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Abstract

In recent years, self-supervised models like Cutpaste, Mask, NSA, and Perlin have
gained popularity for anomaly detection. These models generate synthetic data by em-
ploying various data augmentation strategies, demonstrating their potential for improving
anomaly detection through learned representations. In this study, we introduce an algo-
rithm called Multi-Synthesis Dynamic Weighting (MSdW) to leverage the advantages
of diverse synthetic data. MSdW enables the model to learn various abnormal condi-
tions during training, thereby enhancing accuracy. Our model architecture consists of
reconstructive and discriminative subnetworks, both utilizing the UNet architecture. The
encoders in both subnetworks employ modern ConvNets, specifically ConvNeXtV2, for
proficient feature extraction. Additionally, we propose an attention mechanism known
as Self-Supervised Predictive Convolutional Block with Multi-Attentions (SSPCBMA),
which is seamlessly integrated into the reconstructive subnetwork to enhance feature ex-
traction capabilities. We evaluate our proposed model on multiple datasets designed for
anomaly detection and segmentation tasks, including MVTecAD, BTAD, and KSDD2.
These datasets serve various purposes, and our model outperforms the state-of-the-art
methods, particularly in terms of Pixel AP and PRO indices.

1 Introduction
Anomaly detection (AD) is a crucial task with various applications, such as industrial

defect detection[1], medical detection[24], and video surveillance[7]. In unsupervised AD,
no prior information about anomalies is available, and only a set of normal samples is pro-
vided for reference. To address this problem, previous studies have constructed various self-
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supervision tasks on anomaly-free samples, including sample reconstruction[27], pseudo-
outlier augmentation[11], and knowledge distillation[5]. Several studies focus on unsuper-
vised anomaly detection from a reconstruction-based perspective, using generative models
such as AutoEncoder(AE)[16, 23, 32], VAEs [38], Generative Adversarial Nets(GANs) [12]
for sample reconstruction. Although these methods rely on the hypothesis that generative
models trained on normal samples can successfully reconstruct anomaly-free regions but fail
for anomalous regions, recent studies show that deep models generalize so well that even
anomalous regions can be well-restored. To address this issue, memory mechanisms[22],
image masking strategies[10, 33], pseudo-anomaly[11, 23], data augmentation strategies[14,
19, 32], and attention mechanism[15, 21] are incorporated into reconstruction-based meth-
ods.

In this study, we present a novel pipeline called Masked Attention ConvNeXt UNet with
Multi-Synthesis Dynamic Weighting (MACoW), designed for the tasks of anomaly detection
and segmentation. Our model capitalizes on the integration of several self-supervised meth-
ods that employ diverse data augmentation strategies, including Cutpaste[11], Mask[10, 33],
NSA[23], and Perlin[32]. We introduce an algorithm named Multi-Synthesis Dynamic
Weighting (MSdW) to harness the benefits of diverse synthetic data. Moreover, we en-
hance the effectiveness of information extraction by incorporating the latest ConvNeXtV2
and UNet architectures for feature extraction. To foster stronger relationships between fea-
tures in the channel and spatial dimensions, we integrate a Self-Supervised Predictive Con-
volutional Block with Multi-Attention (SSPCBMA) mechanism into both the final encoder
and initial decoder paths of our ConvNeXt UNet subnetwork. This integration significantly
improves the model’s ability to extract target-specific features, leading to promising results.

We evaluate our proposed approach on various datasets for anomaly detection and seg-
mentation tasks, including MVTecAD [1], BTAD[18], and KSDD2[3]. The results demon-
strate that the model with the SSPCBMA and MSdW outperforms other state-of-the-art(SOTA)
methods. In summary, our paper makes the following contributions:

• We introduce a novel model, the Masked Attention ConvNeXt UNet with Multi-
Synthesis dynamic Weighting (MACoW), and exploit multiple anomaly synthesis meth-
ods in our training framework to reach state-of-the-art(SOTA) performance.

