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Abstract

Anomaly detection in real world videos requires complex scene understanding. Pre-
vious works utilize action recognition models as feature extractor, but some anomalies
(e.g. robbery) can not be easily understood from basic action information. Our VADOR
model leverages action and relationships of objects in the scene to detect anomaly us-
ing transformer encoders. Cross-attention between object relation encoder and action
encoder helps to fusion of information. Our Anchor based Temporal Action Localiza-
tion network (TALNet) segments anomalies temporarily by using clip features generated
from the encoders. We train VADOR with strong regularization and data augmenta-
tion methods. VADOR achieves %83.61 AUC score while achieving %63.09 F1@25
score at temporal segmentation on UCF Crime dataset. Code is publicly available at
https://github.com/hibrahimozturk/vador .

1 Introduction
Video anomaly detection from surveillance cameras is important for cities to enhance safety
and security. With the ability to detect and alert authorities to criminal activities such as
fights, shootings, and robberies, video anomaly detection can help to respond quickly and
prevent crimes from occurring. In addition, it can be used to monitor traffic in cities, pro-
viding early detection of accidents and incidents, thereby improving emergency response
times.

Anomaly detection in surveillance videos has been attempted to be solved by two main
approaches. The first approach involves learning normal behaviors from normal videos and
then detecting abnormal cases as outliers. The outliers are detected by utilizing the recon-
struction error between frames of the input video and reconstructed frames. However, this
approach requires observation of a large portion of normal behavior, which may not always
be possible. As a result, some normal actions may be mistakenly identified as abnormal.
Pre-deep learning study [11] uses dictionary learned from normal videos to reconstruct given
video frame. Deep learning based studies [7, 10, 12] proposes encoder-decoder models to
detect anomalies. [14] learns normal scenes with Generative Adversarial Network (GAN)
[6], learned discriminator is used to detected anomaly.

The second approach involves learning both normal and abnormal behaviors from a train-
ing dataset to predict anomalies in videos. First large scale dataset which contains normal and
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abnormal videos is UCF Crime [15] dataset. [15, 24] studies use Multiple Instance Learning
(MIL) to teach network detecting abnormal video clips. The networks use spatio-temporal
features extracted from pre-trained networks like as C3D [18] and I3D [1]. [24] integrates
learned motion-aware features as complementary to spatio-temporal features. [22, 23] for-
mulates the problem as supervised learning with noise labels, while [23] employs GCN to
decrease noise, [22] uses binary clustering with cluster distance loss to remove noisy labels.

RTFM [17] improves multiple instance learning (MIL) methods for video anomaly de-
tection by training a feature magnitude learning function that leverages temporal feature
magnitudes of video snippets. This approach enforces margins between abnormal and nor-
mal snippets, resulting in enhanced anomaly detection. In contrast, S3R [20] addresses
video anomaly detection by formulating it as an out-of-distribution problem and utilizing
self-supervised sparse representation. The S3R combines dictionary-based representation
and self-supervised techniques, and incorporates MIL to effectively tackle unsupervised and
weakly-supervised video anomaly detection tasks. Additionally, MGFN [2] focuses on cap-
turing long-term context and detecting scene-adaptive anomalies by integrating global-to-
local information, allowing for an initial overview of the video before focusing on specific
portions for anomaly detection.

Identifying anomalies in real-world scenarios is a challenging task that cannot solely
rely on action-based knowledge. For instance, distinguishing between a motorcycle robbery
and the rightful owner operating their motorcycle poses a significant challenge. To effec-
tively recognize such complex actions, it becomes crucial to consider the objects involved
and their interrelationships within the contextual scenes. Relying solely on static images or
features from video clips (e.g. [1]) is insufficient to detect anomalies within video datasets,
as dynamic information and temporal context play essential roles in the anomaly detection
process.

In response to these challenges, we propose VADOR, a method understands complex
scenes through the integration of action information and object relations. VADOR leverages
two separate encoders: the object relation encoder and the action encoder. The object relation
encoder [8] uncovers relationships between objects in the video clips based on their positions
and features extracted from a pre-trained object detection model. On the other hand, the
action encoder processes the action features of the video clips extracted from a pre-trained
I3D model [1]. VADOR fuses action and object relation features using cross-attention layers
positioned after the mid-level of the encoders (Figure 1). This approach enables VADOR
to detect complex anomalies that are challenging to identify based on actions alone, thereby
enhancing the accuracy and effectiveness of anomaly detection in untrimmed videos.

