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Abstract

Semi-supervised learning has demonstrated great potential in medical image segmen-
tation by utilizing knowledge from unlabeled data. However, most existing approaches
do not explicitly capture high-level semantic relations between distant regions, which
limits their performance. In this paper, we focus on representation learning for semi-
supervised learning, by developing a novel Multi-Scale Cross Supervised Contrastive
Learning (MCSC) framework, to segment structures in medical images. We jointly train
CNN and Transformer models, regularising their features to be semantically consistent
across different scales. Our approach contrasts multi-scale features based on ground-
truth and cross-predicted labels, in order to extract robust feature representations that
reflect intra- and inter-slice relationships across the whole dataset. To tackle class imbal-
ance, we take into account the prevalence of each class to guide contrastive learning and
ensure that features adequately capture infrequent classes. Extensive experiments on two
multi-structure medical segmentation datasets demonstrate the effectiveness of MCSC.
It not only outperforms state-of-the-art semi-supervised methods by more than 3.0% in
Dice, but also greatly reduces the performance gap with fully supervised methods. Our
code is available at https://github.com/kathyliu579/MCSC.

1 Introduction
Image segmentation serves as a fundamental process in medical image analysis by delineat-
ing organ structures and allowing the quantification of their shape and size, thus providing
essential information for clinical diagnostics, treatment planning, and patient monitoring
[5, 23]. Deep learning approaches have achieved great successes in medical image segmen-
tation in recent years; however, such techniques hinge upon the availability of large-scale
and accurately annotated datasets [24]. In the medical domain, such datasets require pro-
hibitive time, cost, and expertise to obtain. To mitigate this issue, semi-supervised learning
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(SSL) aims to minimize the annotation efforts by training with both labelled and unlabelled
data [17, 18, 38].

Several strategies have been proposed for SSL in medical image segmentation. These
include iterative pseudo-labeling [22], regularization strategies [8, 17, 18, 28, 32], as well as
leveraging domain-specific prior knowledge such as anatomical information [35]. Typically
pseudo-labeling iteratively generates approximate segmentation masks for unlabeled data.
Integrating these pseudo annotations with ground truth labels for model updates necessitates
a meticulously designed approach, which remains an open problem. Differently, several reg-
ularization approaches forgo this process, by enforcing prediction consistency over different
data transformations [8, 32], different model architectures [17, 18], or different tasks [28]. In
particular, recent works [17] have investigated the possibility of making use of two advanced
segmentation backbones, e.g., CNN and Transformer, for cross-teaching SSL.

Although these methods are promising, their performance is significantly weaker than
fully supervised approaches and thus their practical application in medical image segmenta-
tion is limited [21, 25, 36]. To alleviate this issue, contrastive learning has been extensively
utilized to facilitate robust feature learning. It functions by encouraging feature similarity of
positive pairs, as well as dissimilarity of negative pairs. Positive pairs may be defined in a
self-supervised manner as different augmentations of the same instance [9] or in a supervised
manner based on the actual label [13]. In SSL, pioneering works [3, 31] have made efforts
towards directly applying contrastive learning on unlabelled data, by performing global-level
image contrast for training. However, this strategy is mostly suited for classification tasks,
since it extracts global representations that ignore detailed pixel-level information. To accu-
rately delineate organ boundaries, a local contrastive strategy is required to enable predic-
tions at a pixel level [3, 29, 38]. In particular, for image segmentation that inherently relies
on dense-wise prediction, Chaitanya et al. highlighted the importance of complementing the
global image-level contrast with local pixel-level contrast [3].

Since self-supervised contrastive learning normally select augmented views of the same
sample data point as positive pairs [9], without prior knowledge of the actual class label and
its prevalence, it is prone to a substantial number of false negative pairs, particularly when
dealing with class-imbalanced medical imaging segmentation datasets [15]. To mitigate the
false negative predictions resulting from self-supervised local contrastive learning, existing
works have investigated supervised local contrastive learning [4, 12]. Pioneering works [31,
37] applied supervised contrastive learning only on unlabelled data based on conventional
iterative pseudo annotation. Some studies [12] also attempted to apply supervised local
contrastive loss on labelled data exclusively, whilst performing self-supervised training for
unlabelled data. However, the discrepancy in positive/negative definitions leads to divergent
optimization objectives, which may yield suboptimal performance.

