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Abstract

Clustering is the task of gathering similar data samples into clusters without using any
predefined labels. It has been widely studied in machine learning literature, and recent
advancements in deep learning have revived interest in this field. Contrastive clustering
(CC) models are a staple of deep clustering in which positive and negative pairs of each
data instance are generated through data augmentation. CC models aim to learn a feature
space where instance-level and cluster-level representations of positive pairs are grouped
together. Despite improving the SOTA, these algorithms ignore the cross-instance pat-
terns, which carry essential information for improving clustering performance. This in-
creases the false-negative-pair rate of the model while decreasing its true-positive-pair
rate. In this paper, we propose a novel contrastive clustering method, Cross-instance
guided Contrastive Clustering (C3), that considers the cross-sample relationships to in-
crease the number of positive pairs and mitigate the impact of false negative, noise, and
anomaly sample on the learned representation of data. In particular, we define a new
loss function that identifies similar instances using the instance-level representation and
encourages them to aggregate together. Moreover, we propose a novel weighting method
to select negative samples in a more efficient way. Extensive experimental evaluations
show that our proposed method can outperform state-of-the-art algorithms on bench-
mark computer vision datasets: we improve the clustering accuracy by 6.6%, 3.3%,
5.0%, 1.3% and 0.3% on CIFAR-10, CIFAR-100, ImageNet-10, ImageNet-Dogs, and
Tiny-ImageNet.

1 Introduction

CIFAR-10 

CC C3

Figure 1: t-SNE visualization of Contrastive
Clustering (CC) [22] and the proposed C3

In the past few years, self-supervised learn-
ing [8, 23, 32], particularly contrastive
learning, has established itself as a state-
of-the-art representation learning algorithm
[6]. They generate a transformed version
of the input samples and attempt to learn a
representation in which augmentations of the same data point are closer together and fur-
ther away from other points. They managed to outperform other baselines, particularly in
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tasks related to computer vision, such as image classification [6], image anomaly detec-
tion [14], and object recognition [36]. Encouraged by these results, several studies have
attempted to apply contrastive learning to the clustering task. An early attempt by Li et
al. [22] showed that contrastive clustering could significantly outperform other baselines on
benchmark datasets. Despite these improvements, contrastive clustering and the majority of
other deep clustering methods do not consider the interrelationship between data samples,
which commonly leads to sub-optimal clustering [28]. However, it would be challenging
to incorporate information about the cross-relationship of different instances in an unsuper-
vised setting where we do not have access to data labels. As a result, existing unsupervised
CC-based algorithms suffer from high false-negative-pair and low true-positive-pair rates
because the model cannot effectively take advantage of the degree of similarity of samples.

In this paper, we propose a groundbreaking technique to discover similarities between
samples. Then, we employ these similarities to identify positive and negative pairs more
accurately. We design a soft-weighting scheme that allows focusing on the more challeng-
ing to cluster data points. To realize this goal, we create a pool of weighted sample pairs
where higher weights are assigned to the samples closer to the data cluster boundaries. Such
a weighting scheme mitigates the influence of easy-to-cluster data, noise, and, more impor-
tantly, the existing false-negative-pair issue in the CC-based methods. Also, by incorporating
a larger number of positive samples, we improve the true-positive-pair rate. Overall, our
method significantly improves the training efficiency of the model and leads to a cluster-
friendly representation. In the remainder of this paper, we describe our idea more formally.
Then, we carry out a series of extensive analyses to show that our scheme can significantly
improve the clustering performance, and we try to explain how it can achieve such enhance-
ment.

We summarize the contribution of this work as follows: (1) we propose a new contrastive
loss function to incorporate the newly discovered positive pairs toward learning a more re-
liable representation space. (2) we propose a novel weighting scheme that aims to separate
more challenging data samples, specifically those that are close to cluster boundaries. This
improves the representation learning process and greatly impacts the false-negative-pair se-
lection rate. (3) by carrying out extensive experiments, we show that our proposed scheme
can significantly outperform current state-of-the-art by a significant margin in terms of sev-
eral clustering criteria. This significant improvement results from considering the pairwise
data similarities. (4) We offer insight into the behavior of our developed model, discuss the
intuition behind how it improves the clustering performance and support them by conducting
relevant experiments.

