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Abstract
The proliferation of edge devices has unlocked unprecedented opportunities for deep

learning model deployment in computer vision applications. However, these complex
models require considerable power, memory and compute resources that are typically
not available on edge platforms. Ultra low-bit quantization presents an attractive solu-
tion to this problem by scaling down the model weights and activations from 32-bit to
less than 8-bit. We implement highly optimized ultra low-bit convolution operators for
ARM-based targets that outperform existing methods by up to 4.34×. Our operator is
implemented within Deeplite Runtime (DeepliteRT), an end-to-end solution for the com-
pilation, tuning, and inference of ultra low-bit models on ARM devices. Compiler passes
in DeepliteRT automatically convert a fake-quantized model in full precision to a com-
pact ultra low-bit representation, easing the process of quantized model deployment on
commodity hardware. We analyze the performance of DeepliteRT on classification and
detection models against optimized 32-bit floating-point, 8-bit integer, and 2-bit base-
lines, achieving significant speedups of up to 2.20×, 2.33× and 2.17×, respectively.

1 Introduction
Deep learning models for computer vision are being extensively deployed in various do-
mains and industries due to substantial improvements in the accuracy of deep convolutional
neural networks (CNNs). CNN architectures including VGG [28], ResNet [18], Inception
[29], DenseNet [20] and YOLO [27] have demonstrated exceptional performance on image
classification and object detection tasks. The widespread adoption of deep learning solutions
in computer vision has also coincided with the growth of edge computing [33], promising the
potential of bringing machine learning to low-power edge devices. However, the enhance-
ments in CNN model accuracy have come at the expense of increased model complexity
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leading to high power, compute, memory, and storage requirements, making such models
highly impractical for most use cases on resource-constrained edge devices.

Several compression techniques [4] [15] [19] have been explored to tackle this problem
with the goal of decreasing model size while maintaining the baseline accuracy. Quantiza-
tion is one such approach that realizes this goal by reducing the scale of model weights and
activations from 32-bit floating-point (FP32) to lower precision representations. In addition
to model compression, quantization also offers the benefits of fewer memory accesses, lower
latency, and improved energy efficiency. 8-bit integer (INT8) has become the predominant
bit-width for quantization and is widely supported in publicly available machine learning
frameworks [1] [25] that perform quantization-aware training (QAT) and in open-source in-
ference engines [10] [16] that execute the quantized models on commodity hardware. Recent
advances have also been made in ultra low-bit quantization where the model weights and ac-
tivations are quantized to less than 8 bits of precision. Using methods such as LSQ [11], a
2-bit quantized model can achieve a compression rate of up to 16× with an accuracy drop
of less than a few percent relative to the FP32 baseline. Moreover, compute-intensive nodes
in the network, including dense and convolution layers, can also utilize inexpensive bitwise
operations to perform the dot products on extremely low-bit data. The significant compres-
sion and speedup resulting from ultra low-bit quantization make it a compelling choice for
CNN deployment on edge devices.

Deep learning workloads on CPU architectures in commodity off-the-shelf edge devices
generally utilize Single Instruction, Multiple Data (SIMD) hardware units to perform opera-
tions on multiple inputs in parallel. INT8 inference can be easily performed as 8-bit SIMD
instructions are available in the instruction set architectures (ISAs) of mainstream CPUs. On
the other hand, ultra low-precision models necessitate operations on sub-8-bit data requir-
ing custom kernel implementations since SIMD execution is generally unsupported on less
than 8 bits. Moreover, the weights and activations are "fake-quantized" during the forward
and backward passes of QAT. This means that the input values are rounded to a discrete set
of floating-point values and all computations are still performed in full-precision during the
training phase. In the case of INT8 quantization, model weights and activations in FP32
can be easily cast to standard 8-bit integer when exporting the quantized model for infer-
ence. However, for ultra low-bit quantization, the conversion to extremely low-precision
can not be performed at this stage due to lack of support for sub-8-bit data types on the
target platform. Typically, the machine learning framework used for training inserts custom
operators for quantized layers such as convolution during model export after QAT. The in-
ference engine then needs to parse these custom operators when loading the model, lower
them to the corresponding ultra low-bit kernels based on the quantized layer, and pack the
fake-quantized inputs in ultra low-bit data structures. These modifications required in both
the training and the inference paths make it extremely challenging to deploy ultra low-bit
models on real commodity hardware.

