0.3 57.9±0.7 75.6±0.7 50.1±0.9 70.0±0.9
Table 1: Comparison with existing approaches on the task of few-shot learning. Here, we
evaluate the performance of the proposed model on three benchmark datasets for FSL.

Model backbone 1-shot 5-shot
L f sl Conv-4 62.9±0.9 81.6±0.6
L f sl+Lsem + Lalign Conv-4 63.1±0.9 81.9±0.6
L f sl+Lsem+Lalign+Lortho Conv-4 66.7±0.5 83.1±0.6
L f sl ResNet-12 68.7±0.8 86.4±0.6
L f sl+Lsem + Lalign ResNet-12 70.0±0.9 87.0±0.5
L f sl+Lsem+Lalign+Lortho ResNet-12 70.5±0.3 87.3±0.5

Table 2: Ablations. Ablation study of
each component of the VGCoL on the CUB
dataset.

Method Backbone 1-shot 5-shot

ProtoNets [33] ResNet-12 43.4 67.8
COMET [1] ResNet-12 67.9±0.9 85.3±0.5
CompoNets [37] ResNet-12 53.6 74.6
ConstellationNet [43] Conv-4 61.2±0.9 81.0±0.6
ConstellationNet [43] ResNet-12 67.8±0.8 85.3±0.5

CADA VAE [31] ResNet-101 pretrained 55.2 63.0
DRAGON [30] ResNet-101 pretrained 55.3 63.5
Analogy [9] ResNet-10 56.5 78.0
Imprinted [27] ResNet-12 48.5 80.0
f-VAEGAN-d2 [41] ResNet-101 pretrained 76.1 83.4
APN+f-VAEGAN-D2 [44] ResNet-101 pretrained 77.8 84.8
TF-VAEGAN [24] ResNet-101 pretrained 75.6 83.5
APN+TF-VAEGAN [44] ResNet-101 pretrained 77.1 85.2

Ours - VGCoL ResNet-101 75.1±0.82 88.9±0.4
Ours - VGCoL ResNet-101 pretrained 89.3±0.6 95.7±0.2

Table 3: Comparison with existing ap-
proaches with varying backbones on
CUB dataset.

Next, we add the Lsem and the Lalign where we align the prototypes with weights matrix Ws.
The addition of a semantic alignment module improves both 1-shot and 5-shot performance.
With the addition of orthogonal loss, the performance for the ResNet-12 backbone does not
change much, but Conv-4 performance improves. The Lalign and Lortho are responsible for
making learned concepts semantic. With the addition of Lalign and Lortho VGCoL learns
visually coherent semantic concepts as we will discuss next.

5.3 Visualizing concept activation maps

We present the visualization of activation maps corresponding to multiple concept prototypes
present in an image. The activation maps are computed by upsampling the similarity matrix
M corresponding to a certain concept prototype to the original image size using bilinear
interpolation. The region with the highest excitation localizes that particular concept. As
shown in Figure 2 (a), the VGCoL learns to focus on semantically relevant regions around
certain prototypes. The proposed method learns to ground visually discernible traits such
as f urry, stripes, hooves, and the semantic meaning of visually indiscernible traits such as
swims and walks. Here, VGCoL learns to map the swims concept to water and the walks
concept to the ground. This demonstrates the effectiveness of the proposed approach in
visually grounding semantic concepts without any supervision about attribute localization.
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Figure 2: (a) Visualizing the similarity matrix M. Three samples and 5 concepts are illus-
trated. Red corresponds to strong grounding of the concept. (b) and (c) shows extracted
patches around the concepts stripes and spots, respectively.
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Figure 3: Zero-shot segmentation results on novel/unseen classes. Here, the middle row
shows the union of maximum activation (heat-maps) which we get by aggregating top oc-
curring concepts. The bottom row is the segmented masks.

To demonstrate the visual semantics achieved by VGCoL, we visualize the patches around
the prototypes obtained from the last module of our method on the AWA2 dataset, as shown
in Figure 2(b,c). It clearly shows that the proposed method is able to correctly distinguish
between concepts stripes and spots which are spatially similar, but semantically different.
During training, each attribute gets associated with a particular concept prototype which
makes VGCoL prototypes identifiable and easy to interpret.

5.4 Zero-shot segmentation
Here we present an interesting downstream task of zero-shot segmentation using VGCoL.
We use our pre-trained VGCoL method to extract activation maps corresponding to each
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Figure 4: Failure cases of VGCoL on the AWA2 dataset. Top-to-bottom: (a) shows the
visual grounding of imbalanced quadra-pedal concept; (b) demonstrates grounding of visu-
ally indiscernible and imbalanced new-world concept.

attribute for given novel/unseen class images. We filter out those activations for whom the
value is less than a pre-defined threshold. Next, we combine these concept-specific activation
maps by taking an average. The resultant activation map has regions of high activation
corresponding to different parts, as shown in Figure 3. Finally, we generate an approximate
segmentation mask around the given animal/bird by setting another threshold value which
helps us capture the regions with high excitation. This gives us a zero-shot segmentation that
uses concept knowledge to segment unseen animal/bird categories. We show the qualitative
results in Figure 3.

5.5 Failure Cases

We observe that imbalance among concepts is a challenge for VGCoL as our method relies on
class-specific attribute information. For instance, the concept quadra-pedal (meaning walks
on four legs) is present for most of the animal classes in the AWA2 dataset. The VGCoL
model has to visually ground this attribute even if the legs are not visible in the image (as
shown in Figure 4(a)). This causes the VGCoL model to wrongly localize the spatial region
for an imbalanced attribute such as quadra-pedal. Another failure case arises from some
visually indiscernible attributes such as new-world which is difficult to semantically align
with a spatial region (shown in Figure 4(b)).

6 Conclusions

This work presents an end-to-end weakly supervised and visually grounded concept learner
for few-shot learning. The proposed method improves few-shot performance across bench-
mark datasets and generates semantically coherent prototype representations. This, in turn,
makes the VGCoL predictions interpretable and thus reliable for generalization over the
novel/unseen classes. We show the effectiveness of the proposed method for semantic con-
cept visual grounding and the potential for a zero-shot object segmentation task.
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