2 Related Works
Deep learning-based clustering methods can be categorized into two groups [43]: (I) Models
that use deep networks for embedding the data into a lower-dimensional representation and
apply a traditional clustering such as k-means to the new representation, and (II) Algorithms
that jointly train the neural network for extracting features and optimizing the clustering re-
sults. In order to achieve a more clustering-friendly representation, previous studies have
added regularization terms and constraints to the loss function of neural networks. For ex-
ample, Huang et al. [16] proposed the Deep embedding network (DEN), which imposes a
locality preserving and a group sparsity constraint to the latent representation of the autoen-
coder. These two constraints reduce the inner cluster and increase the inter-cluster distances
to improve the clustering performance. In another work, Peng et al. [26] proposed deep sub-
space clustering with sparsity prior (PARTY) that enhances the clustering efficiency of the
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Figure 2: An overview of the training phase of our proposed C3 method.

autoencoder by incorporating the structure’s prior in order to consider the relationship be-
tween different samples. Sadeghi and Armanfard [30] proposed Deep Multi-Representation
Learning for Data Clustering (DML), which uses a general autoencoder for instances that
are easily clustered along separate AEs for difficult-to-cluster data to improve the perfor-
mance. More recent works jointly train the neural network with the clustering objective to
further improve the clustering performance. For instance, Deep clustering network (DCN)
[38] uses k-means objective as the clustering loss and jointly optimizes it with the loss of an
autoencoder. Analogously, Deep embedded clustering (DEC) [37] first embeds the data into
a lower-dimensional space by minimizing the reconstruction loss. Then, it iteratively updates
the encoder part of the AE by optimizing a Kullback-Leiber (KL) divergence [20] loss be-
tween the soft assignments and adjusted target distributions. Following the success of DEC, a
series of improved algorithms have been developed. For instance, improved deep embedded
clustering with local structure preservation (IDEC) [10] jointly optimizes the clustering loss
and AE loss to preserve the local structure of data, IDECF [29] adds a fuzzy c-mean network
for improving the auxiliary cluster assignment of IDEC during training, and Deep embed-
ded clustering with data augmentation (DEC-DA) [11] applies the DEC method along with
the data augmentation strategy to improve the performance. Several other methods design
auxiliary tasks for learning an efficient representation. E.g., JULE [39] applies agglomera-
tive clustering to learn the data representation and cluster assignments. In another algorithm
named invariant information clustering (IIC) [17], the mutual information between the clus-
ter assignment of a pair is maximized. Recently, researchers have turned their attention to
self-supervised learning (SSL) models for clustering. For example, MMDC (multi-modal
deep clustering) [31] improves the clustering accuracy by solving the proxy task of pre-
dicting the rotation. SCAN (semantic clustering by adopting nearest neighbors) [33] first
obtains a high-level feature representation using self-supervised learning and then improves
the clustering performance by incorporating the nearest neighbor prior. Contrastive learning
is a self-supervised learning paradigm that learns data representation by minimizing the dis-
tance between the augmentations of the same sample while pushing them away from other
instances. SimCLR [6] is an example of a contrastive model for learning representation from
images that can achieve performance on par with supervised methods. Researchers have in-
creasingly utilized contrastive models for solving tasks such as clustering in the past couple
of years. Zhong et al. proposed deep robust clustering (DRC) [42] in which a contrastive
loss decreases the inter-class variance and another contrastive loss increases the intra-class
distance. Contrastive clustering (CC) [22] improves the clustering performance by jointly
performing the instance and cluster-level contrastive learning.

Citation
Citation
{Sadeghi and Armanfard} 2022

Citation
Citation
{Yang, Fu, Sidiropoulos, and Hong} 2017

Citation
Citation
{Xie, Girshick, and Farhadi} 2016

Citation
Citation
{Kullback and Leibler} 1951

Citation
Citation
{Guo, Gao, Liu, and Yin} 2017

Citation
Citation
{Sadeghi and Armanfard} 2021{}

Citation
Citation
{Guo, Zhu, Liu, and Yin} 2018

Citation
Citation
{Yang, Parikh, and Batra} 2016

Citation
Citation
{Ji, Henriques, and Vedaldi} 2019

Citation
Citation
{Shiran and Weinshall} 2020

Citation
Citation
{Vanprotect unhbox voidb@x protect penalty @M  {}Gansbeke, Vandenhende, Georgoulis, Proesmans, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2020

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{Zhong, Chen, Jin, and Hua} 2020

Citation
Citation
{Li, Hu, Liu, Peng, Zhou, and Peng} 2021



4 SADEGHI, HOJJATI, ARMANFARD: C3: CROSS-INSTANCE GUIDED CC

3 Method
Given an unlabelled dataset X = {x1,x2, . . . ,xN} and a predefined cluster number parameter
M, the goal of the clustering problem is to partition X into M disjoint groups. Figure 2.
shows the overall scheme of the C3 framework.

