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Abstract

We introduce a novel technique for easing the deployment of an off-the-shelf monoc-
ular depth estimation network in unseen environments. Specifically, we target a very
diffused setting with a fixed camera mounted higher over the ground to monitor an en-
vironment and highlight the limitations of state-of-the-art monocular networks deployed
in such a setup. Purposely, we develop an on-site adaptation technique capable of 1) im-
proving the accuracy of estimated depth maps in the presence of moving subjects, such as
pedestrians, cars, and others; 2) refining the overall structure of the predicted depth map,
to make it more consistent with the real 3D structure of the scene; 3) recovering absolute
metric depth, usually lost by state-of-the-art solutions. Experiments on synthetic and real
datasets confirm the effectiveness of our proposal.

1 Introduction
Estimating the depth of a single image [38] represents a fascinating challenge in computer
vision. In addition to the scientific charm, such an approach is desirable from a practi-
cal point of view, allowing for unconstrained depth sensing in almost any scenario without
requiring cumbersome and expensive active sensors such as LiDARs [14] nor multiple, syn-
chronized [34] cameras / a single, moving one [39]. Indeed, a single color camera represents
the most common setup for several practical applications such as video surveillance [35],
road traffic monitoring [33], or, more recently, social distancing [2, 31]. More importantly,
these applications raise some crucial privacy concerns, and the possibility of estimating (ac-
curate) depth maps in a surveillance setting also has the potential to improve this aspect. For
instance, depth maps could be computed on edge and sent to the cloud to be processed by
higher-level applications; under this assumption, the edge node would avoid sharing the color
images containing more sensitive information. However, this comes at the cost of dealing
with a highly ill-posed problem since the absence of triangulation cues from multiple views
prevents the computation of a unique solution explaining the 3D geometry out of a single
image.
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Figure 1: Monocular depth estimation – before and after adaptation. On fixed-camera
settings (a), state-of-the-art depth estimation models [36] might fail in unseen environments
or camera settings (b). Our adaptation scheme allows us to improve their reliability (c).

The advent of deep learning enabled the development of the first-ever solutions [10, 21,
29] making it possible to face such a problem, thanks to the increasing availability of images
annotated with depth labels [14, 32] to be used for training, or to the introduction of alter-
native, self-supervised regimes replacing such annotations with synchronized stereo pairs
[13, 15] or monocular video sequences [51]. These approaches, deploying Convolutional
Neural Networks (CNNs) or, more recently, Transformers, learn to infer the distance from
the camera for objects in the scene based on visual cues [7] such as shadows, perspective,
vanishing lines, and more. As proof of this, by acting on some of these cues – e.g., manually
shifting the height of the horizon in the image or simulating camera tilting with respect to
the ground plane [7] – estimated depth for the very same scene might be sensibly altered.

Indeed, obtaining a network capable of predicting accurate depth maps in any environ-
ment remains challenging, even in the availability of a vast amount of annotated data –
e.g., millions of images [36, 37] collected from very different datasets. Moreover, the scale
ambiguity intrinsic in single images also plays a role, making even state-of-the-art monoc-
ular depth estimation networks capable of predicting accurate relative depth, yet up to an
unknown scale factor. As a consequence, despite the recent progress in cross-dataset gen-
eralization [36, 37], these models are still subject to failures in specific settings that are
under-represented in the training data, e.g., on ambiguous objects such as mirrors [49] or,
more commonly, when dealing with images taken from a perspective rarely – or never –
observed during the training process [7]. Among them, we report an example in Fig. 1,
showing a widespread surveillance setting (a), with the camera positioned high over the
ground and slanted with respect to it. Although this configuration represents the perfect
ground for deploying single image depth estimation – i.e., because of the lack of camera mo-
tion or multiple synchronized devices – existing approaches are not ready for unconstrained
use there (b), often failing at properly estimating depth for common agents such as pedestri-
ans and cars. We argue that adaptation techniques [4, 18] could attenuate this problem. In
particular, online techniques [41] allow the monocular network to improve its accuracy in a
new environment right at deployment time, without any prior assumption on it or requiring
any sample beforehand. However, existing online strategies suited for monocular networks
rely on the assumption that the camera is moving in the scene [17, 19, 43, 50] to exploit the
same principles over which self-supervised approaches build upon [51], and thus cannot be
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exploited in the static-camera setting mentioned above. Moreover, using stereo images [17]
to adapt a monocular network would have little practical sense – i.e., stereo networks [34]
would be used instead.