• We propose the Self-Supervised Predictive Convolutional Block with a Multi-Attention
(SSPCBMA) to boost accuracy performance.

• Our proposed model experimented on MVTecAD, BTAD, and KSDD2, surpassing
other SOTA methods in anomaly detection and segmentation performance, especially
in Pixel AP and PRO metrics.

2 Related Works
Reconstruction-based approaches are commonly employed to detect anomalies in im-

age space, using generative models, and involve two steps: (1) reconstructing the image and
(2) comparing the original and reconstructed images to obtain anomaly maps[4, 26]. To re-
construct the image, previous works primarily utilized denoising autoencoders [10, 32, 33]
to facilitate the network in capturing the normal distribution and avoiding identity mapping
during training. In these methods, the original image is corrupted with specific noise to en-
able the network to eliminate it. It was also an attribute removal-and-restoration framework
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Figure 1: In the comparison between our model and DRÆM[32], the results are displayed
side by side, with each row representing a different class—capsule, hazelnut, wood, and
metal nut from top to bottom. The sequence of images, progressing from left to right,
includes the input image, reconstruction result, anomaly map, predicted mask (PM), and
ground truth mask (GT). It is apparent from the visual comparison that our model surpasses
DRÆM[32] in terms of both reconstruction quality and the accuracy of anomaly localization.

[9]. This framework argues that the network can learn more robust features by restoring the
removed attributes. These methods often utilize supervised ImageNet pre-trained [20, 25]
as either feature extractors or initialization for fine-tuning. After reconstruction, anomalies
can be detected by comparing the original and reconstructed images using various func-
tions, such as L2 distance, L1 smooth distance, and structural similarity (SSIM) [28]. Given
the complex nature of identifying abnormal patterns in images, a variety of models have
been proposed that leverage both local and global information. One popular approach is to
integrate the self-attention mechanism[15, 21] of the reconstruction model, which models
long-range interactions between different regions of the image and demonstrates success in
detecting abnormal patterns and has been actively explored.

Discriminative unsupervised anomaly detection methods [11, 32] employ synthetically
generated anomalies to train a discriminative anomaly segmentation network. To alleviate
overfitting on the synthetic anomaly appearance, a reconstruction network is utilized in [32]
to restore the normal appearance of the synthetic anomalies. Subsequently, the discriminative
network learns a distance function[13, 37] between the original image and its reconstruction
to detect anomalies, typically using the Focal loss[32] or Dice loss[31] functions. However,
the limited distribution of generated synthetic anomalies may cause the reconstruction net-
work to overfit the synthetic appearance, reducing performance in detecting near-distribution
anomalies [34]. In this paper, we employ four anomaly generation methods in our model
training framework, thus preventing overfitting.

3 Proposed Method
Our proposed MACoW architecture comprises two subnetworks, reconstructive and

discriminative, as depicted in Figure 2. The reconstructive subnetwork is responsible for
reconstructing the normal regions and repairing the abnormal regions of input images that
have been corrupted. On the other hand, the discriminative subnetwork performs further lo-
calization of anomalous areas by comparing the difference and consistency between the input
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Figure 2: The architecture of our proposed model: MACoW. We train a reconstructor Con-
vNeXtUnetV2 XRec by including four anomaly synthesis methods using the L1 Smooth and
SSIM[28], followed by a discriminator ConvNeXtUnetV2 for generating an anomaly map.
The segmentation network, trained using the Focal Loss[13] and Dice Loss[17]. Best viewed
by zooming in.

image and its flawless approximation, thereby enhancing the segmentation performance.