Like other contrastive learning methods, we apply two data augmentations T a and T b,
sampled randomly from a pool of transformations, T , to form a true positive pair (xa

i , xb
i )

for a sample xi, where xa
i = T a(xi) and xb

i = T b(xi). In this paper, we used SimCLR trans-
formation pool [6]. As is shown in Figure 2. , we use the encoder network f (.) to extract
features of augmented samples, i.e, ha

i = f (xa
i ) and hb

i = f (xb
i ). Inspired by CC [22], we

devise instance-level and cluster-level contrastive networks, denoted by gI(.) and gC(.), re-
spectively. The instance-level network maps the extracted feature of augmented samples
to the latent representation (aka z-space), i.e. za

i = gI(ha
i ) and zb

i = gI(hb
i ). The output

of the cluster-level network is the cluster assignments of samples to different clusters, i.e.
ca

i = gC(ha
i ) and cb

i = gC(hb
i ). We call the output of the cluster-level network c-space. We

first initialize our networks, i.e. f (.), gI(.), and gC(.) using the CC algorithm.
If we do such initialization process for a sufficient number of epochs, a partially reli-

able z-space will be obtained. However, the z-space obtained by minimizing the CC loss is
sub-optimal for clustering, which results in a large false-negative-pair rate and a low true-
positive-pair rate. To mitigate this issue, our method incorporates cross-sample similarities.

Since our framework is unsupervised and we do not have access to the data labels to
identify samples belonging to the same cluster, we use a notion of self-supervision to refine
clusters. We employ the cross-sample similarities in the partially trained z-space to realize
the self-supervision concept. The cross-sample similarity is measured by the cosine distance
of samples in the z-space. If, for a pair of instances, the similarity is greater than or equal
to a threshold ζ , we consider those samples to be similar and pull them closer together by
minimizing the loss function LC3 defined below:

LC3 =
1

2N

N

∑
i=1

(ℓ̃a
i + ℓ̃b

i ) (1)

ℓ̃a
i =− log

∑k∈{a,b} ∑
N
j=11{za⊺

i zk
j ≥ ζ}exp(za⊺

i zk
j )

∑k∈{a,b} ∑
N
j=1 wk

ij exp(za⊺
i zk

j )
, (2)

where 1{.} denotes the indicator function. Analogous to ℓ̃a
i , we define ℓ̃b

i that considers
similarity of zb

i and other samples in the batch. Furthermore, in the denominator of the
proposed loss function, we included wk

i j to consider higher weights for the samples that are
neither close together nor far from each other. In this way, we realize the goal of decreasing
the false negative pair selection rate as, in the traditional CC-based methods, all augmented
samples in the batch are equally considered when forming negative pairs, regardless of the
possibility of them belonging to the same cluster and the difficulty of the samples to cluster.

We assume that the weight terms are given when minimizing the C3 loss defined in (2).
To obtain an optimum value for a weight term wk

i j, we propose solving the below optimiza-
tion problem while the networks are frozen. The first term of the below optimization problem
is defined based on our motivation to assign a very low weight to too close and too far away
samples and, instead, let the remaining samples, which are more probably located on the
cluster boundaries, take higher weights. The second term is to avoid the trivial solution of
assigning a weight equal to one to the sample providing the maximum value of 1−|za⊺

i zk
j|.