To cope with these limitations, we propose a novel technique for the on-site adaption
of an off-the-shelf, monocular depth estimation network when deployed in unseen environ-
ments. In contrast to the approaches mentioned above, requiring the camera to move and
any other objects in the scene to be static, we exploit the opposite behavior. As we aim at
running adaptation on fixed-camera installations, we identify any agents in the scene and use
their motion to detect the ground plane over which they move. From these basic cues, we
can extract pseudo depth labels for the agents themselves that can be used for a lightweight
fine-tuning of the original depth network and exploit the detected ground plane for a test-
time refinement step to better align the predicted depth with the actual 3D structure of the
environment. Furthermore, by having access to simple priors about the specific camera in-
stallation – i.e., the camera height over the ground – we can recover the metric scale for depth
maps predicted by the monocular network. To validate our proposal, we run experiments on
a subset of the KITTI dataset featuring static camera sequences and two novel datasets com-
posed of synthetic frames rendered through CARLA [8] and real images. In the latter case,
the dataset frames indoor and outdoor scenes.

The main contributions of this work are:

• A novel, on-site adaptation scheme for monocular depth estimation networks working
in fixed-camera setups, consisting of 1) a lightweight fine-tuning procedure aimed at
correcting gross errors on moving agents, 2) a scene alignment step enabled by the
moving agents in the scene identifying the ground plane, and 3) metric scale recovery
by simply knowing the camera height over the ground.

• Two novel datasets with dense, ground-truth depth labels used to validate the ef-
fectiveness of our proposal, available at https://sites.google.com/view/
staticdepth-dataset.

2 Related Work

Monocular Depth Estimation. After early attempts at learning for monocular depth esti-
mation with classical machine learning [20, 38], this task attracted increasing interest with
the rise of deep learning. Eigen et al. [9, 11] proposed a pivotal multi-stage, coarse-to-fine
network for single image depth prediction, Laina et al. [21] developed a fully convolutional
architecture with skip connections. DORN [12] deploys a densely connected backbone and
casts depth prediction through ordinal regression, while BTS [22] uses local planar guid-
ance to improve accuracy. More recent approaches estimate depth by predicting probabil-
ity distributions and discrete bins [5, 27, 40], or by introducing self-attention mechanisms
[1, 3, 23, 26, 36]. Among the latest works, NeWCRFs [48] and VA-DepthNet [28], re-
spectively, resumed CRFs within the multi-head mechanism of transformers and first-order
variational constraints to set the current state-of-the-art. However, any of the previous frame-
works always focus on single domains – i.e., training and evaluating over indoor (NYU v2
[32]) and outdoor (KITTI [42]) data separately. A parallel research trend consists of training
a single model for generalizing across different domains. MegaDepth [25] represents the first
attempt in this direction, followed by MiDaS [37] and DPT [36]. Nonetheless, these models
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Figure 2: Overview of our adaptation scheme. First, (a) we rectify depth for agents in the
scene by producing pseudo labels and running a lightweight fine-tuning of the original depth
model; then, (b) the ground plane is extracted according to agents’ motion, and used to align
the overall structure of the depth maps predicted by the model. Eventually, (c) metric scale
can be recovered from ground normal vectors by knowing camera height.

still fail when processing images from uncommon viewpoints or yield blurred predictions
missing some of the agents in the scene, as already highlighted in Fig. 1.