To address these shortcomings in ultra low-bit pipelines, we introduce Deeplite Runtime
(DeepliteRT), an end-to-end inference solution based on the TVM machine learning com-
piler stack [2], that offers state-of-the-art performance and framework-agnostic deployment
of ultra low-bit models on ARM CPUs. We implement an ultra low-bit convolution operator
that improves upon the performance of the TVM bit-serial kernel [8] [9] by up to 4.34×. We
provide 32-bit ARMv7 and 64-bit ARMv8 bit-serial kernels making ultra low-bit CNN in-
ference possible on globally pervasive ARM-based edge devices. We define compiler passes
to automatically convert standard convolution layers into ultra low-bit operators and to ef-
ficiently pack full-precision data into compact ultra low-bit representations. These passes
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Table 1: 2-bit accuracy on ImageNet with different QAT methods [5] [32] [22] [6] [11].

Model Top-1 Top-1 Accuracy@2-bit

Accuracy@32-bit PACT (2018) LQ-NET (2018) QIL (2019) PACT-SAWB (2019) LSQ (2020)

ResNet18 70.5% 64.4% 65.2% 65.7% 67.0% 67.9%
ResNet50 76.9% 72.2% 71.5% 74.2% 74.6%

enable fake ultra low-bit quantized models trained with various ML frameworks to be ex-
ecuted on ARM CPUs without any additional changes in the training and inference paths.
With support for mixed precision inference, layers in the network that are sensitive to quan-
tization can be kept at higher precision (FP32, INT8, etc.) while insensitive layers can be
reduced to ultra low-bit in order to minimize the accuracy drop resulting from quantizing all
layers in the model. To summarize, this paper makes the following contributions:

• We implement high performance bit-serial convolution kernels that achieve a speedup
of up to 4.34× over existing ultra low-bit methods on ARM-based platforms.

• We present DeepliteRT, a compiler and runtime package for ultra low-bit inference on
ARM CPUs. DeepliteRT automates the process of converting fake-quantized convo-
lution layers from different machine learning frameworks used for quantization-aware
training into ultra low-bit convolution kernels. Quantized models can be exported with
the weights and activations still in full-precision without the need for custom operator
definitions as compiler passes in DeepliteRT can handle the necessary casting, lay-
out transforms and operator conversions during compilation. DeepliteRT provides a
framework-agnostic end-to-end solution for ultra low-bit CNN deployment on edge
devices eliminating the need to modify any code in the inference or runtime path.

• We perform a comprehensive evaluation of DeepliteRT on classification and detection
models for both ARMv7 and ARMv8 targets, achieving significant performance im-
provements of up to 2.20×, 2.33× and 2.17× over highly optimized FP32, INT8 and
ultra low-bit baselines, respectively.

2 Related Work

2.1 Ultra Low-bit Quantization
Quantization methods can be broadly categorized into uniform and non-uniform as well as
quantization-aware training (QAT) and post-training quantization (PTQ). Uniform quantiza-
tion refers to the case where the floating-point weights are quantized to integer values with
a linear scaling from the integer to floating-point domain. The benefit of these methods is
that operations can be performed in the integer domain and quickly converted to the floating-
point domain via multiplication of a scaling factor. Non-uniform quantization removes this
restriction, allowing for more flexibility in the mapping from floating-point to integer data.

QAT quantizes weights and activations while training the model to better simulate the
model’s performance after quantized deployment. PTQ methods train a full-precision model
without regard for quantization, and then quantize the model with minimal access to the
training dataset. State-of-the-art ultra low-bit quantization methods, shown in Table 1, make
use of QAT to offset the loss of precision when reducing precision to less than 8 bits. LSQ
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[11] is a simple yet effective quantization method which takes advantage of both uniform
quantization and QAT to quantize models to as low as 2 bits with minimal accuracy degra-
dation. For example, ResNet18 quantized to 2 bits with LSQ only incurs a 2.4% drop in
accuracy relative to full-precision, but offers 16× compression per quantized layer.