To avoid instability, we include the constraint by which the summation of all weights must
be equal to 1.
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min
wk

i j
∑

k∈{a,b}

N

∑
j=1

−wk
i j(1−|za⊺

i zk
j|)−

1
Γ

H(Wi) s.t. ∑
k∈{a,b}

N

∑
j=1

wk
i j = 1 (3)

In the above equation, Γ is a hyperparameter, Wi = {wk
i j| j ∈ {1,2, ..,N},k ∈ (a,b)} is the set

of all weights, and H(.) is the entropy function. We solve the optimization problem defined
in (3) using the Lagrange multiplier technique as below:

L = ∑
k∈{a,b}

N

∑
j=1

−wk
i j(1−|za⊺

i zk
j|)+

1
Γ

∑
k∈{a,b}

N

∑
j=1

wk
i j log(wk

i j)+λ ( ∑
k∈{a,b}

N

∑
j=1

wk
i j −1) (4)

∂L
∂wk

i j
= 0 −→− (1−|za⊺

i zk
j|)+

1
Γ

log(wk
i j)+

1
Γ
+λ = 0

wk
i j = exp(Γ(1−|za⊺

i zk
j|)−1−Γλ ) (5)

Where λ is the Lagrange multiplier. By substituting (5) into the constraint of (3), we have:

∑
k∈{a,b}

N

∑
j=1

wk
i j = 1 −→ ∑

k∈{a,b}

N

∑
j=1

exp(Γ(1−|za⊺
i zk

j|)−1−Γλ ) = 1

exp(−1−Γλ ) =
1

∑k∈{a,b} ∑
N
j=1 exp(Γ(1−|za⊺

i zk
j|))

(6)

If we substitute (6) to (5), we have the final values for wk
i j as below:

wk
i j =

exp(Γ(1−|za⊺
i zk

j|))

∑k∈{a,b} ∑
N
j=1 exp(Γ(1−|za⊺

i zk
j|))

(7)

When comparing the loss function of other contrastive clustering algorithms, such as
CC, with the loss of C3 (shown in Eq. (2)), several differences become apparent. Firstly,
while other contrastive algorithms typically only allow one positive pair to appear in the
numerator, C3 enables the networks to be trained by considering a much larger number
of positive pairs. This leads to more efficient training and better performance. Secondly,
C3 adopts a weighting scheme when creating the negative pairs; the scheme assigns lower
weights to samples that are either too close or too far from each other while assigning higher
weights to those that are more in the mixing cluster areas. This approach reduces the impact
of false positive, noisy, and anomaly samples on the learning of representations.

4 Experiments and Discussions
In this section, we demonstrate the effectiveness of our proposed scheme by conducting
rigorous experimental evaluations. We evaluated our method on five challenging computer
vision benchmark datasets: CIFAR-10, CIFAR-100 [19], ImageNet-10, ImageNet-Dog [7],
and Tiny-ImageNet [21]. For CIFAR-10 and CIFAR-100, we combined the training and
test splits. Also, for CIFAR-100, instead of 100 classes, we used the 20 super-classes as
the ground-truth. To evaluate the performance, we use three commonly-used metrics in
clustering namely clustering accuracy (ACC), Normalized Mutual Information (NMI), and
Adjusted Rand Index (ARI) [43].

For the sake of fair comparison, for all datasets, we used ResNet34 [13] as the backbone
of our encoder f (.), which is the same architecture that previous algorithms have adopted.
We set the dimension of the output of the instance-level projection head gI to 128, for all
datasets. The output dimension of the cluster-level contrastive head is set to the number of
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Table 1: Clustering performance of different methods.

CIFAR-10 CIFAR-100 ImageNet-10 ImageNet-Dogs Tiny-ImageNet
Algorithm NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means [24] 0.087 0.229 0.049 0.084 0.130 0.028 0.119 0.241 0.057 0.055 0.105 0.020 0.065 0.025 0.005
SC [41] 0.103 0.247 0.085 0.090 0.136 0.022 0.151 0.274 0.076 0.038 0.111 0.013 0.063 0.022 0.004
AC [9] 0.105 0.228 0.065 0.098 0.138 0.034 0.138 0.242 0.067 0.037 0.139 0.021 0.069 0.027 0.005

NMF [2] 0.081 0.190 0.034 0.079 0.118 0.026 0.132 0.230 0.065 0.044 0.118 0.016 0.072 0.029 0.005
AE [1] 0.239 0.314 0.169 0.100 0.165 0.048 0.210 0.317 0.152 0.104 0.185 0.073 0.131 0.041 0.007