Domain Adaptation for Monocular Depth Estimation. This research topic arose to
deal with the inherent difficulties of obtaining a monocular depth estimation network capa-
ble of generalizing. At first, the focus has been on synthetic to real adaptation, exploiting
image style transfer [4] or GANs [18] for the purpose, yet needing some samples from the
target domain to be available beforehand, and focusing exclusively on outdoor [4] or indoor
[18] environments – whereas state-of-the-art solutions [36] are nowadays capable of good
generalization across the two. A more practical solution consists of directly adapting the
model online during deployment [17, 19, 43, 50]. They build on the image reprojection prin-
ciple at the core of self-supervised monocular depth estimation approaches [16] by exploiting
consecutive frames acquired over time [51]. However, this strategy requires the camera to
move constantly, with still objects, to obtain reliable self-supervision.

In contrast, our proposal aims to deal with the opposite setting, where the camera place-
ment is fixed and moving agents appear in the scene.

3 Method

We now introduce our adaptation strategy to address three issues encountered when deploy-
ing monocular solutions [36, 37] in the wild: 1) incorrect/blurred predictions for some sub-
jects in the scene, e.g., pedestrians, cars, etc. 2) inaccurate global structure, being not prop-
erly aligned with the real scene and 3) the predictions being up to an unknown scale factor.
The three are dealt with by different steps in our pipeline, as spotlighted in Fig. 2.
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3.1 Lightweight Fine-tuning with Pseudo Labels

Although modern monocular depth networks exhibit powerful generalization capabilities
[36, 37], they sometimes fail when used in ever-seen environments. In particular, in the case
of a fixed-camera installation with a viewpoint substantially different from those observed
during training, these solutions might often miss the presence of agents in the scene, such
as pedestrians or cars, as shown in Fig. 1. Purposely, we design a lightweight fine-tuning
procedure to improve the perception of such agents by the monocular network by relying on
pseudo labels obtained in two steps.

Pseudo labels initialization. We initialize the pseudo labels with the depth values esti-
mated by monocular depth network [36, 37] considering its excellent generalization perfor-
mance except for the weaknesses mentioned earlier.

Agents rectification and fine-tuning. In order to recover the miss-estimation of subjects
in the scene or the blurred estimates, we distill proper depth labels. Purposely, we first detect
possibly moving agents in the scene, for instance, through an instance segmentation network
such as MaskRCNN from the Detectron2 framework [46]. Then, by assuming each agent
is standing or moving over the ground plane, we generate pseudo labels by replacing the
depth of each instance with the depth value of the lowest pixel in the instance itself – i.e.,
the contact point with the ground. For complex agents, such as bicycles or motorcycles,
we approximate the riders’ depth to that of the vehicles. For bags and hand-holding items,
e.g. umbrellas, the depth will match that of the closest pedestrian. This process ignores
other semantic classes. At deployment time, this allows for rapidly collecting a small set of
samples for fine-tuning the original model, considerably improving the depth accuracy for
such subjects, as shown in Fig. 1.

3.2 Ground Plane Estimation and Scene Alignment

After correcting the depth for agents in the scene, there are still evident errors between scene
structures reconstructed by the fine-tuned depth model and the sensed environment. As
illustrated by Fig. 3 on the right, the ground plane reconstructed from the predicted depth
map (red) is not properly aligned with the real 3D plane in the scene (green). This behaviour
is probably a consequence of the very different viewpoints in training images [7], yielding
a degradation of the predicted relative depth and scale recovery process (when feasible). To
solve this issue, we aim to estimate the real ground plane in the scene and use it to restore
the proper structure of the scene in the predicted depth map.

Ground Plane Estimation. According to the perspective principle, we can model a 3D
plane as in the left part of Eq.1:{

agX +bgY + cgZ = dg

X = Zx
f , Y = Zy

f , H = Zh
f

⇒ agx+bgy+ cg f =
dg f
Z

=
dgh
H

(1)

where (x,y) and (X,Y) denote, respectively, the pixel coordinates and projected 3D coordi-
nates, Z the depth, (ag,bg,cg,dg) the ground plane parameters, f the camera focal length, H
and h the actual height and pixel height of an object in the scene. From it, we can derive
(right side of Eq.1) the plane equation as a function of the 2D coordinates and height of a
known object.