3.1 Reconstructive Subnetwork
This paper introduces the proposed Masked Attention ConvNeXtUNetV2 model archi-

tecture, as depicted in Figure 2. The model comprises two main parts: constructive and
discriminative subnetworks. The downsampling operation on the constructive subnetwork
utilizes the ConvNeXtV2[30] network as the backbone feature extraction network, with a
stem operation executed before entering ConvNeXtV2[30]. For the upsampling process, we
employ the bilinear upsampling method instead of the original transpose convolution pro-
cess. This alternative mitigates the shadow problem associated with transpose convolution.
Each upsampled feature map is concatenated with the feature obtained by the encoder via
skip connections[8]. This method enhances the foreground target while minimizing the noise
response generated during feature fusion across different channel numbers. The reconstruc-
tive ConvNeXtUnetV2 subnetwork, trained using the L1 Smooth and SSIM[28].

3.2 Discriminative Subnetwork
We introduce a discriminative subnetwork within our architecture, designed to function

as a classifier for end-to-end anomaly detection while utilizing ConvNeXtV2 as the feature
extraction backbone, as detailed in ConvNeXtV2[30]. The core functionality of this subnet-
work is the generation of a predicted anomaly annotation map, where each pixel is assigned
a binary label of either 0 (indicating normal) or 1 (indicating abnormal).

To enhance the efficiency and coherence of our architecture, we adopt a shared feature
extraction process for both the input image and its reconstructed counterpart. These features,
derived from each encoder layer, are concatenated and denoted as concat f eat(i), with i repre-
senting the layer index (e.g., i= 1 corresponds to the input layer). During the decoding phase,
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Figure 3: The structure of our reconstruction Unet. The encoder utilizes ConvNeXtV2[30]
block for feature extraction. An attention mechanism of SSPCBMA is applied before up-
sampling. Best viewed by zooming in.

the input of the first decoder layer is concat f eat(L), where L signifies the total number of en-
coder layers. Subsequently, the input for the ith decoder layer (i = L indicating the final layer
that outputs the segmentation map) is computed as concat(concat f eat(i), last layer’s output),
where the last layer’s output is not considered if i = 1.

This approach optimizes the feature extraction process for both the input and recon-
structed images, enhancing model performance for anomaly segmentation tasks. The dis-
criminative network is trained using a combination of Focal loss[13] and Dice Loss[17] to
effectively localize anomalous regions and produce an anomaly map, from which image-
level anomaly scores are derived.

3.3 Self-Supervised Predictive Convolutional Block with
Multi-Attention(SSPCBMA)

Our work draws inspiration from the self-supervised predictive convolutional attentive
block (SSPCAB)[21], which focuses on the task of predicting or reconstructing masked in-
formation by leveraging contextual cues. In our approach, we introduce a novel modification
to this module with the objective of enhancing its performance.

Firstly, we incorporate residual connections that establish links both before the masked
convolution operation and after the spatial attention operations. These connections serve the
purpose of facilitating information flow and gradient propagation within the module.

Secondly, we introduce spatial attention mechanisms inspired by CBAM[29] to the mod-
ule, enabling it to emphasize critical features while simultaneously suppressing irrelevant
ones. This spatial attention component contributes to enhancing the overall effectiveness of
the module in capturing relevant information.

The resultant module, denoted as the Self-Supervised Predictive Convolutional Block
with Multi-Attention (combining both channel and spatial attention), abbreviated as SSPCBMA,
is illustrated in Figure 4. We seamlessly integrate SSPCBMA into our ConvNeXtUNetV2
architecture, as depicted in Figure 3. This integration equips our architecture with the capa-
bility to learn and reconstruct masked information while simultaneously providing valuable
features for downstream neural layers.
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Figure 4: The structure of SSPCBMA.

3.4 Simulated Anomaly Generation
Our research aims to leverage SOTA synthesis methods to simulate anomalous images,

thereby enhancing the training of our MACoW model for anomaly detection. We further ex-
plore novel approaches by drawing inspiration from prior works such as DRÆM[32], which
introduces external data sources as the anomaly source and incorporates Perlin masks to cre-
ate masks with distinctive, non-uniform shapes. Specifically, Cutpaste[11] generates anoma-
lies by selecting image patches from the same dataset and placing them in different regions.
NSA[23], on the other hand, seamlessly blends scaled patches of varying sizes from sepa-
rate images using Poisson image editing, yielding anomalies that closely mimic real-world
anomalies in visual appearance.