Rather than focusing solely on frame-level anomaly detection performance, our objective
is to enhance the temporal localization performance of anomaly segments in a timeline. The
final component of our method, VADOR, is a temporal action localization network (TALNet)
that utilizes extracted clip features to accurately segment anomalies over time. TALNet is
composed of temporal convolutions that operate on the sequence of clip features. To further
improve the segmentation performance, we incorporate the Bi-directional Feature Pyramid
Network (BiFPN) introduced in [16]. TALNet consists of consecutive BiFPN blocks, and
the output of the last block is fed to classification and regression heads.

For evaluating our method, we use the UCF Crime dataset [15], the most widely used
real-world anomaly dataset. Our model demonstrates superior performance in terms of F1
score for temporal segmentation, while also achieving a frame-level AUC score compara-
ble to SOTA techniques. VADOR achieves an impressive F1@25 score of 63.03 on the
UCF Crime dataset, surpassing the closest competitor ADNet which is temporal anomaly
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detection model with a score of 51.85 F1@25. Since there is currently no other dataset with
time-labeled annotations apart from UCF Crime, we assessed the performance of VADOR on
the XD-Violance dataset, which was trained using UCF Crime. To ensure fair comparisons,
we utilized UCF Crime-trained models RTFM, S3R and our TALNet(without encoders) for
evaluating on XD-Violance. The results clearly indicate that VADOR exhibits improved
generalization capability. Furthermore, we conducted an investigation to analyze the impact
of cross-attention within the VADOR model.

The present paper makes the following contributions:

• VADOR is a novel method for detecting anomalies in videos by integrating action
and object relations. Cross attention layers are employed between action and object
relation encoders to enable information fusion.

• Our proposed TALNet adopts anchor-based temporal action localization and employs
multi-stage Bi-directional Feature Pyramid Network (BiFPN) blocks. In particular, a
mid-level BiFPN block is designed to generate useful features for predicting anomalies
in the anchor area, by incorporating a classification loss in the block.

2 Method

Object Detector

Faster R-CNN
Trained on Visual Genome
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Figure 1: Overview of clip anomaly encoders. Objects are detected from center frame of
the clip. 3D ConvNet (I3D) extracts spatio-temporal feature from the video clip. Detected
object features are fed to object relation transformer. Spation-temporal features are reshaped
and fed to action transformer. Cross-attention layers fuse memories after NL layers. Output
feature vectors corresponding to [CLS] tokens are concatenated to get clip feature.

VADOR, our anomaly detection framework, employs a two-stage approach, involving
clip-level operations followed by video-level operations, to effectively detect anomalies in
videos. In the first stage, the input video is divided into consecutive video clips, following the
convention of action recognition methods, where each clip consists of 16 consecutive frames.
Dedicated video clip encoders are then employed to generate feature vectors for each video
clip. A comprehensive description of the encoding process can be found in Section 2.1.
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In the second stage, the generated feature vectors of the video clips are organized sequen-
tially to enable the temporal detection of anomalies using our TALNet. TALNet exploits the
temporal dynamics present in the video data to accurately identify anomalies over extended
time durations. The details of this process are described in Section 2.2.

2.1 Video Clip Encoders
We employ transformer encoders to generate video clip representation vectors based on the
extracted object and action features within the clip. Specifically, our approach involves two
transformer encoders: the object relation encoder and the action encoder. The object relation
encoder focuses on processing the extracted object features and bounding boxes, which are
obtained from the center frame (8th frame) of each video clip. Conversely, the action encoder
handles the extracted action features.

The initial N layers of the transformer encoders exclusively consist of multi-head self-
attention layers, followed by feed-forward layers. Cross attention does not exist in the layers.
This design enables the encoding of object relations while keeping the action features distinct
and separate.

To further enhance the modeling capability of our approach, we introduce cross-attention
layers in the subsequent N layers of the transformer encoders. These cross-attention lay-
ers enable the establishment of cross-relations between objects and actions within the same
video clip. Specifically, the cross-attention layers retrieve memory (key and value) from the
last attention block of the other transformers. In our framework, the action encoder utilizes
the memory from the Nth attention block of the object relation encoder, while the object re-
lation encoder incorporates the memory from the Nth attention block of the action encoder,
as illustrated in Figure 1.

Our proposed approach integrates transformer encoders with distinct attention mecha-
nisms, enabling the effective representation of both object relations and actions within video
clips. This architecture enhances the capability of our model to establish meaningful rela-
tionships between objects and actions.