DAE [34] 0.251 0.297 0.163 0.111 0.151 0.046 0.206 0.304 0.138 0.104 0.190 0.078 0.127 0.039 0.007
DCGAN [27] 0.265 0.315 0.176 0.120 0.151 0.045 0.225 0.346 0.157 0.121 0.174 0.078 0.135 0.041 0.007
DeCNN [40] 0.240 0.282 0.174 0.092 0.133 0.038 0.186 0.313 0.142 0.098 0.175 0.073 0.111 0.035 0.006

VAE [18] 0.254 0.291 0.167 0.108 0.152 0.040 0.193 0.334 0.168 0.107 0.179 0.079 0.113 0.036 0.006
JULE [39] 0.192 0.272 0.138 0.103 0.137 0.033 0.175 0.300 0.138 0.054 0.138 0.028 0.102 0.033 0.006
DEC [37] 0.275 0.301 0.161 0.136 0.185 0.050 0.282 0.381 0.203 0.122 0.195 0.079 0.115 0.037 0.007
DAC [4] 0.396 0.522 0.306 0.185 0.238 0.088 0.394 0.527 0.302 0.219 0.275 0.111 0.190 0.066 0.017

ADC [12] - 0.325 - - 0.160 - - - - - - - - - -
DDC [5] 0.424 0.524 0.329 - - - 0.433 0.577 0.345 - - - - - -

DCCM [35] 0.496 0.623 0.408 0.285 0.327 0.173 0.608 0.710 0.555 0.321 0.038 0.182 0.224 0.108 0.038
IIC [17] - 0.617 - - 0.257 - - - - - - - - - -

PICA [15] 0.591 0.696 0.512 0.310 0.337 0.171 0.802 0.870 0.761 0.352 0.352 0.201 0.277 0.098 0.040
GATCluster [25] 0.475 0.610 0.402 0.215 0.281 0.116 0.609 0.762 0.572 0.322 0.333 0.200 - - -

CC [22] 0.678* 0.770* 0.607* 0.421* 0.423* 0.261* 0.850* 0.893* 0.811* 0.436* 0.421* 0.268* 0.331* 0.137* 0.062*
EDESC [3] 0.627 0.464 - 0.385 0.370 - - - - - - - - - -
C3 (Ours) 0.743 0.836 0.703 0.435 0.456 0.274 0.905 0.943 0.860 0.447 0.434 0.280 0.335 0.140 0.064

(a) ImageNet-10 (b) ImageNet-Dogs 

CC C3 CC C3

Figure 3: t-SNE visualization of clusters learned by the CC and C3 methods.

classes, M, in each dataset. All networks are initialized by the CC [22] algorithm with the
hyperparameters suggested by its authors. The Adam optimizer with an initial learning rate
of 0.00001 and batch size of 128 is used for C3. All networks are trained for 20 epochs. The
experiments are run on NVIDIA TESLA V100 32G GPU.

4.1 Comparison with State-of-the-art

Figure 4: C3’s performance vs epochs.

Table 1 shows the results of our proposed
method on benchmark datasets, compared
to state-of-the-art and some common tra-
ditional clustering methods. For CC, we
run the code provided by its authors for all
datasets, and the results are indicated by
(*). As is evident in this table, our pro-
posed method significantly outperforms all
other baselines in all datasets. Quantita-
tively, comparing to the second best algo-
rithm (i.e. CC), C3 improves the ACC by
6.6%, 3.3%, 5.0%, 1.3% and 0.3%), the
NMI by 6.5%, 1.4%, 5.5%, 1.1% and 0.4%,
and the ARI by 9.6%, 1.3%, 4.9%, 1.2% and 0.2%, respectively on CIFAR-10, CIFAR-
100, ImageNet-10, ImageNet-Dogs, and Tiny-ImageNet. The main difference between our
framework and other baselines, such as CC, is that we exploit an additional set of informa-
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tion, i.e. the similarity between samples, to further enhance the learned representation for
clustering. In our approach, we increase the number of positive samples, which improves the
true-positive-pair rate, and put more weight on clustering the samples that are more probably
located on the boundary of the clusters, which leads to a decrease in the false-negative-pair
selection rate. We believe this is the main reason our method’s performance is superior
compared to the baselines.