We propose a novel multi-scale cross contrastive learning framework for semi-supervised
medical image segmentation. Both labelled and unlabelled data are integrated seamlessly via
cross pseudo supervision and balanced, local contrastive learning across features maps that
span multiple spatial scales. Our main contributions are three-fold:
• We introduce a novel SSL framework that combines the benefits of cross-teaching with

a proposed local contrastive learning. This enhances training stability, and beyond this,
ensures semantic consistency in both the output prediction and the feature level.

• We develop the first local contrastive framework defined over multi-scale feature maps,
which accounts for over-locality and over-fitting typical of pixel-level contrast. This ben-
efits from seamlessly unifying pseudo-labels and ground truth via cross-teaching.
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• We incorporate a balanced contrastive loss which is normalised based on the prevalence
of each class to enforce unbiased representation learning in SSL medical image seg-
mentation. This tackles the significant imbalance issue for both pseudo label prediction,
and the concurrent supervised training based on imbalanced (pseudo) labels.

We evaluate our proposed methodology on two challenging benchmarks of radiological
scans: multi-structure MRI segmentation on ACDC [1], and multi-organ CT segmentation on
Synapse [14]. Our approach not only significantly outperforms state-of-the-art SSL methods,
but also closes the gap between fully supervised approaches with just a small fraction of
labelled data. With just 10% labelled data, it achieves remarkable improvement in Hausdorff
Distance (HD) from 8.0 to 2.3mm. Our method is also more resilient to the reduction of
labelled cases, achieving around 10% improvement in Dice Coefficient (DSC) when labelled
data are reduced from 10% to 5% in ACDC and from 20% to 10% in Synapse.

2 Related Work
Consistency Regularization in Semi-Supervised Medical Image Segmentation. Semi-
supervised learning has gained popularity in medical image segmentation due to its effec-
tiveness in handling scenarios with limited annotations [2, 5, 17, 20]. Among various ap-
proaches, enforcing prediction consistency has emerged as a crucial regularization strategy
for extracting and leveraging knowledge from unlabelled data. Such regularization can be
based on predictions from different augmentations [2, 20], different architectures [17], or
tasks [28]. For instance, inspired by the fact that the predicted mask should undergo the same
spatial transformations as the input images, Bortsova et al. [2] developed a transformation
consistency based semi-supervised framework. Peng et al. [20] sought to attain prediction
similarity from a batch of co-trained models with identical architectures, while adversarially
preserving each model’s diversity. Recent works [17] has taken advantage of the advanced
U-Net and Transformer, and aimed to achieve the prediction consistency from networks.
However, the medical image datasets are typically imbalanced, which poses great challenges
in learning unbiased predictions with limited annotations [15]. Tackling such issue in con-
sistency settings for unlabelled data remains an open problem. Furthermore, existing works
primarily focus on prediction consistency at the output level [17], neglecting the pursuit of
discriminative feature representations for both labelled and unlabelled data.