2.2 Ultra Low-bit Inference
Most previous works on sub-8-bit inference on CPU architectures utilize the bit-serial method
[8] [9] for dot product computation. Considering binary vectors with unipolar (unsigned) en-
coding where each input value is either 0 or 1, the bit-serial dot product is given by Eq. (1a).
A bit-wise AND operation gives the element-wise product of the binary inputs and the pop-
count operation, that counts the number of bits set to 1, performs the accumulation. The
binary case can easily be extended to larger bit-widths by slicing the inputs into binary vec-
tors and performing a summation of the bit-serial dot products over all possible bit-sliced
combinations. The corresponding equation for an M-bit weight and an N-bit activation vec-
tor is given in Eq. (1b) where operations are performed across bit-planes (wm and an).

w⃗ · a⃗ = popcount(w⃗ & a⃗) (1a)

w⃗ · a⃗ =
M−1

∑
m=0

N−1

∑
n=0

(popcount(w⃗m & a⃗n))<< (n+m) (1b)

This bit-serial approach is implemented within TVM for dense and convolution layers in
[8] and [9] with an average speedup of 1.9× for a 2-bit ResNet18 network over an optimized
FP32 baseline on the ARM Cortex-A53 CPU in the Raspberry Pi 3B. Riptide [13] also uses
the bit-serial kernels in TVM along with fusion, vectorization and tiling optimizations for
binary networks to achieve considerable latency improvements over full-precision models
on the Cortex-A53. Bitflow [17] presents another bit-serial implementation of a binary VGG
network for Intel CPUs that is even faster than the corresponding full-precision CNN tested
on a high-performance GPU. There have also been initiatives in this space that are not based
on the bit-serial method including ULPPACK [30], BiQGEMM [21] and DeepGEMM [14].

3 Bit-serial Convolution

3.1 Bitpacking
Binary quantization approaches [26] can result in an unacceptable accuracy loss due to the
use of a single bit for weight and activation values. To counter this, the bit-serial method can
be extended to multiple bits by slicing the input weights and activation into separate bitplanes
depending on the bit-width. This is illustrated in Fig. 1 for the 2A2W configuration (2 bits for
activations and 2 bits for weights). Each value in the input data is first broken down into its
constituent bits, creating bitplanes at every bit position. A bitplane holds the corresponding
bit from different input values; for instance, bitplane 0 for weights stores the least significant
bits across the weight values. Bitplanes can be compactly stored into standard data types such
as 8-bit unsigned integers through the process of bitpacking. Assuming unipolar encoding
for the 2-bit weights and activations, the bit-serial dot product can then be computed using
Eq. (1b) producing the same result as a standard dot product as shown in Fig. 1. Based on
our experiments, the bitpacking operation is not a major bottleneck consuming only 2-4% of
the overall execution time in the bit-serial computation.
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Figure 1: Input weight and activation values are sliced into bitplanes and bitpacked within
unsigned 8-bit integers enabling dot product calculation using bitwise operations.

3.2 Optimized bit-serial dot product
Eq. (1b) assumes a unipolar encoding scheme with unsigned values for both weights and
activations. Recent works [11] [6] typically employ a hybrid unipolar-bipolar scheme with
unipolar activations and bipolar (signed) weights producing quantized models with higher
accuracy. The nn.bitserial_conv2d operator in TVM implements a convolution ker-
nel for this hybrid scheme that calculates the bit-serial dot product as shown in Eq. (2),
providing an open-source SOTA baseline for comparison with our work.

w⃗ · a⃗ =
M−1

∑
m=0

N−1

∑
n=0

(popcount(w⃗m & a⃗n)− popcount(¬w⃗m & a⃗n))<< (n+m) (2)

Compared to the purely unipolar case in Eq. (1b), this version doubles the number of
popcount instructions adding considerable latency to the dot product calculations. Moreover,
the weights can not take on the value 0 since this bipolar scheme distributes the quantization
levels around 0. For example, in the case of 2 bits, each weight value will lie in the discrete
set {-3, -1, 1, 3}. Such a representation introduces error when quantizing zero values, which
is particularly harmful for common operations such as zero-padding and ReLU [24].