Our approach builds upon these established synthesis methods and incorporates four dis-
tinct anomaly simulators: Perlin noise[32], NSA[23], Mask[10, 33], and CutPaste[11]. We
adapt and fine-tune certain algorithms and parameters to enhance model accuracy. For ex-
ample, we introduce a mask method where the number and scale of mask regions are param-
eterized and refined to optimize model performance. A visual representation of generated
images can be observed in Figure 2.

3.5 Multi-Synthesis dynamic Weighting
Our model leverages multiple losses to reconstruct images or discriminate pixels, thus

defining a multi-objective problem. Typically, the total loss, denoted as LT , is a linear com-
bination of different losses, denoted as Li, in the following manner:

LT = ∑
i

αiLi +R(α) (1)

where α denotes a set of weights and R(·) imposes some regularization on these weights.
The loss function commonly assumes equal weights for individual loss terms, but varying
the weights can considerably affect the model’s performance. Adjusting the weights through
grid search for optimal α values is computationally expensive and still static. To address
this challenge, we implemented a dynamic weighting strategy, inspired by the coefficient
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of variations weighting method[6]. This strategy involves assigning weights, denoted as α ,
to four types of different loss terms, and these weights evolve as a function of the number
of epochs (t) for each specific synthesis method. In this context, we denote the synthesis
images as XSi, with i representing one of the four synthesis methods under consideration.
Furthermore, we use XRi to denote the corresponding reconstructed images, as illustrated in
Figure 2. The loss function employed in our framework encompasses L1 Smooth, SSIM[28],
Focal Loss[13], and Dice Loss[17]. Additional details are presented in Equation (2):

Multi_Loss(t)Si = α1(t) ·LossL1smooth(XSi,XRi) +

α2(t) ·Loss1−SSIM(XSi,XRi) +

α3(t) ·LossFocal(PredictedMaskSi ,GTSi) +

α4(t) ·LossDice(PredictedMaskSi ,GTSi) (2)

where α1 +α2 +α3 +α4 = 1.
Our model also applies [6] for calculating the weight of multiple anomaly synthesis

methods, named Multi-Synthesis dynamic Weighing (MSdW). The output of each synthesis
method from the Multi_Loss(t) quotation is treated as an input for the Synthesis_Loss(t) quo-
tation. During the training process, the weight β is assigned to each synthesis method based
on the number of epochs (t), thereby eliminating the need for an additional optimization
process. Additional details are presented in Equation (3):

Synthesis_Loss(t)Total = β1(t) ·Multi_Losss1 +

β2(t) ·Mutli_Losss2 +

β3(t) ·Mutli_Losss3 +

β4(t) ·Mutli_Losss4 (3)

where β1 +β2 +β3 +β4 = 1.

4 Experiments
Our MACoW model is extensively evaluated and compared with the recent unsuper-

vised SOTA methods. Additionally, individual components of the proposed method and the
effectiveness of training on simulated anomalies are evaluated with an ablation study. Fi-
nally, our findings demonstrate superior performance when compared to other SOTA meth-
ods.

4.1 Implementation Details
MVTecAD dataset. It was introduced in [1], and is widely adopted as a standard

benchmark for evaluating the effectiveness of anomaly detection algorithms in industrial
inspection images, including 15 categories, comprising ten object categories and five texture
categories. The BTAD dataset [18] is also a real-world industrial anomaly dataset consisting
of three industrial products. The KSDD2 dataset [3] was also developed using images of
defected production items and comprised 356 images with visible defects and 2,979 without
defects. In cases where the training data contained defective samples, the aforementioned
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datasets were processed by removing the abnormal samples entirely, leaving only the normal
data for our unsupervised training.