Contrastive Learning in Medical Image Segmentation. Contrastive learning has con-
tributed to most successful self-supervised visual representation methods [7, 10, 11, 26].
The core idea is to promote the similarity of positive image pairs, whilst distinguishing neg-
ative pairs. To tailor for the needs of dense-wise downstream segmentation task, pixel-wise
self-supervised contrastive learning has been introduced recently [30, 33]. Recent research
has also found that integrating the contrastive loss in both global and local levels, can en-
hance performance [3]. In the realm of natural images, there has been a growing interest in
merging semi-supervised learning with contrastive learning, resulting in a one-stage, end-to-
end model that forgoes unsupervised pretraining [34, 38]. This approach has recently been
adopted in the medical domain for segmentation tasks [4, 12, 31, 37]. However, as dis-
cussed in the Introduction section, existing combinations of contrastive learning and semi-
supervised learning do not fully address the inherent challenges posed by size-limited and
data-imbalanced medical datasets, thus lacking generality. The question of how to effectively
integrate contrastive learning for medical image segmentation remains open.
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Figure 1: The overall architecture of our MCSC framework for semi-supervised segmenta-
tion. Two networks, a CNN (pink) and Transformer (blue), with complementary inductive
biases, learn together. When training on unlabelled data, each network generates pseudo
labels for the other. These labels are used to define a pseudo supervision loss and a novel
local contrastive loss that improves the quality of representations learnt by the models.

3 Method
We adopt a student–student framework based on [17], with cross-teaching between a CNN-
based U-Net and a Transformer-based U-Net. This leverages the advantages of convolution-
based and Transformer-based segmentation networks for learning local semantic information
and long-range dependencies, and enables the two models to achieve consistency on segmen-
tation prediction. However, this framework has some limitations: (i) it only focuses on the
prediction consistency on each image slice at output level; (ii) it ignores the dissimilarity and
similarity among different and same segmentation categories across the whole dataset. To
overcome this, we propose a Multi-Scale Cross Supervised Contrastive Learning (MCSC)
framework to pull closer the features of the same category and push away the features of
different categories from both networks. It not only ensures the consistency of two models
on the feature and output level, but also enhances the distinguishability of features in differ-
ent categories, thereby improving the segmentation performance. We illustrate the overall
architecture of our framework in Figure 1, and provide pseudocode in supplementary section
S1. The branch of CNN or Transformer includes a feature extractor E∗(·), a segmentation
head C∗(·), and two feature space projectors H∗(·). Both branches only share the parameters
of the last layer in the feature space projectors.

Given a training dataset consisting of a small labelled subset Dl = {xl
i ,y

l
i}K

i=1 and a
large unlabelled set Du = {xu

j}M
j=1, where M ≫ K, the input to our model is a minibatch

X = X l ∪Xu including labelled images and unlabelled images. The minibatch X is first fed
into the CNN-based and Transformer-based networks to obtain their feature representations
and segmentation logits. In the semi-supervised setting, we employ the following super-
vision losses for training: (i) on the output level, we calculate the supervision loss Lsup
(yellow dashed lines in Figure 1) between the segmentation predictions and the limited la-
belled data, as well as the cross pseudo supervision loss Lcps (green dashed lines in Figure 1)
between the segmentation predictions and the pseudo labels from the CNN-based U-Net or
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the Transformer-based U-Net in a cross teaching manner on the output level (Section 3.1);
(ii) on the feature level, we employ the proposed multi-scale cross contrastive loss Lcl (black
dashed lines in Figure 1) to enhance feature consistency of the same segmentation cate-
gory and feature distinguishability of the different segmentation categories across the whole
dataset (labelled and unlabelled) (Section 3.2).

3.1 Cross Pseudo Supervision
The CNN and Transformer networks teach each other using the unlabelled data, through a
cross pseudo supervision loss Lcps [8, 17]. This regularises their respective predictions to be
consistent with each other. Specifically, the predictions made by the CNN become pseudo
labels that supervise the Transformer, and vice-versa. The unlabelled images Xu are fed
into the feature extractors E∗(·) and classifier heads C∗(·) of the two models respectively,
to get class probability maps Pu

∗ = softmax{C∗(E∗(Xu))}, and pseudo one-hot label map
Y u
∗ = argmax(Pu

∗ ), where ∗ denotes the CNN or Transformer branch. We then define two
consistency loss terms: Lcps(cnn) uses the Transformer’s pseudo-labels to supervise the CNN,
and Lcps(tra) the reverse; these are given by:

Lcps(cnn) = Ldice(P
u
cnn,Y

u
tra), Lcps(tra) = Ldice(P

u
tra,Y

u
cnn). (1)

Here Ldice is the standard Dice loss function, but using pseudo-labels instead of ground-truth
segmentation. Note that during training there is no gradient back-propagation between Pu

cnn
and Y u

cnn, and similar from Pu
tra to Y u

tra.