Inspired by [44], we use the moving agents previously detected as probes in the scene to
estimate plane coefficients (ag,bg,cg). Specifically, by detecting a single agent in more than
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(a) Plane Estimation(people probes)

(b) Plane normal comparison (c) Visulization of ground normal

Ground normal a b c

GT plane -0.0002 0.7752 0.6316

DPT normal -0.0041 0.8910 0.4540

Estimated normal -0.0266 0.7321 0.6807

Figure 3: Structural misalignment between predicted depth and real scene. For a single
scene with pedestrians walking around (a), we report ground normals (a,b,c) obtained from
predicted depth (red), our ground plane estimation method (blue), and ground truth (green).
On the right, we visualize the misalignment between predicted and real planes.

three frames, we record their corresponding pixel height h and standing point coordinates
(x,y). Then, assuming no co-linear positions, coefficients (ag,bg,cg) can be estimated using
the least squares method, with c and the actual height H of the agent regarded as constants.
Once (ag,bg,cg) is given, the relative depth Z of any ground point can be estimated as a
function of dgH – i.e., up to an unknown scale factor. Despite this, this cue is enough to
proceed with the alignment step discussed next.

Scene Alignment. We can exploit the estimated ground plane to align the predicted depth
map, making it more congruent with the 3D structure of the scene. Given the predicted depth,
a common practice for aligning it to a set of known depth values in metric scale consists of
using the least squares algorithm [6, 36, 37] or a non-linear model, i.e. a CNN [45]. However,
this would not fit with the priors we derive from the moving agents since we can estimate the
ground plane model without precisely segmenting it from the rest of the scene. Hence, we
introduce an alternative approach to align the ground plane in the predicted depth map with
the one modeled by our method.

Any 3D point (X ,Y,Z) in the estimated depth map can be projected onto the ground plane
according to the ground parameters (ap,bp,cp,dp), as formulated in Eq.2.

Xg =
apdp −apcpZ −apbpY +b2

pX

a2
p +b2

p
Yg =

bpdp −bpcpZ −apbpX +a2
pY

a2
p +b2

p
Zg = Z (2)

Thus, we can align the projections we obtain according to the ground plane model ex-
tracted from predicted depth maps with those yielded by the model obtained according to
the moving agents’ motion. To calculate the surface normal from depth predictions, we can
fit apX +bpY + cpZ = dp using the least square algorithm. It requires identifying a portion
of the scene belonging to the ground plane by manually annotating a single image captured
after installation or directly during deployment according to agents’ motion.

After projecting all the 3D points onto the plane, i.e. (Xg,Yg,Z), the 3D plane will be
re-projected into the image plane according to the camera intrinsic parameters, yielding new
pixel coordinates (x′,y′). Finally, we can adjust the prediction to fit the ground plane model
estimated through agents’ motion substituting (x′,y′) in Eq. 1.
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C1 C2 C3

K1 K2

R1 (Indoor) R2 (Outdoor)

Figure 5: Evaluation dataset. We show a sample for each of the seven scenes from CARLA
(green), KITTI (blue), or our acquisitions (red) used in our experiments.
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Figure 4: Minimum depth estima-
tion. We exploit camera height and
estimated ground plane orientation.

Although accurate in terms of relative depth, predic-
tions of state-of-the-art models [36, 37] are often up
to an unknown scale factor, whereas knowing the ab-
solute depth is often necessary for practical applica-
tions. According to [30, 47], the missing scale can
be restored by knowing the camera height over the
ground. Unfortunately, they rely on the assumption
that the Z axis of the camera is roughly parallel to the
ground plane, a condition not always met in practice.