As opposed to the CC method that misses the global patterns present in each data cluster,
C3 correctly tries to consider such patterns (at least partially) by employing cross-instance
data similarities. Looking at (2) and (3), one can infer that C3 implicitly reduces the intra-
cluster distance while maximizing the inter-cluster distance, which is what an efficient group-
ing technique would do in the presence of the data labels. This can be confirmed by visualiz-
ing the clusters before and after applying the C3 loss. As Figures 1 and 3 show, the samples
are fairly clustered after initialization with CC, i.e. before the start of training using the C3
loss. However, some of the difficult clusters are mixed in the boundaries. After initializa-
tion, clusters are expanded with a considerable number of miss-clustered data. However,
after training with the proposed C3 method, we observe that the new cluster space is much
more reliable, and individual clusters are densely populated while being distant from each
other.
4.2 Convergence Analysis
Results of section 4.1 depict the superiority of our proposed scheme. Now, we analyze C3’s
convergence and the computational complexity to evaluate at what cost it makes such an
improvement over other baselines. We plotted the trend of clustering accuracy and NMI for
four datasets during the training epochs in Figure 4. We can readily confirm that although we
are just training the C3 step for 20 epochs, the graphs quickly converge to a settling point,
which corresponds to the peak performance. Also, we can observe that both ACC and NMI
are improved throughout the C3 training phase in all datasets. The performance at epoch = 0
corresponds to the clustering performance after initialization with CC. These figures clearly
show that C3 improves its clustering quality and justifies the qualitative results shown in
Section 4.1.

One may naively think that the better performance of C3 is because it is being trained for
20 more epochs; note that in all our experiments, as suggested by the CC authors, we trained
the CC algorithm networks for 1000 epochs. We train the C3 networks for 1020 epochs.
We reject this argument and support it by training the CC networks for the same number of
epochs as what the C3 is trained for, i.e. 1020 epochs. We observe that no improvement is
obtained for CC when trained for an extra 20 epochs. The result of such an experiment on
CIFAR-10 is shown in Figure 5.

4.3 How does C3 loss improve the clusters?

Figure 5: Performance of CC and C3 after
1020 epochs.

As we saw in Figure 3, the improve-
ment that C3 achieves is mainly because
it is able to reduce the distance between
instances of the same cluster while re-
pelling them from other clusters. We
can justify this observation by consider-
ing the loss function of C3, i.e. Eq.
(2). In this function, the term 1{za⊺

i zk
j ≥ ζ} indicates that if the cosine similarity

of two samples is greater than ζ , they should be moved further close to each other.
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At the beginning of training with the C3 loss, since the networks are initiated with CC, we
can assume that the points that are very similar to each other have a cosine distance, in the z-
space, less than threshold ζ , so they will become further close by minimizing the C3 loss. For
instance, take two points z1 and z2 with a cosine similarity larger than ζ , and assume that z3
has a similarity greater than ζ with z1, but its similarity with z2 is smaller than ζ . Therefore,
according to the loss function, z1 and z2, as well as z1 and z3, are forced to become closer, but
it is not the case for z2 and z3. However, these two points will also implicitly move closer to
each other because their distance to z1 is reduced. As the training continues, at some point,
the similarity of z2 and z3 also may pass the threshold ζ . Therefore, as the similar pairs
move closer to each other during the training, a series of new connections will be formed,
and the cluster will become denser. To support this hypothesis, we plotted the average of
the loss function and the average number of positive pairs of each data sample in Figure
6-a and 6-b, respectively. We can observe that the number of positive pairs exponentially
increases during the training until it settles to form the final clusters. Corresponding to
this exponential increase, we can see that the loss is decreasing, and the network learns a
representation in which clusters are distanced from each other while samples of each cluster
are packed together.

(a) Average Loss (b) Average of Positive Pairs

CIFAR-10 CIFAR-100 ImageNet-10 ImageNet-Dogs Tiny-ImageNet

Figure 6: Plot of loss and number of positive
pairs versus epoch.

We can also deduct from this experi-
ment that the number of positive pairs is
also related to the number of classes in each
dataset. For example, if we have an aug-
mented batch size of N = 256, for Tiny-
ImageNet that has 200 classes, we expect
to have 256

200 = 1.28 positive pairs per sample
which is very close to 1 and it is the reason
that we do not see the same sharp increasing
trend as other datasets in Tiny-ImageNet.

4.4 Effect of Hyperparameter ζ and Γ

Our method, C3, introduces two new hyperparameter ζ and Γ. ζ is a threshold for identifying
similar samples. Throughout the experiments, we fixed ζ = 0.6, which yielded consistent
results across datasets. Now, we carry out an experiment in which we change ζ and record
the performance. Note that since za⊺

i zk
j ∈ [−1,1], we can technically change ζ from -1 to 1.