3.2 Multi-Scale Cross Supervised Contrastive Learning (MCSC)
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Figure 2: Multi-scale cross supervised contrastive learning. Pseudo labels from cross-
teaching (right) are combined with ground-truth labels where available, and used to define
a local contrastive loss over features of different scales (middle, orange dashed boxes). This
contrastive pairs of pixels drawn from either the same or different slices; for efficiency it
is defined over patches. Features of pixels of the same (pseudo-) class are pulled together
(left), while those of different classes are pushed apart.

Cross pseudo supervision does not exploit feature regularities across the whole dataset,
e.g. similarity between representations of the same organ in different slices. We therefore
add a contrastive loss, operating on multi-scale features extracted from the Transformer and
the CNN. This has two advantages: (i) It encourages consistency of the two models’ internal
features (not just outputs) (ii) It captures high-level semantic relationships between distant
regions, and between features on both labelled and unlabelled data.
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Our MCSC module (Figure 2) is based on local supervised contrastive learning [29],
which learns a compact feature space by reducing the distance in the embedding space be-
tween positive pairs, and increasing the distance between negative pairs. Firstly, it extracts
features from the CNN and Transformer, then projects them into a common embedding
space. This is followed by a novel approach of selecting positive and negative pairs using
the pseudo labels, and a class-balanced contrastive loss calculated on these.

Feature Embedding. After X = {xi}i=1···N is passed into Ecnn(·) and Etra(·) respectively,
the resulting features are projected by passing them through projectors Hcnn(·) and Htra(·)
into a unified feature space, where we will sample pairs to contrast. Overall, we get a feature
batch F consisting of 2N feature maps fi = H(E(xi)) ∈ Rh×w×c, where f1...N come from the
CNN and fN+1...2N from the Transformer (middle of Figure 2).

Cross Supervised Sampling. For cross supervised sampling, we follow these strategies: (i)
We exchange class information from two models to guide the sampling, using the prediction
of Transformer to be the supervisory information for CNN and vice-versa (Figure 2, right).
This is consistent with the cross-prediction loss Lcps, and implicitly it also makes the features
predicted by the two models on the same slice consistent. (ii) We contrast features on both
unlabelled and labelled data. Since the pseudo labels are of varying quality, labelled data is
included in the contrastive loss to reduce the noise. (iii) We contrast pixels both within and
between slices. Previous work focuses on inter-slice samples and ignores useful anatomical
information within slices. For example, compared to different slices, the features of different
class of organ boundaries in the image should be more similar. By focusing on them, we
can refine the details of the hardest boundary segmentation. Therefore, our strategy differs
significantly from existing approaches to sampling pairs in supervised contrastive learning
with semi-supervised segmentation, where positive or negative pairs are selected based on
pseudo labels on unlabelled data [4, 31, 37].

The computational complexity and memory for the supervised contrastive loss is very
high; however, comparing many samples is crucial for improving the performance of con-
trastive learning [11]. To address this problem, inspired by [12], we compute the local con-
trastive loss over patches. We divide all the feature maps in F into patches with size of h′×h′.
Let us assume there are M patches of each f . We randomly select (without replacement) a
patch from each feature map in F , and finally we get M batches of 2N patches. The loss is
evaluated on 2N patches from each batch in turn, until the entire f has been traversed.

Balanced Supervised Local Contrastive Loss. After sampling positive/negative pairs of
pixels, a contrastive loss is introduced to pull positive pairs closer and push negative pairs
apart within the 2N patches. Given the extreme imbalance between background and fore-
ground (different organs), a randomly sampled batch tends to consist of a significantly larger
number of positive and negative pairs for the background, compared to the foreground or-
gans. This inherent imbalance inevitably biases conventional supervised contrastive learn-
ing towards the background, consequently neglecting the differentiation of foreground cate-
gories. Simply eliminating the background during contrastive learning [12] is not an optimal
solution, as (i) the remaining number of foreground pixels is extremely small, and (ii) this
fails to capture the relationship between the background and the foreground.