Feature Extraction: The extraction of object and action features is performed using
pre-trained networks, where the parameters of these networks remain fixed during training.
To detect objects and extract their features, we employ Faster R-CNN trained on the Visual
Genome dataset. Since the object detection model operates on static images, we conduct
object detection solely on the center frame of each video clip, as depicted in Figure 1. We
select the No objects with the highest confidence scores from the detector outputs to be
forwarded to the object relation transformer encoder.

To extract action features from the video clips, we utilize a pre-trained I3D action recog-
nition network, as illustrated in Figure 1. The extracted action features have a shape of
H ×W ×C, where H and W are 7, and C is 1024. Since the transformer encoders accept
sequential data, we reshape the action features to flattened representation of (H ×W )×C.

Object Relation Encoder: The relationships among detected objects in the center frame
of a video clip contain valuable information for anomaly detection. To capture these object
relations, we employ the encoder component of the Object Relation Transformer [8]. The
object relation encoder leverages self-attention mechanisms, considering both the object fea-
tures and their relative positions through geometric attention. The relative position between
a pair of objects is computed using Formula 1, utilizing the bounding box positions obtained
from the object detector. By incorporating this positional information, a 4-dimensional rela-
tive position vector is expanded to a 512-dimensional vector using a trained fully connected
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layer. The object relation weight, represented as a floating-point number, is computed by
performing a matrix multiplication between the 512-dimensional vector and the learned WG
matrix.

λ (a,b) = (log(
|xa − xb|

wa
), log(

|ya − yb|
ha

), log(
wb

wa
), log(

hb

ha
)) (1)

rab = ReLU(Emb(λ (a,b)WG)) (2)

In the self-attention layers, the semantic relation weight between objects is calculated us-
ing the key (k), query (q), and value (v) vectors extracted from the object features. The object
relation encoder combines geometric attention weights and semantic attention weights using
Formula 3. The attention weights between object a and other objects are multiplied with the
corresponding extracted value vectors (v) for those objects. The resulting attentioned vector
Ya is obtained by summing the multiplied values, as shown in Formula 4. This operation is
applied to each object feature in the center frame of the video clip.

wab =
rab + exp( qa∗kT

b√
dmodel

)

∑
N
l=1 ral + exp( qa∗kT

b√
dmodel

)
(3)

Ya =
N

∑
l=1

wal ∗ vl (4)

It is worth to mention that, due to the utilization of relative positions in the geometric
attention layers, the object features are not summed with sinusoidal positional encoding
vectors before being passed to the encoder.

Action Encoder:Recognizing actions within the video clip is crucial for detecting ab-
normal situations. To process the extracted action features, we employ a transformer encoder
[19] with self-attention mechanisms. Unlike the Object Relation Encoder, the input feature
vectors of the action encoder are summed with positional encoding vectors.

Y i+1
action = So f tmax(

Qi
action ∗ (K

NL
ob j)

T

√
dmodel)

)∗V N/2
ob j

Y i+1
ob j = So f tmax(

Qi
ob j ∗ (K

NL
action)

T

√
dmodel)

)∗V N/2
action

(5)

Cross Connections: In our architecture, the cross attention layers play a crucial role in
establishing connections between the encoders. These layers retrieve the key (K) and value
(V ) vectors, representing the memory, from the cross transformer encoder, while the query
(Q) vectors flow directly without crossing the encoders. This mechanism is illustrated in
Formula 5. The cross attention layers replace the self-attention layers in the second half of
the encoder layers.

Unlike the first half of the object relation encoder, the cross attention layers do not incor-
porate geometric attention. This is because the relative spatial distance between objects and
actions is not considered in the cross attention layers. Therefore, geometric attention is not
utilized in this particular part of the encoder architecture.

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017



6 OZTURK, CAN: VADOR: REAL WORLD VIDEO ANOMALY DETECTION
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Figure 2: Overview of Temporal Action Localization Network (TALNet). Video clip features
are bring together consecutively for each video. The clip feature window is fed to base
network and then downscaling layers. Output of the downscaling layers are forwarded to
BiFPN blocks. Classification network makes prediction from output of first BiFPN block.
Output of second BiFPN block is fed to regression and classification networks. Abnormal
segments are determined from regression and classification outputs with predefined anchors.

Clip Vector: The representation vector of a video clip is derived by concatenating the
initial vectors from the output sequences of both the action encoder and the object relation
encoder, as illustrated in Figure 1. These first vectors correspond to trainable [FEAT] token
vectors, which are included in the input sequences. It is important to note that the action
encoder and the object relation encoder each possess their own unique trainable [FEAT]
token. This concatenation process enables the fusion of information from both encoders into
a single clip-level representation vector.