Evaluation Metrics. The evaluation of outcomes in prior research is based on the area
under the receiver operating characteristic curve at both the image level (Image-AUROC)
and pixel level (Pixel-AUROC). However, it has been observed that abnormal regions oc-
cupy only a tiny proportion of the entire image. Therefore, the Pixel-AUROC metric needs
to reflect localization accuracy precisely. Furthermore, many non-anomalous pixels primar-
ily influence the false positive rate, leading to low false favorable detection rates. To obtain
a comprehensive measurement of localization performance, we also employ the Per Region
Overlap (PRO) score[2] and pixel-level Average Precision (Pixel-AP)[32, 34] as the eval-
uation metrics. The PRO score provides equal consideration to anomaly regions of varied
sizes[5]. In contrast, Pixel-AP is more appropriate for assessing highly imbalanced classes,
especially in industrial anomaly localization, where accuracy plays a critical role[32].

4.2 Anomaly Detection and Localization on MVTecAD

Table 1 presents the results of anomaly detection and localization on the MVTecAD
dataset. Our proposed method outperforms other SOTA techniques in terms of image AU-
ROC (detection) in 7 out of 15 classes. Specifically, our method achieves the best average
pixel AUROC performance 98.2% compared to the unsupervised SOTA method. Table 2
presents the results of PRO and Pixel AP on the MVTec dataset. Our method achieves the
highest PRO in 9 out of 15 classes. The average PRO results show that our method out-
performs unsupervised SOTA by 1.5%. Specifically, our proposed method demonstrates
superior average pixel AUROC (localization) performance compared to other SOTA models
for both Texture and Object. And Total average pixel AP performance 73.4% compared to
the unsupervised SOTA method and outperforms unsupervised SOTA by 2.3%. This con-
firms the effectiveness of our approach in simultaneously localizing anomalous regions of
varying sizes. Moreover, our method demonstrates excellent anomaly localization capabil-
ity on the more challenging AP metrics. These results also demonstrate the discriminative
power of our proposed approach in differentiating between normal and abnormal pixels,
thereby improving the AP metric’s performance. It also proved that our method can leverage
all kinds of anomaly synthesis algorithms to reach the best performance for unsupervised
reconstruction-based methods.

Category DRÆM SSPCAB RD Patchcore Ours
I P O A I P O A I P O A I P O A I P O A

BTAD 01 98.5 91.5 61.4 17.0 96.2 92.4 62.8 18.1 98.8 95.7 72.8 49.3 96.6 96.5 78.4 47.1 93.0 93.7 71.2 46.8
BTAD 02 68.6 73.4 39.0 23.3 69.3 65.6 28.6 15.8 84.9 96.0 55.8 66.1 81.3 94.9 54.0 56.3 81.7 96.9 66.5 70.6
BTAD 03 99.8 96.3 84.3 17.2 99.4 92.4 71.0 5.0 99.5 99.0 98.8 45.1 99.9 99.2 96.4 51.2 96.9 99.7 98.5 72.3

BTAD Average 89.0 87.1 61.6 19.2 88.3 83.5 54.1 13.0 94.4 96.9 75.8 53.5 92.6 96.9 76.3 51.5 90.5 96.8 78.8 63.2

KSDD2 81.1 85.6 67.9 39.1 83.4 86.2 66.1 44.5 96.0 97.6 94.7 43.5 76.5 97.1 88.8 64.1 91.1 96.8 66.5 86.9

Table 3: BTAD and KSDD2 performance comparison with SOTA models. “I”, “P”, “O”, and
“A” respectively refer to the four metrics of Image auroc, Pixel auroc, PRO, and Pixel AP.
The best score is highlighted in bold. The results for DRÆM, SSPCAB, RD, and PatchCore
are reported from [36]
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Category CutPaste[11] DRÆM SSPCAB RD NSA[23] DSR[34] Patchcore Ours