Inspired by [40], we average both the inter-class (positive) and intra-class (negative)
feature contrast within the pixels of each class, and then forward it to calculate the supervised
contrastive loss. In this way, each class makes an approximately balanced contribution. This
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balanced contrastive loss is implemented as follows:

Lbcl =− 1
|A| ∑

ai∈A

1
|Ay|−1 ∑

p∈Ay\{i}
log

exp(ai ·ap/τ)

∑ j∈YA
1

|A j | ∑
ak∈A j

exp(ai ·ak/τ)
, (2)

where A is the pixel-level feature sets of the 2N patches, ai represents the ith feature, Ay is
a subset that contains all samples of class y, Ay\{i} represents all the pixels in Ay exclud-
ing ai, YA represents the set of all the unique classes in current A, and τ is a temperature
constant. By balancing the contribution of each class during contrastive learning, we avoid
the learned representations being biased towards the dominant background. Note that Lbcl
is calculated over each 2N patches, and then averaged over M batches of 2N patches for
back-propagation.
Multi-Scale Contrastive Loss. Existing works on local contrastive learning pass the fea-
tures of the last layer before the classifier into the projector. However, the feature maps
from earlier layers focus on coarser geometric information like the shape of organs, and
later feature maps on details; both are important for segmentation, which depends both
on relationships among multiple organs and gross anatomic structure (global) and textures
of the specific tissues (local). We therefore pass features with n different scales from n
layers of extractors and separate projectors, and then calculate each scale balanced con-
trastive loss Lbcl as Lcl_i. The overall loss Lcl is given by summing over each scale loss:
Lcl = (Lcl_1 + . . .+Lcl_n).

3.3 Optimization
The two networks are trained to minimize a weighted sum of the losses described in the previ-
ous sections: Lcnn = Lsup(cnn)+wcpsLcps(cnn)+wclLcl and Ltra = Lsup(tra)+wcpsLcps(tra)+
wclLcl , where w∗ are weighting factors used to balance the impact of individual loss terms.
wcps is defined by a Gaussian warm-up function [17]: wcps(ti) = 0.1 · e(−5(1−ti/ttotal)

2), where
ti is ith iteration of training and ttotal is the total number of iterations, while wcl is set to a
constant value of 10−3 based on performance of the validation. Note that the Transformer
is used only during training, and does not contribute to the final inference – the CNN is less
computationally expensive, but has distilled the Transformer’s knowledge.

4 Experiments
We evaluate our method on two benchmark datasets, ACDC [1] and Synapse [14]. ACDC
contains 200 short-axis cardiac MR images from 100 cases (i.e. patients) with masks of
the left ventricle (LV), myocardium (Myo), and right ventricle (RV) to be segmented; we
follow the data split and the selection of labelled cases in [17]. Synapse contains abdominal
CT scans from 30 cases with eight organs including aorta, gallbladder, spleen, left kidney,
right kidney, liver, pancreas and stomach; the splits follow [6]. To quantitatively assess
performance, we report two popular metrics: Dice coefficient (DSC) and 95% Hausdorff
Distance (HD). Further implementation details for our method and the baselines, as well as
more results, are given in the supplementary section S2 and S3.