To address these drawbacks, we propose a novel bit-serial computation method in Eq. (3)
for the hybrid scheme. Our approach reduces the number of popcount operations per dot
product to one. It also requires the same number of overall instructions as the unipolar
variant except for the most significant weight bit which has a slight overhead due to a
constant multiplication. Our scheme also enables zero mapping of the signed weight val-
ues. For instance, 2-bit weights now fall in the set {-2, -1, 0, 1} providing compatibil-
ity with high accuracy quantization techniques such as LSQ that require zero mapping for
the weights. This bit-serial dot product is the building block of our bit-serial convolution
operator dlrt_bitserial_conv2d. With optimizations in kernel and data vectoriza-
tion, loop reordering, and parallelization, dlrt_bitserial_conv2d achieves substan-
tial performance uplifts over TVM’s nn.bitserial_conv2d as shown in Fig. 2.

w⃗ · a⃗ =

{
−1×∑

N−1
n=0 (popcount(w⃗M−1 & a⃗n))<< (n+m), if m = M−1

∑
M−1
m=0 ∑

N−1
n=0 (popcount(w⃗m & a⃗n))<< (n+m), otherwise

(3)

As opposed to the nn.bitserial_conv2d kernel that is only defined for ARMv7,
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(a) Speedup on second layer of ResNet18
across different bit-widths.

(b) Speedup on ResNet18 model across
different bit-widths.

Figure 2: Operator level and end-to-end speedups of dlrt_bitserial_conv2d over
TVM’s nn.bitserial_conv2d on the Raspberry Pi 4B running in 32-bit mode.

we implement both 32-bit and 64-bit dlrt_bitserial_conv2d kernels enabling de-
ployment on a broader range of 32-bit ARMv7 and 64-bit ARMv8 platforms.

4 DeepliteRT

Machine learning frameworks used for ultra low-precision QAT such as PyTorch [25] and
TensorFlow [1] produce quantized models with extra operators relative to the full-precision
network to handle the quantization and dequantization of model weights and activations.
Assuming uniform quantization, these operators including addition, subtraction, division,
multiplication, clipping and rounding are generally used to convert the floating-point data to
integer before quantized layers and integer data back to floating-point after quantized lay-
ers. Inference engines such as ONNX Runtime [10] offer native support for these operators
as they act on standard data types (FP32, INT16, INT8, etc.). However, quantized nodes
such as convolution and dense layers are typically fake-quantized during QAT, restricting
the weights and activations to a discrete set but still storing them in FP32. To realize ultra
low-bit deployment on target hardware, custom operators and attributes for these layers have
to be added by the ML framework which need to be then parsed and lowered to correspond-
ing low-level kernels by the inference engine. These modifications in the ML and runtime
frameworks require some level of expertise in both training and inference domains. More-
over, the changes made for one ML framework are not portable to a different framework,
making quantized ultra low-bit model deployment inaccessible to most practitioners.

DeepliteRT is an inference solution that defines custom compiler passes in the TVM ma-
chine learning compiler to transform fake-quantized models into compact ultra low-precision
networks. ML practitioners can perform QAT in any framework of choice and simply com-
pile the resulting fake-quantized model with DeepliteRT for easy deployment on ARM-
based targets with TVM runtime. DeepliteRT includes our optimized bit-serial convolu-
tion operator detailed in Section 3.2. It also supports mixed precison deployment allowing
quantization-sensitive layers to be kept at higher precision and insensitive layers at ultra low-
precision. With high-level APIs in both Python and C++, DeepliteRT can be easily integrated
in applications on edge devices for quantized model compilation, tuning and inference.
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Figure 3: DeepliteRT converts fake-quantized convolution layers from models in different
formats to optimized ultra low-bit convolution operators through a series of compiler passes.
The passes replace nn.conv2d with dlrt_bitserial_conv2d, bitpack the weights
in ultra low-bit, and cast and transform the layouts of data as required. The resulting com-
piled model can be deployed on ARMv7 and ARMv8 CPUs via TVM runtime.