Carpet 93.9 / 98.3 96.9 / 97.5 93.1 / 92.6 98.7 / 98.9 95.6 / 95.5 100.0 / 95.5 99.1 / 99.0 99.6 / 99.4
Grid 100.0 / 97.5 99.9 / 99.7 99.7 / 99.5 100.0 / 98.3 99.9 / 99.2 100.0 / 99.6 97.3 / 98.7 100.0 / 99.8

Leather 100.0 / 99.5 100.0 / 99.0 98.7 / 96.3 100.0 / 99.4 99.9 / 99.5 100.0 / 99.6 100.0 / 99.3 100.0 / 99.6
Tile 94.6 / 90.5 100.0 / 99.2 100.0 / 99.4 99.7 / 95.7 100.0 / 99.3 100.0 / 98.2 99.3 / 95.8 100.0 / 99.5

Wood 99.1 / 95.5 99.5 / 95.5 98.4 / 96.5 99.5 / 95.8 97.5 / 90.7 96.3 / 92.5 99.6 / 95.1 96.8 / 96.2

Average 97.5 / 96.3 99.3 / 98.2 98.0 / 96.9 99.6 / 97.6 98.6 / 96.8 99.3 / 97.1 99.1 / 97.6 99.3 / 98.9

Bottle 98.2 / 97.6 98.0 / 99.1 95.6 / 99.2 100.0 / 98.8 97.7 / 98.3 100.0 / 98.9 100.0 / 98.6 100.0 / 98.4
Cable 81.2 / 90.0 90.9 / 95.2 92.7 / 95.1 96.1 / 97.2 94.5 / 96.0 93.8 / 96.7 99.9 / 98.5 95.7 / 94.4

Capsule 98.2 / 97.4 91.3 / 88.1 96.9 / 90.2 96.1 / 98.7 95.2 / 97.6 98.1 / 95.4 98.0 / 99.0 99.0 / 99.1
Hazelnut 98.3 / 97.3 100.0 / 99.7 100.0 / 99.7 100.0 / 99.0 94.7 / 97.6 95.6 / 99.2 100.0 / 98.7 98.9 / 99.5
Metal Nut 99.9 / 93.1 100.0 / 99.6 100.0 / 99.4 100.0 / 97.3 98.7 / 98.4 98.5 / 93.7 99.9 / 98.3 100.0 / 98.9

Pill 94.9 / 95.7 97.1 / 97.3 97.4 / 97.2 98.7 / 98.1 99.2 / 98.5 97.5 / 93.4 97.5 / 97.6 97.2 / 97.3
Screw 88.7 / 96.7 98.7 / 99.3 97.8 / 99.0 97.8 / 99.7 90.2 / 96.5 96.2 / 98.5 98.2 / 99.5 97.5 / 99.3

Toothbrush 99.4 / 98.1 100.0 / 97.3 97.9 / 97.3 100.0 / 99.1 100.0 / 94.9 99.7 / 99.5 100.0 / 98.6 99.2 / 99.3
Transistor 96.1 / 93.0 91.7 / 85.2 88.0 / 84.8 95.5 / 92.3 95.1 / 88.0 97.8 / 83.2 99.9 / 96.5 96.3 / 92.8

Zipper 99.9 / 99.3 100.0 / 99.1 100.0 / 98.4 97.9 / 98.3 99.8 / 94.2 100.0 / 98.9 99.5 / 98.9 100.0 / 99.4

Average 95.5 / 95.8 96.8 / 96.0 96.6 / 96.0 98.2 / 97.9 96.5 / 96.0 97.7 / 95.7 99.3 / 98.4 98.4 / 97.8

TotalAverage 96.1 / 96.0 97.6 / 96.7 97.1 / 96.3 98.7 / 97.8 97.2 / 96.3 98.2 / 96.2 99.2 / 98.1 98.7 / 98.2

Table 1: MVTecAD performance comparison with SOTA models, given by Image AUROC
/ Pixel AUROC. The best score per row is highlighted in bold. The results for DRÆM,
SSPCAB, RD and PatchCore are reported from [36]

4.3 Ablation Experiment
4.3.1 Comparison of SSPCBMA and SSPCAB

We evaluate the performance of the proposed SSPCBMA method on the MVTecAD
dataset. The primary aim of these experiments is to compare the performance of three con-
ditions: without any attention; SSPCAB[21], and our novel SSPCBMA. The experimental
results are presented in Table 4, demonstrating that our SSPCBMA module achieved the
highest score on PRO, and performed competitively with the SOTA method on Pixel AP.