2.2 Temporal Anomaly Localization Network (TALNet)

TALNet, plays a crucial role in predicting temporal anomaly segments within a video. It
operates by processing the representation vectors of consecutive video clips generated from
the input video. The first step in the TALNet process involves applying successive 1D con-
volution layers to the temporal dimension of the clip features. Notably, each convolution
layer reduces the temporal dimension by half, as depicted in Figure 2. The outputs of these
convolution layers are then passed through BiFPN stages.

BiFPN, originally introduced in the EfficientDet object detector [16], is adapted in our
framework to fuse multi-level features through cross-level connections in the context of 1D
temporal features. Importantly, the temporal dimensions of the level features remain un-
changed during the BiFPN process. The output level features from the final BiFPN blocks
are subsequently forwarded to a shared classifier and regressor.

Input Preparation: During the training phase, we construct the input by utilizing 128
consecutive video clips for each video. To introduce diversity in the input sequences, we ran-
domly crop these 128 clips while ensuring the integrity of abnormal segments is preserved.
This random cropping strategy enhances the variability of the input data.

During the inference phase, we pass the entire video clip features of a given video to
TALNet without altering the order of the clips. Since our TALNet architecture is fully con-
volutional, it is capable of processing the entire video at once. The only requirement is
that the temporal length of the video clip features must be a multiple of 16. To fulfill this
condition, we pad the clip features until the temporal length becomes a multiple of 16. In
the training phase, if necessary, we pad the input feature sequence with empty features, as
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shown in Figure 2. This ensures that the input satisfies the required condition for TALNet
processing.

Temporal BiFPN: The Temporal Bi-directional Feature Pyramid Network (BiFPN) plays
a crucial role in processing the temporal features P0...4, derived from the outputs of the 1D
convolutions. Since the temporal features have varying lengths, the BiFPN is employed
to effectively fuse these features using a combination of upsampling, downsampling, and
convolution operations. It is important to note that the output shapes of the BiFPN remain
consistent with the input vector shapes. Originally designed for object detection tasks in
images, we have adapted the BiFPN framework to accommodate 1D operations.

Prediction Heads: The multi-scale features are processed by two consecutive BiFPN
blocks, where each prediction in the output levels of the BiFPN corresponds to a segment an-
chor, following the approach of dense object detection. The outputs of the final BiFPN block
are then passed through the classification and regression heads to determine the anomaly
score and length of the segments. Notably, each scale level in the BiFPN outputs shares the
same classification and regression heads.

To assign the target abnormal segment to the anchors, we calculate the Intersection over
Union (IoU) between the anchors and the target segments. If the IoU value exceeds 0.5,
we set the target label of the anchor to 1, indicating a positive match. To address the class
imbalance between positive and negative classes, we employ the Focal Loss [9] for the output
of the classification head.For the regression head outputs, which are responsible for temporal
action localization, we utilize a modified version of the Smooth L1 Loss [5].

The output of the first BiFPN block is simultaneously fed into both the classification head
and the next BiFPN block. To assign ground truth segments to the anchors, we replace IoU
calculation with Intersection over Anchor (IoA) calculation, the rest of the process is same.

2.3 Implementation Details
To prevent overfitting TALNet, we apply regularization methods similar to Clip Anomaly
Encoders. We drop input clip features to TALNet with 0.2 probability. Also we apply drop
block [4] to first temporal convolutions, since the convolutions keep shape of the features
same.

3 Experiments
We evaluate VADOR on UCF Crime [15] and XD-Violence [21] datasets, using frame-level
AUC and F1 score as performance metrics [13]. Results demonstrate that VADOR outper-
forms other methods in term of F1 score, while achieving comparable AUC score to SOTA
methods. The impact of VADOR’s video clip encoders is discussed in the following section.

Datasets: The UCF Crime dataset encompasses various real-world anomalies, including
classes such as Explosion, Road Accident, and Burglary. The dataset comprises both normal
and abnormal videos in the train and test splits. The training split contains 810 normal and
800 abnormal videos, while the test split consists of 150 normal and 140 abnormal videos.
For training VADOR, we utilized second-by-second annotations from the training videos
provided by [13].