4.1 Compiler passes

nn.conv2d is the operator for 2D convolution in TVM’s Relay IR. Convolution layers from
models trained with different ML frameworks are internally converted into nn.conv2d by
the appropriate frontend. For instance, tf.nn.conv2d from a TensorFlow model,
torch.nn.Conv2d from a PyTorch model and Conv from an ONNX model are all trans-
lated to nn.conv2d. We define a sequence of compiler passes in DeepliteRT to convert
a fake quantized convolution layer represented by nn.conv2d in Relay IR into our opti-
mized bit-serial convolution operator dlrt_bitserial_conv2d as shown in Fig. 3.
convert_conv2d_bitserial: This custom pass converts nn.conv2d nodes for quantized
layers into dlrt_bitserial_conv2d nodes in the IR. It also casts the input weights
and activations into integer and the resulting convolution output back to floating-point.
transform_layout: This pass is invoked to change the layout for activations to NHWC and
the layout for weights to HWIO as required by the low-level
dlrt_bitserial_conv2d kernel. The transformation is only performed if the activa-
tions and/or weights are not already in the required layouts.
bitpack_weights: This custom pass adds nn.bitpack operators in the Relay IR for the
bitpacking of weights during compilation prior to bit-serial convolution. The bitpacking of
activations is handled by the dlrt_bitserial_conv2d operator during inference since
the activation values are not available offline.
fold_constant: This pass is used to perform all the computations on weights during com-
pilation as they are compile-time constants. The result of casting the weights to integer,
transforming their layout and bitpacking them is then simply passed as a constant to the
dlrt_bitserial_conv2d operator.
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Table 2: End-to-end latencies (ms) and speedups of DeepliteRT 2A2W over TVM FP32,
ONNX Runtime INT8 and TVM bit-serial 2A2W baselines.

Model Raspberry Pi 4B - 32-bit ARMv7 Raspberry Pi 4B - 64-bit ARMv8

FP32 INT8 2A2W 2A2W (Ours) FP32 INT8 2A2W 2A2W (Ours)

ResNet18 149.29 145.44 130.92 70.32 110.94 91.13 123.28 67.13
ResNet50 433.19 326.49 311.8 196.79 315.03 203.56 295.96 197.91
ResNet101 - 558.47 487.96 325.37 545.01 378.27 471.71 319.09
VGG19 - 1399 1003 654.69 - 922.28 962.65 636.79
InceptionV3 312.82 245.16 357.77 165.05 218.18 151.55 340.82 164.62
DenseNet121 387.98 589.03 296.27 252.65 302.50 261.94 269.91 227.05

VGG16-SSD300 1671 2310 1780 1190 1547 1462 1631 1060
YOLOv5s 219.72 197.27 135.64 100.32 169.93 113.5 130.03 97.49

Average speedup 1.89× 1.91× 1.58× - 1.54× 1.20× 1.56× -
Minimum speedup 1.40× 1.49× 1.17× - 1.32× 0.92× 1.19× -
Maximum speedup 2.20× 2.33× 2.17× - 1.71× 1.45× 2.07× -

4.2 Mixed precision support
In the default case, DeepliteRT converts all convolution layers except the first to bit-serial
operators using the specified bit-width. However, quantizing all the layers to ultra low-bit
can result in severe accuracy degradation. This can be countered with mixed precision quan-
tization by choosing different precisions across layers using methods such as HAWQ-V3
[31] for accuracy preservation. DeepliteRT provides mixed precision inference by accepting
a configuration file as input that specifies the quantization parameters per layer including
activation bit-width, weight bit-width and encoding scheme. This per-layer information is
passed to the convert_conv2d_bitserial pass to selectively offload convolution layers to ul-
tra low-bit with the provided bit-widths and keep other layers in full-precision as required.