Image AUC Pixel AUC Pixel AP PRO
Texture Object Texture Object Texture Object Texture Object

w/o Attention 97.7 99.0 97.7 97.9 70.6 77.3 93.4 96.8
SSPCAB 98.1 99.0 97.6 98.9 69.7 79.2 93.4 97.3

SSPCBMA(Ours) 98.4 99.3 97.8 98.9 70.5 79.0 93.8 98.6

Table 4: MVTecAD performance on different Attention Modules. The best score per row is
highlighted in bold. The results for SSPCAB are reported from [36]

4.3.2 Comparison of Multi-Synthesis dynamic Weighting(MSdW) and Multi-Loss
dynamic Weighting

The performance of our proposed Multi-Synthesis dynamic Weighting (MSdW) ap-
proach is evaluated on the MVTecAD dataset, which includes three distinct loss weight
configurations: static weights featuring equal or hand-tuned weighting; Multi-Loss dynamic
Weighting method [21]; and our novel MSdW method. The experimental findings are pre-
sented in Table 5, and the results indicate that our proposed method outperforms the other
methods in all indicators. This is attributed to our ability to consider the impact of synthetic
data and leverage various self-supervised synthesis methods during the training process.
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Category CutPaste[11] DRÆM SSPCAB RD NSA[23] DSR[34] Patchcore Ours

Carpet 50.4 / - 92.9 / 65.1 86.4 / 48.6 95.4 / 56.5 85.0 / - - / 78.2 95.5 / 62.2 99.8 / 80.6
Grid 91.5 / - 98.3 / 62.8 98.0 / 57.9 94.2 / 15.8 96.8 / - - / 68.0 94.0 / 24.5 99.1 / 77.0

Leather 83.7 / - 97.4 / 72.9 94.0 / 60.7 98.2 / 47.6 98.7 / - - / 62.5 96.9 / 45.3 99.2 / 68.3
Tile 54.4 / - 98.2 / 95.2 98.1 / 96.1 85.6 / 54.1 95.3 / - - / 93.9 91.3 / 56.2 98.3 / 94.3

Wood 64.0 / - 90.3 / 74.6 92.8 / 78.9 91.4 / 48.3 85.3 / - - / 68.4 87.1 / 49.3 96.7 / 74.9

Average 68.8 / - 95.4 / 74.1 93.9 / 68.4 93.0 / 44.5 92.2 / - - / 74.2 93.0 / 47.5 98.6 / 79.0

Bottle 91.2 / - 96.8 / 88.9 96.3 / 89.4 96.3 / 78.0 92.9 / - - / 91.5 95.4 / 76.8 96.8 / 86.5
Cable 59.8 / - 81.0 / 56.4 80.4 / 52.0 94.1 / 52.6 89.9 / - - / 70.4 96.8 / 67.0 95.2 / 66.8

Capsule 83.5 / - 82.7 / 39.6 92.5 / 46.4 95.5 / 47.2 91.4 / - - / 53.3 93.4 / 46.0 95.9 / 57.6
Hazelnut 81.3 / - 98.5 / 92.6 98.2 / 93.4 96.9 / 60.7 93.6 / - - / 87.3 90.9 / 53.2 96.9 / 87.4
Metal Nut 54.4 / - 97.0 / 97.0 97.7 / 94.7 94.9 / 78.6 94.6 / - - / 67.5 92.6 / 86.6 96.9 / 89.3