Intuitively, for a small or negative value of ζ , most points in the z-space will be considered
similar, and the resulting clusters will not be reliable. Therefore, in our experiment, we
change ζ from 0.4 to 0.9 in 0.1 increments for CIFAR-10. For Tiny-ImageNet, as there are
lots of clusters, we set ζ ∈ {0.60,0.85,0.90,0.95}. We then plot the accuracy, NMI, average
loss, and the average of positive pairs per sample. The graphics are shown in Figure 7.

In CIFAR-10 experiments, in Figure 7-a and Figure 7-b, we see that for ζ = 0.4, accuracy
and NMI are indeed decreasing during the C3 training. This is because this value of ζ is too
lenient and considers the points not in the same cluster to be similar. We can confirm this
explanation by looking at Figure 7-d. We can see that for smaller ζ s, we will have more
average positive pairs per sample. As we increase the ζ , we can see that the performance
begins to improve. For larger values such as ζ = 0.9, we can see that the performance does
not significantly change during the training. This is because ζ = 0.9 is a strict threshold,
and if we look at the number of positive pairs, only a few instances are identified as similar
during the training.

Comparing the results of CIFAR-10 and Tiny-ImageNet experiments shows that the value
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Figure 7: Performance and behavior of C3 for different values of ζ , for CIFAR 10 (top row)
and Tiny-ImageNet (bottom row).

of ζ also depends on the number of clusters. Since we have 200 classes in Tiny-ImageNet,
a smaller value of ζ might yield two or more clusters merging together and this would de-
crease the accuracy. Therefore, we should choose a more strict threshold such as ζ = 0.9 or
ζ = 0.95 to improve. In Figure 7-c and Figure 7-g, the average loss plot also conveys inter-
esting observations about the behaviour of ζ . We can see that for smaller values, the loss is
exponentially converging to the minimum, but for larger ζ , the rate is much slower. This can
be due to the fact that a smaller ζ considers most points to be similar and of the same class,
and therefore, it can yield the trivial solution of considering all points to be similar and map-
ping them into one central point. In the extreme case of ζ → 1, C3 considers a few samples
as positive pairs, and therefore, we will not have any major improvement. In contrast, if we
set ζ →−1, the loss considers all points to be positive and the numerator and denominator
of Eq. (2) become equal. Therefore, the loss function becomes zero and the network does
not train. Following the above discussion, we suggest a value like ζ = 0.6, which is a good
balance. However, the choice of ζ might be influenced by the number of clusters in the data.
If we have a large number of clusters, it would be better to choose a large ζ . On the other
hand, if the data has a small number of clusters, a smaller ζ (but not too small) is preferred
since it trains faster. In our experiments, we set ζ = 0.6 unless in Tiny-ImageNet which has
200 classes where we used ζ = 0.95. Γ = 0.4Γ = 0.1 Γ = 0.3Γ = 0.2

Figure 8: Performance of C3 for different val-
ues of Γ, for CIFAR 10.

Figure 8 illustrates the impact of hyper-
parameter Γ on the performance C3. For
very low values of Γ (i.e., Γ −→ 0), all
weights converge to the same value of wk

i j =
1

2N . Conversely, for very high values of Γ

(i.e., Γ −→ ∞), the effect of entropy in Eq.
(3) is neglected, leading to a trivial solution
where our weighting function in Eq. (7) se-
lects one negative sample having the highest value of 1−|za⊺

i zk
j| to minimize the first term in

Eq. (3). In all our experiments for all the datasets, Γ is set to 0.1 though a better performance
may be obtained if we fine-tune it per dataset. Overall, our results demonstrate the impor-
tance of selecting an appropriate value for Γ to optimize the performance of our proposed
method.

5 Conclusion
In this paper, we proposed C3, an algorithm for contrastive data clustering that incorporates
the similarity between different instances to form a better representation for clustering. We
experimentally showed that our method could significantly outperform the state-of-the-art
on five challenging computer vision datasets. In addition, through additional experiments,
we evaluated different aspects of our algorithm and provided several intuitions on how and
why our proposed scheme can help in learning a more cluster-friendly representation.
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