The XD-Violence dataset contains a total of 2405 violent videos and 2349 non-violent
videos, with violent cases belonging to 6 classes. Except for the Riot class, the other classes
are also present in the UCF Crime dataset. Unlike the CCTV camera recordings in the
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(a) RTFM: Burglary005 (b) RTFM: Burglary079 (c) RTFM: Arrest007

(a) Ours: Burglary005 (b) Ours: Burglary079 (c) Ours: Arrest007

Figure 3: Qualitative Comparison on UCF Crime Videos. Ground truth segments (green)
and anomaly score predictions in timeline are presented

UCF Crime dataset, XD-Violence consists of videos captured from movies, sports events,
car cameras, and more. To evaluate the performance of VADOR trained on the UCF-Crime
dataset, we only used the test set of the XD-Violence dataset. Training VADOR on the XD-
Violence dataset was not possible due to the unavailability of temporal annotations for the
videos.

Methods

UCF Crime

F1@10 F1@25 F1@50 AUC

Sultani et al.[15] 45.20 39.64 32.32 75.41

RFTM [17] 33.55 26.14 16.86 84.44

S3R [20] 43.30 33.43 21.76 85.99

ADNet [13] 58.16 51.85 41.29 70.57

TALNet w/o encoders 62.72 57.36 43.40 69.37

VADOR (ours) 69.79 63.09 50.28 83.62

Table 1: Quantitative comparison on UCF Crime Dataset.

Results: The experimental results on UCF Crime dataset (Table 1) demonstrate that
VADOR achieves state-of-the-art F1 scores. While VADOR’s AUC score of 83.62 is lower
than the best MIL-based method’s score of 85.99, there is a significant difference in F1
score between the two models. This indicates that VADOR is better suited for real-world
applications. Qualitative results in Figure 3 further support this conclusion.

In order to evaluate the performance of VADOR as a temporal action localization model,
we included other models in the same domain to Table 1. Specifically, we compared VADOR
with ADNet [13], which is an adaptation of the MS-TCN [3] model for temporal action lo-
calization on the UCF Crime dataset. Additionally, we trained a VADOR’s TALNet without
video clip encoders for further comparison. Our results indicate that VADOR achieved the
highest scores among the evaluated TAL networks, providing evidence that the inclusion of
video clip encoders contributes to an improved temporal localization performance.

We investigated importance of fusion of relation and action in encoders. We trained
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Methods

UCF Crime

F1@10 F1@25 F1@50 AUC

VADOR only action 40.85 24.19 14.54 69.36

VADOR only object 65.78 57.78 42.75 74.50

VADOR cross-attention 69.79 63.09 50.28 83.62

Table 2: Effect of cross attention layers.

VADOR with only action encoder and with only object relation encoder. The results in
Table 2 show that encoders with cross attention is important to get better performance. Fur-
thermore, the results show that object relations are more useful than action to recognize
anomalies in UCF Crime dataset. Action features are especially useful to recognize abnor-
mal events which cause significant changes in action, such as explosions and fires. However,
the majority of abnormal events in UCF Crime dataset occur in small portion of the scene,
such as robbery, fight, abuse. Generally, these events do not create significant action changes,
resulting in action features provides lower performance than object features on UCF Crime
dataset.

Also we investigated generalization ability of our model. We evaluated UCF-Crime
trained model on XD-Violance dataset. Similarly we evaluated TALNet and RFTM which
trained on UCF-Crime dataset. The results in Table 3, VADOR has better generalization
ability.

Methods

XD-Violance

F1@10 F1@25 F1@50 AP

TALNet 36.65 26.43 12.67 51.30

RFTM [17] 41.23 31.05 15.28 58.35

S3R [20] 44.26 31.19 14.75 61.96

VADOR 49.74 40.41 25.07 65.90

Table 3: XD-Violance Scores

Lastly, we compared VADOR with ADNet and our TALNet on UCF Crime V2 [13]
dataset, which is an extension of UCF Crime Dataset. The results in Table 4 show that
VADOR achieves best score in UCF Crime V2 dataset.

Methods

UCF Crime V2

F1@10 F1@25 F1@50 AUC

ADNet [13] 58.89 50.75 34.69 67.63

TALNet 64.31 54.63 42.16 72.19

VADOR 68.58 59.72 47.09 80.99

Table 4: UCF Crime V2 Scores
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4 Conclusion

In this paper, we propose to use transformer encoders to capture object relations and actions
in the scene. Fusion of action and object relation information with cross attention layers
increases performance of VADOR. TALNet produces temporal abnormal segments of given
video. Qualitative and quantitative results show that transformer encoders with cross atten-
tion layers provides better temporal anomaly segmentation performance. Delving into object
analysis of objects and their interrelationships provides deeper insights into understanding
anomalous events. To investigate VADOR’s generalization, we evaluated its UCF-Crime
trained model on the XD-Violance dataset, revealing superior generalization capabilities.
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