4.1 Comparison with Other Semi-Supervised Methods
We compare our proposed method to several recent SSL methods that use U-Net as back-
bone, including Mean Teacher (MT) [25], Deep Co-Training (DCT) [21], Uncertainty Aware
Mean Teacher (UAMT) [36], Interpolation Consistency Training (ICT) [27], Cross Consis-
tency Training (CCT) [19], Cross Pseudo Supervision (CPS) [8], and the state-of-the-art

Citation
Citation
{Luo, Hu, Song, Wang, and Zhang} 2022

Citation
Citation
{Bernard, Lalande, Zotti, Cervenansky, Yang, Heng, Cetin, Lekadir, Camara, Ballester, etprotect unhbox voidb@x protect penalty @M  {}al.} 2018

Citation
Citation
{Landman, Xu, Igelsias, Styner, Langerak, and Klein} 2015

Citation
Citation
{Luo, Hu, Song, Wang, and Zhang} 2022

Citation
Citation
{Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, and Zhou} 2021{}

Citation
Citation
{Tarvainen and Valpola} 2017

Citation
Citation
{Qiao, Shen, Zhang, Wang, and Yuille} 2018

Citation
Citation
{Yu, Wang, Li, Fu, and Heng} 2019

Citation
Citation
{Verma, Kawaguchi, Lamb, Kannala, Solin, Bengio, and Lopez-Paz} 2022

Citation
Citation
{Ouali, Hudelot, and Tami} 2020{}

Citation
Citation
{Chen, Yuan, Zeng, and Wang} 2021{}



8 LIU ET AL.: MULTI-SCALE CROSS CONTRASTIVE LEARNING

GT OursCTS GT OursCTS

Figure 3: Qualitative results from our method and the best baseline CTS [17] trained on 4
and 7 labelled cases on ACDC (left) and Synapse (right), respectively.

(SOTA) method Cross Teaching Supervision (CTS) [17]. Results for the weaker methods
MT, DCT and ICT are given in the supplementary material. We also compare against a
U-Net trained with full supervision (UNet-FS), and one trained only on the labelled subset
of data (UNet-LS). Finally we compare with the SOTA fully-supervised Transformer based
methods BATFormer [16] on ACDC, and nnFormer [39] on Synapse. We retrained all the
semi-supervised baselines using their original settings (optimizer and batch size), and report
whichever is better of our retrained model or the result quoted in [17].

Labelled Methods Mean Myo LV RV
DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓

70 cases (100%) UNet-FS 91.7 4.0 89.0 5.0 94.6 5.9 91.4 1.2
BATFormer [16] 92.8 8.0 90.26 6.8 96.30 5.9 91.97 11.3

7 cases (10%)

UNet-LS 75.9 10.8 78.2 8.6 85.5 13.0 63.9 10.7
CCT [19] 84.0 6.6 82.3 5.4 88.6 9.4 81.0 5.1
CPS [8] 85.0 6.6 82.9 6.6 88.0 10.8 84.2 2.3

CTS [17] 86.4 8.6 84.4 6.9 90.1 11.2 84.8 7.8
MCSC (Ours) 89.4 2.3 87.6 1.1 93.6 3.5 87.1 2.1

3 cases (5%)

UNet-LS 51.2 31.2 54.8 24.4 61.8 24.3 37.0 44.4
CCT [19] 58.6 27.9 64.7 22.4 70.4 27.1 40.8 34.2
CPS [8] 60.3 25.5 65.2 18.3 72.0 22.2 43.8 35.8

CTS [17] 65.6 16.2 62.8 11.5 76.3 15.7 57.7 21.4
MCSC (Ours) 73.6 10.5 70.0 8.8 79.2 14.9 71.7 7.8

1 case
UNet-LS 26.4 60.1 26.3 51.2 28.3 52.0 24.6 77.0
CTS [17] 46.8 36.3 55.1 5.5 64.8 4.1 20.5 99.4

MCSC (Ours) 58.6 31.2 64.2 13.3 78.1 12.2 33.5 68.1
Best is reported as bold, Second Best is underlined.

Table 1: Segmentation results on DSC(%) and HD(mm) of our method and baselines on
ACDC, across different numbers of labelled cases.