To remove this constraint, we design a custom
method to deal with arbitrarily oriented cameras, by
estimating the depth for the bottom-most pixel in the
center of the image, assumed as anchor point. Fig.4
shows that in the O1 setup, in which the Z-axis of
the camera is parallel to the ground, the closest point

laying on it can be represented as P, where the Z-axis projection Dmin can be calculated from
camera height Hc, image height hi and focal f as they compose a similar triangle. In the O2
setup, with an arbitrarily titled camera, point P is now positioned at P′, and the closest point
has changed to P′′, which is the intersection between the origin-P′ ray with the plane. Given
the current ground normal and original normal N(0,1,0), the pose matrix R from O1 to O2
can be estimated to achieve the coordinate transformation from P to P′. After transforming
P′′ to the system O2 by multiplying with R−1, the D′

min for the anchor point in the depth map
will be estimated in metric scale. This latter will be used, together with predicted depth for
this very same point, for restoring metric scale on the entire depth map, instead of using the
median rescaling technique based on ground truth depth. This strategy assumes the anchor
point is on the ground plane and not occluded by moving agents.

4 Experimental Results

4.1 Datasets

We run our experiments on a mixture of synthetic and real datasets, with a static camera
mounted over the scene pointing toward roads, sidewalks, or pedestrian areas. A total of
seven sequences are used – Fig. 5 shows an example for each – grouped into three categories:

Synthetic data (CARLA). We generate three sequences using CARLA simulator [8],
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Scene Method SiLog↓ RMSE↓ Abs rel↓ Sq rel↓

C1
DPT [36] 0.051 4.098 0.184 0.707
DPT-ft 0.044 4.012 0.171 0.656
DPT-align 0.018 3.421 0.103 0.399
DPT-ft-align 0.026 3.677 0.131 0.512

C2
DPT [36] 0.061 5.164 0.221 1.183
DPT-ft 0.029 3.476 0.144 0.591
DPT-align 0.011 2.301 0.041 0.307
DPT-ft-align 0.009 2.201 0.036 0.288

C3
DPT [36] 0.056 2.355 0.214 0.521
DPT-ft 0.042 2.052 0.183 0.391
DPT-align 0.018 1.282 0.112 0.154
DPT-ft-align 0.014 1.103 0.098 0.115

K1
DPT [36] 0.069 5.705 0.219 1.274
DPT-ft 0.024 3.824 0.121 0.541
DPT-align 0.026 4.537 0.105 0.767
DPT-ft-align 0.019 3.666 0.101 0.483

K2
DPT [36] 0.149 4.718 0.337 2.289
DPT-ft 0.048 2.948 0.158 0.658
DPT-align 0.057 3.686 0.235 1.441
DPT-ft-align 0.045 2.876 0.152 0.552

R1 (Indoor)
DPT [36] 0.052 1.626 0.151 0.546
DPT-ft 0.049 1.579 0.148 0.507
DPT-align 0.033 0.999 0.098 0.293
DPT-ft-align 0.036 1.075 0.107 0.337

R2 (Outdoor)
DPT [36] 0.054 3.786 0.198 0.748
DPT-ft 0.052 3.654 0.189 0.723
DPT-align 0.051 3.604 0.167 0.671
DPT-ft-align 0.041 3.136 0.159 0.542

Table 1: Quantitative results – on-site adaptation. We report error metrics on the seven
sequences, for original DPT [36], DPT after lightweight fine-tuning (DPT-ft) and with test-
time scene alignment (DPT-ft-align). We highlight first , second , and third best results.

each consisting of 800 frames at 800 × 400 resolution, dubbed C1, C2, and C3. We simu-
late a realistic traffic environment, where pedestrians and vehicles move around, and urban
infrastructures, such as trees and buildings. The simulator also allows obtaining semantic
segmentation labels, camera pose, and ground truth depth.

KITTI static sequences. Among the many samples provided by the KITTI raw dataset
[14], a small amount of short, static sequences – mainly concentrated in the Campus cate-
gory – are suitable for our experiments. We obtain two main sequences by grouping frames
from 2011_09_28_drive_0016 + 2011_09_28_drive_0021 and 2011_09_28_drive_0039 +
2011_09_28_drive_0043, dubbed K1 and K2, and counting 395 and 506 samples.