5 Evaluation
We evaluate classification and detection models on a Rasbperry Pi 4B (4×ARM Cortex-
A72@1.8GHZ) device with 32-bit and 64-bit operating systems to enable ARMv7 and
ARMv8 execution. We select TVM FP32 for the full-precision baseline as it significantly
outperformed FP32 kernels in ONNX Runtime and TensorFlow Lite [16] in our experiments.
TVM does not offer an optimized INT8 operator so we choose ONNX Runtime for INT8
experiments due to its high performance 8-bit kernels. Finally, we use the TVM 2A2W con-
figuration based on the nn.bitserial_conv2d operator for ultra low-bit experiments;
we also port this operator to ARMv8 to establish the 64-bit 2A2W baseline. All models
deployed with TVM and DeepliteRT were tuned using AutoTVM [3] with 1500 trials.

5.1 End-to-end performance
Table 2 reports the end-to-end latencies and speedups for classification and detection mod-
els. The average, minimum and maximum numbers represent the speedups realized with
DeepliteRT over the TVM FP32, ONNX Runtime INT8 or TVM 2A2W results in the same
column. Some results for ResNet101 and VGG19 at FP32 are missing in the table as the de-
vice runs out of memory when loading full-precision model parameters. Interestingly, even
though the TVM 2A2W configuration offers similar level of performance in 32-bit and 64-
bit modes, it does not remain competitive in the latter case due to substantial performance
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(a) ResNet18 on VWW. (b) VGG16-SSD300 on VOC.

Figure 4: Trade off between ultra low-bit model accuracy and performance.

uplifts for the FP32 and INT8 baselines with the ARMv8 ISA. In contrast, DeepliteRT offers
leading performance for both ARMv7 and ARMv8 targets. On average, DeepliteRT realizes
speedups of 1.89×, 1.91× and 1.58× in 32-bit mode and 1.54×, 1.20× and 1.56× in 64-bit
mode over TVM FP32, ONNX Runtime INT8 and TVM 2A2W, respectively.

Table 3: DeepliteRT latency (ms) on ResNet50 with mixed precision configurations.
52 FP32 26 FP32 + 26 2A2W 52 2A2W 26 2A2W + 26 1A2W 52 1A2W

433.19 314.69 196.79 180.37 134.26

5.2 Model accuracy and mixed precision
SOTA for ultra low-bit quantization has progressed at a rapid pace as shown in Table 1. We
study the accuracy-performance tradeoff of ultra low-bit quantization using LSQ for a classi-
fication and detection model in Fig. 4. ResNet18 trained on the VWW dataset [7] only incurs
accuracy drops of 0.86% and 2.09% relative to the FP32 baseline with performance uplifts
of up to 2.12× and 3.19× at 2A2W and 1A2W, respectively. Similarly, VGG16-SSD300
[23] trained on the VOC dataset [12] only sees a 0.18 loss in mAP at 2A2W while realizing
a speedup of up to 1.46×. The minor accuracy dips, substantial latency improvements and
huge savings in model size make ultra low-bit networks an ideal fit for edge deployment.
Moreover, mixed precision inference with DeepliteRT enables practitioners to easily explore
this tradeoff between accuracy and performance, as illustrated in Table 3 for ResNet50, by
varying the number of layers in FP32, 2A2W and 1A2W. An appropriate quantization con-
figuration can be chosen based on model accuracy and latency measurements from the target.

6 Conclusion
We present an end-to-end inference solution in DeepliteRT for ML framework-agnostic de-
ployment of ultra low-bit quantized models on 32-bit ARMv7 and 64-bit ARMv8 platforms.
It implements compiler passes for the automatic conversion of fake-quantized networks
in full-precision to compact representations in ultra low-bit, eliminating the need for cus-
tom modifications in the training and runtime components to enable inference at ultra low-
precision. Using high-performance bit-serial convolution kernels, DeepliteRT outperforms
highly optimized floating-point, integer, and ultra low-bit baselines on image classification
and object detection models by up to 2.20×, 2.33× and 2.17×, respectively.
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