Results on ACDC. Table 1 shows evaluation results of MCSC and the best-performing base-
line under three different levels of supervision (7, 3 and 1 labelled cases). Our MCSC method
trained on 10% of cases improves both DSC and HD metrics compared to previous best SSL
methods by a significant margin (more than 3% on DSC and 5mm on HD). More impor-
tantly, it achieves 2.3mm HD, significantly better than even the fully supervised U-Net and
BATFormer, which achieve 4.0 and 8.0 respectively. It also demonstrates competitive DSC
of 89.4 %, compared with 91.7 % and 92.8 % of U-Net and BATFormer. In addition, MCSC
performance is highly resilient to the reduction of labelled data from 10% to 5%, outper-
forming the previous SOTA SSL methods by around 10% on DSC. The improvement is
even more profound for the minority and hardest class, RV, with performance gains of 14
% on DSC and 13.6mm on HD. Figure 3 shows qualitative results from UNet-LS, CPS,
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CTS and our method. MCSC produces a more accurate segmentation, with fewer under-
segmented regions on minority class- RV (top) and fewer false-positive (bottom). Overall,
results prove that MCSC improving the semantic segmentation capability on unbalanced and
limited-annotated medical image dataset by a large margin.
Results on Synapse. Table 2 shows the segmentation results of the best-performing base-
lines on Synapse with 4 and 2 labelled cases. Compared to ACDC, Synapse is a more chal-
lenging segmentation benchmark as it includes a larger number of labelled regions with far
more imbalanced volumes. Nevertheless, our method outperforms the baselines by a large
margin. This demonstrates the robustness of our proposed framework, and the benefit of
regularising multi-scale features from two models to be semantically consistent across the
whole dataset. This is further highlighted in the qualitative results provided in Figure 3.

Labelled Methods DSC↑ HD↓ Aorta Gallb Kid_L Kid_R Liver Pancr Spleen Stom

18 cases(100 %) UNet-FS 75.6 42.3 88.8 56.1 78.9 72.6 91.9 55.8 85.8 74.7
nnFormer [39] 86.6 10.6 92.0 70.2 86.6 86.3 96.8 83.4 90.5 86.8

4 cases(20 %)

UNet-LS 47.2 122.3 67.6 29.7 47.2 50.7 79.1 25.2 56.8 21.5
CCT [19] 51.4 102.9 71.8 31.2 52.0 50.1 83.0 32.5 65.5 25.2
CPS [8] 57.9 62.6 75.6 41.4 60.1 53.0 88.2 26.2 69.6 48.9

CTS [17] 64.0 56.4 79.9 38.9 66.3 63.5 86.1 41.9 75.3 60.4
MCSC (Ours) 68.5 24.8 76.3 44.4 73.4 72.3 91.8 46.9 79.9 62.9

2 cases(10 %)

UNet-LS 45.2 55.6 66.4 27.2 46.0 48.0 82.6 18.2 39.9 33.4
CCT [19] 46.9 58.2 66.0 26.6 53.4 41.0 82.9 21.2 48.7 35.6
CPS [8] 48.8 65.6 70.9 21.3 58.0 45.1 80.7 23.5 58.0 32.7

CTS [17] 52.0 63.7 73.2 12.7 67.2 64.7 82.9 31.7 40.9 42.4
MCSC (Ours) 61.1 32.6 73.9 26.4 69.9 72.7 90.0 33.2 79.4 43.0

Best is reported as bold, Second Best is underlined.

Table 2: Comparison with different models on Synapse. The performance is reported by
class-mean DSC (%) and HD (mm), as well as the DSC value for each organ.

4.2 Ablation study

SCL DB CroLab Balanced MulSca Unet Transformer
DSC↑ HD↓ DSC ↑ HD ↓
86.40 8.6 85.22 5.1

✓ ✓ 87.50 7.4 86.02 4.5
✓ ✓ ✓ 88.23 3.4 86.13 3.2
✓ ✓ ✓ 88.80 4.6 86.53 2.4
✓ ✓ ✓ ✓ 89.38 2.3 87.28 3.5

Table 3: Ablation study for the primary components of our
model. SCL denotes supervised local contrastive loss. DB de-
notes discarding background pixels as anchor. CroLab stands
for cross label information of two models to select contrastive
sample. Balanced means averaging the instances of each class
in denominator of SCL. MulSca means contrasting multi-scale
feature maps.