Real sequences. To further stress the flexibility of our approach, we collect two real
sequences in indoor and outdoor environments, dubbed R1 and R2, counting 3024 and 2952
images. For both, we mounted a camera tilted toward the ground plane at about five meters
over it. We collect images with a 27cm baseline stereo camera and use CREStereo [24]
to estimate disparity maps and triangulate them into depth to obtain ground truth labels.
Although imperfect, we consider these annotations accurate enough for our purposes.

4.2 Implementation details

Given its outstanding generalization performance, we adopt DPT [36] as the baseline monoc-
ular depth estimation network in our experiments, on a single 3090 GPU. We adapt it for each
of the seven sequences through the pipeline introduced earlier. Concerning the lightweight
fine-tuning process, we select the first 342, 463, and 406 frames from the three synthetic
sequences, the first 273 and 107 frames from the KITTI sequences, and the first 684 and
679 frames from the real scenes. On top of them, we generate pseudo labels and fine-tune
DPT for 30 epochs. This strategy simulates an on-site adaptation carried out on the first
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C1 C2 C3 K1 K2 R1 R2
Ground truth Depth 6.281 9.799 5.256 5.992 5.895 6.125 6.675

[30, 47] Depth 10.751 19.431 10.686 6.439 6.439 24.065 25.651
Error (m) 4.470 9.632 5.430 0.447 0.544 17.940 18.976

Ours Depth 6.102 9.789 5.105 5.772 5.285 6.304 6.421
Error (m) 0.179 0.010 0.151 0.220 0.610 0.179 0.254

Table 2: Scale recovery evaluation – anchor point. From top to bottom: ground truth depth
for the anchor point, average depth and its error according to [30, 47] and our method.

Scene Method Rescale SiLog RMSE Abs rel Sq rel

C1 Monodepth2 (S) [16] Stereo 0.014 4.376 0.065 0.304
DPT-ft-align Ours 0.038 5.628 0.124 0.727

C2 Monodepth2 (S) [16] Stereo 0.011 8.231 0.051 0.383
DPT-ft-align Ours 0.021 8.426 0.096 0.651

C3 Monodepth2 (S) [16] Stereo 0.031 2.653 0.077 0.256
DPT-ft-align Ours 0.012 2.101 0.068 0.095

K1 Monodepth2 (S) [16] Stereo 0.005 2.307 0.042 0.163
DPT-ft-align Ours 0.019 3.901 0.085 0.504

K2 Monodepth2 (S) [16] Stereo 0.081 3.181 0.116 0.511
DPT-ft-align Ours 0.042 3.026 0.139 0.553

R1 (Indoor) Monodepth2 (S) [16] Stereo 0.041 1.233 0.101 0.381
DPT-ft-align Ours 0.028 1.102 0.106 0.265

R2 (Outdoor) Monodepth2 (S) [16] Stereo 0.032 3.112 0.104 0.461
DPT-ft-align Ours 0.081 5.076 0.141 1.112

Table 3: Scale recovery evaluation – comparison with stereo self-supervision. We report
error metrics by MonoDepth2 trained with stereo self-supervision and our method.

frames collected after installation. Then, we evaluate the effectiveness of our pipeline on the
remaining frames by enabling test-time scene alignment as well. We compute standard met-
rics concerning the monocular depth estimation task [11, 42], such as SiLog, RMSE, Abs
Rel, and Sq Rel. The evaluation is performed both by rescaling predictions using ground
truth depth itself [36], as well as by restoring absolute scale following our approach.