Pill 83.1 / - 88.4 / 47.6 89.6 / 48.3 96.7 / 76.5 96.0 / - - / 65.7 94.5 / 75.7 93.6 / 68.8
Screw 72.6 / - 95.0 / 66.5 95.2 / 61.7 98.5 / 52.1 90.1 / - - / 52.5 97.5 / 34.7 99.4 / 54.4

Toothbrush 88.1 / - 85.6 / 45.5 85.5 / 39.3 92.3 / 51.1 90.7 / - - / 74.2 94.0 / 37.9 92.6 / 62.5
Transistor 68.5 / - 70.4 / 39.0 62.5 / 38.1 83.3 / 54.1 75.3 / - - / 41.1 92.3 / 66.9 72.4 / 49.2

Zipper 84.9 / - 96.8 / 77.6 95.2 / 76.4 95.3 / 57.5 89.2 / - - / 78.5 96.1 / 62.3 98.9 / 83.0

Average 76.7 / - 89.2 / 65.1 89.3 / 64.0 94.4 / 60.8 90.4 / - - / 68.2 94.4 / 60.7 93.4 / 70.6

TotalAverage 74.1 / - 91.3 / 68.1 90.8 / 65.5 93.9 / 55.4 91.0 / - - / 70.2 93.9 / 56.3 95.4 / 73.4

Table 2: MVTecAD performance comparison with SOTA models, given by PRO / Pixel AP.
The best score per row is highlighted in bold. The results for DRÆM, SSPCAB, RD and
PatchCore are reported from [36]

Image AUC Pixel AUC Pixel AP PRO
Texture Object Texture Object Texture Object Texture Object

Static Weighting(Fixed) 97.2 98.2 97.1 98.7 67.5 77.6 83.8 96.6
Multi-Loss dynamic Weighting[6] 97.0 98.2 97.1 98.9 68.2 77.8 92.7 97.2

Multi-Synthesis dynamic Weighting(Ours) 98.4 99.3 97.8 98.9 70.5 79.0 93.8 98.6

Table 5: MVTecAD performance on different weighting strategies. The best score per col-
umn is highlighted in bold.

Table 6 illustrates that the combination of both MSdW and SSPCBMA components
yielded the best results in our study. Specifically, we achieved the highest performance
metrics for Image AUROC, PRO, and pixel AP, while Pixel AUROC was also close to SOTA
performance.

ConvNeXUnetV2 Performance
MSdW SSPCBMA I P O A

97.7 98.9 94.8 70.7
✓ 98.1 97.8 94.6 73

✓ 97.5 97.6 88.1 70.9
✓ ✓ 98.7 98.2 95.4 73.4

Table 6: Components capability on MVTecAD. “I”, “P”, “O”, and “A” respectively refer to
the four metrics of Image auroc, Pixel auroc, PRO, and Pixel AP. The best score per column
is highlighted in bold.
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5 Conclusions
This paper presents a novel anomaly detection and segmentation approach, Masked At-

tention ConvNeXtUNetV2 with Multi-Synthesis Weighting (MACoW). Our methodology
harnesses various anomaly simulation strategies applied to anomaly-free samples to gen-
erate synthetic anomaly images for model training. Through comprehensive experimenta-
tion, we have demonstrated the efficacy of the introduced SSPCBMA attention mechanism
within the reconstructive subnetwork, resulting in improved feature extraction capabilities
for anomaly detection. Furthermore, our study showcases the benefits of integrating multiple
self-supervised learning approaches, which effectively regularize our reconstructive subnet-
work and subsequently enhance the overall performance in anomaly detection and segmen-
tation tasks. The MACoW model delivers competitive results across benchmark datasets,
including MVTec, BTAD, and KSDD2. Of particular note is the versatility of our approach,
as the Multi-Synthesis Dynamic Weighting algorithm enables easy integration of new syn-
thesis methods on image datasets. This adaptability allows our model to leverage the advan-
tages of emerging self-supervised synthesis techniques, positioning it for continued anomaly
detection and segmentation research advancements.
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