Branches Mean
256 56 28 DSC↑ HD↓
✓ 88.80 4.6

✓ 88.88 4.2
✓ 88.39 4.5

✓ ✓ 89.38 2.3
✓ ✓ 88.92 2.9
✓ ✓ ✓ 88.35 4.3

Table 4: Ablation analysis
on the choice of feature
maps for the multi-scale
contrastive loss (ACDC, 7
labelled cases). Full table
is in the supplementary
material.

In Table 3 we explore the influence of proposed modules on the performance on ACDC
with 7 labelled cases. Starting from CTS [17] (top row), and adding supervised local con-
trastive learning (SCL) with a prior approach for balancing the loss (DB [12]), we observe a
significant improvement of 1.1% on DSC; this emphasizes the importance of enforcing con-
sistency between features of the two models. By exchanging class information from CNN
and Transformer to select contrasted samples (instead of using each model’s own predictions
as pseudo-labels), we see an improvement in DSC and HD from 87.50 to 88.23 and 7.4 to
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3.4 respectively. Our approach to balancing different classes (Balanced), instead of just dis-
carding background pixels (DB), improves DSC by 0.7%, since minority classes are better
separated. Finally, utilizing multi-scale instead of just final-layer features further improves
performance by 0.58% and 2.3% DSC and HD respectively. In Table 4, we compare re-
sults using different feature maps as input to the contrastive loss; we see best performance is
achieved by using both 256×256 and 28×28 feature maps. Thus, combining coarser geo-
metric information in global features and detailed local features does indeed benefit medical
image segmentation.

5 Computational Complexity
Theoretical complexity of patch-level contrastive learning. Existing works subsample a
smaller set of pixel coordinates as positive pairs to fit in GPU memory [4]. However, using
more samples to compare is crucial for improving the performance of contrastive learning
[11]. Without subsampling, the overall computational complexity for the supervised local
loss is O(h4), where h is the size of an image, 256 in our case, which would necessitate
O(109) multiplications. Our proposed approach uses patches with size of h′×h′ to do con-
trastive learning. This reduces the computational complexity from O(h4) to O((h/h′)2 ·h′4)
and alleviates out-of-memory issues. If we set h′ = 19, complexity will be O(107).
Practical calculation time for different methods. We compare the computational cost
of different methods on ACDC using a single Nvidia RTX 3090 GPU. ‘ForwardT’ refers
to the number of times each image needs to be processed through the network during one
training iteration. ‘BatchT’ refers to the training time (in seconds) for a single minibatch
(two labelled and two unlabelled images) processed during one iteration, including forward
pass, loss calculation, and backward pass. ‘InferenceT’ refers to the inference time for a
single image (in seconds). For our method, we give the inference time of the CNN (pink)
and the Transformer (blue); recall however in practice, we use only the CNN during testing.

MT UAMT CCT CPS CTS Ours

Train ForwardT/image 2 6 1 2 2 2
BatchT/ batch 0.10 0.16 0.21 0.17 0.22 0.83

Test InferenceT/ case 0.56 0.56 0.75 0.56 0.56 0.58/0.87
Gflops/ image 3.00 3.00 8.77 3.00 3.00 3.00/6.03

Table 5: Comparison of the computational cost of different models.

6 Conclusion
We have presented a novel SSL framework for medical image segmentation based on cross-
teaching between a Transformer and a CNN. This incorporates a supervised local contrastive
loss, named MCSC, that encourages intra-class feature similarity and inter-class discrimina-
tivity across the whole dataset. Furthermore, it addresses class imbalance with a loss that
eliminates the negative effects of excessive background pixels. Finally, it contrasts multi-
scale feature maps, to combine global and local feature understanding. Our experiments on
two commonly used medical datasets demonstrate that the proposed framework can fully
take advantage of labelled and unlabelled data, and demonstrates remarkably resiliant per-
formance even when the labelled data are significantly reduced.
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