4.3 Quantitative results

Lightweight fine-tuning and scene alignment. We start by evaluating the effectiveness of
the first two steps in our pipeline. Table 1 gathers the results achieved by the original DPT
model and those obtained after performing the lightweight fine-tuning and scene alignment
steps. In this experiment, absolute scale is restored according to median rescaling [51]. Start-
ing from the former, we refer to DPT-ft for the model fine-tuned on pseudo labels without
alignment. We can notice how the lightweight fine-tuning improves the accuracy compared
to the original model. In particular, by correcting several errors in correspondence of the
moving pedestrians or vehicles. By performing scene alignment on the predictions by the
original DPT model (DPT-align) we improve the accuracy as well, often with a major gain
with respect to what is achieved by the light-weight finetuning – since this latter only acts
on moving agents, representing a minority of the pixels in the scene. Finally, combining
fine-tuning and alignment – DPT-ft-align entries – further decreases the error in most cases,
except on C1 and R1 in which the ground plane covers the largest portion of the scene com-
pared to other sequences.

Absolute scale recovery. To conclude, we evaluate the effectiveness of our scale recov-
ery strategy. For this purpose, we first compare our approach with alternative techniques

Citation
Citation
{McCraith, Neumann, and Vedaldi} 2020

Citation
Citation
{Xue, Zhuo, Huang, Fu, Wu, and Jr.} 2020

Citation
Citation
{McCraith, Neumann, and Vedaldi} 2020

Citation
Citation
{Xue, Zhuo, Huang, Fu, Wu, and Jr.} 2020

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Godard, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Firman, and Brostow} 2019

Citation
Citation
{Eigen, Puhrsch, and Fergus} 2014{}

Citation
Citation
{Uhrig, Schneider, Schneider, Franke, Brox, and Geiger} 2017

Citation
Citation
{Ranftl, Bochkovskiy, and Koltun} 2021

Citation
Citation
{Zhou, Brown, Snavely, and Lowe} 2017



10 H. LI ET AL.: ON-SITE ADAPTATION FOR MONOCULAR DEPTH ESTIMATION

Error Map
DPT-ft-align

Depth
DPT

Input Error MapDepth

Figure 6: Qualitative results – error maps. We show error maps by DPT and DPT-ft-align.

[30, 47] exploiting knowledge of the camera height but assuming the camera to be parallel to
the ground plane. Table 2 reports the average depth value for the anchor points estimated by
the different techniques, followed by their error compared to ground truth depth. For KITTI,
the anchor is replaced by the closest pixel with available ground truth. We can notice how
our approach consistently restores the absolute scale more accurately. Although the two are
substantially equivalent on KITTI, where the camera is almost parallel to the ground, our
solution results superior in the real datasets featuring a significant camera tilt.

Finally, we compare the accuracy of depth maps predicted by DPT after having recovered
scale through our technique with the results obtained by a model trained directly on-place
with supervision from a stereo camera in the scene, i.e., with knowledge about the metric
scale of the scene. We assume this configuration sets an upper bound at the performance a
monocular network could achieve by having perfect knowledge of the scale during training.
Table 3 shows how the outcome of this experiment, with MonoDepth2 [16] used for the
comparison. After our scale recovery step, DPT-ft-align often yields results close to those
by MonoDepth2 – outperforming it a few times – confirming the proposal’s effectiveness.

4.4 Qualitative Results
To conclude, Fig. 6 shows how our whole framework dramatically reduces the error being the
primary source of failure – i.e., in the presence of agents such as pedestrians and cars, or in
the farthest parts of the scene, where the ground plane misalignment between predicted and
real depth becomes more prominent. After processing, the error remains slightly higher on
objects farther from the ground plane – e.g., structures on the sidewalk (left) or the obstacle
in the very foreground (center) – where no optimization is performed by our method.

5 Conclusion
This paper proposes a novel pipeline for the on-site adaptation of a monocular depth net-
work specifically designed to deal with fixed-camera installations. Our method allows for a
lightweight fine-tuning of the model and a test-time scene alignment of the predicted depth
maps by leveraging the presence of agents moving freely in the scene, as well as for recov-
ering the metric scale of the scene by only knowing the height at which the camera is. Our
experiments show how a few images collected just after deployment allow for improving the
results achieved by the DPT network thanks to our solution.
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